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(F) mice collected during 24-h intervals after oral administration of a single dose of iAs (20 μg As/
kg body weight). Mean (x), median (―), 25th and 75th percentiles (box), maximum and minimum 
(whiskers), and individual values including outliers are shown (N=8 for Hs/Hs males, N=10 for 
Hs/Hs females, N=7 for WT/WT males, and N=11 for WT/WT females). MAs concentration was 
below limit od detection in 52 out of 54 urine samples collected from WT/WT mice during the 3 
collection intervals; a value of 0 µg As/L was imputed for MAs concentrations in these samples. 
a,b,c Within each panel, statistically significant differences between strains and sexes are marked 
with different letters. (ANOVA with Student-Newman-Keuls post-test.).

Figure S4. Proportions of total arsenic (%tAs) represented by inorganic arsenic (%iAs), methyl-
arsenic (%MAs) and dimethyl-arsenic (%DMAs) in urine of humanized (Hs/Hs) and wild type 
(WT/WT) male (M) and female (F) mice collected during 24-h intervals after oral administration 
of a single dose of iAs (20 μg As/kg body weight). Mean +SD (N=8 for Hs/Hs males, N=10 for 
Hs/Hs females, N=7 for WT/WT males, and N=11 for WT/WT females). MAs concentration was 
below limit od detection in 52 out of 54 urine samples collected from WT/WT mice during the 3 
collection intervals; a value of 0 µg As/L was imputed for MAs Within each panel, statistically 
significant differences between strains and sexes are marked with different letters: a,b,c for 
differences in %iAs, d,e,f for differences in %MAs, g,hi for differences in %DMAs. (ANOVA with 
Student-Newman-Keuls post-test.). 

Figure S5. Concentrations of inorganic arsenic (iAs), methyl-arsenic (MAs) and dimethyl-arsenic 
(DMAs) (μg As/L) in feces of humanized (Hs/Hs) and wild type (WT/WT) male (M) and female 
(F) mice collected during 24-h intervals after oral administration of a single dose of iAs (20 μg As/
kg body weight). Mean (x), median (―), 25th and 75th percentiles (box), maximum and minimum 
(whiskers), and individual values including outliers are shown (N=8 for Hs/Hs males, N=10 for 
Hs/Hs females, N=7 for WT/WT males, and N=11 for WT/WT females). DMAs concentration 
was below limit of detection in 48 out of 54 fecal samples collected during the 3 collection 
intervals from male and female Hs/Hs mice; a value of 0 µg As/kg was imputed for DMAs 
concentrations in these samples. a,b Within each panel, statistically significant differences between 
strains and sexes are marked with different letters. (ANOVA with Student-Newman-Keuls post-
test.). 



Figure S6. Proportions of total arsenic (%tAs) represented by inorganic arsenic (%iAs), methyl-
arsenic (%MAs) and dimethyl-arsenic (%DMAs) in feces of humanized (Hs/Hs) and wild type 
(WT/WT) male (M) and female (F) mice collected during 24-h intervals after oral administration 
of a single dose of iAs (20 μg As/kg body weight). Mean +SD (N=8 for Hs/Hs males, N=10 for 
Hs/Hs females, N=7 for WT/WT males, and N=11 for WT/WT females). DMAs concentration 
was below limit of detection in 48 out of 54 fecal samples collected during the 3 collection 
intervals from male and female Hs/Hs mice; a value of 0 µg As/kg was imputed for DMAs 
concentrations in these samples. Within each panel, statistically significant differences between 
strains and sexes are marked with different letters: a,b,c for differences in %iAs, d,e,f,g for 
differences in %MAs, h,i,j for differences in %DMAs. (ANOVA with Student-Newman-Keuls 
post-test.). 

Figure S7. Proportions of total arsenic (%tAs) represented by inorganic arsenic (%iAs), methyl-
arsenic (%MAs) and dimethyl-arsenic (%DMAs) in urine of humanized (Hs/Hs) and wild type 
(WT/WT) male (M) and female (F) mice collected during 4-week exposure to iAs in drinking 
water (400 μg As/L). Mean +SD (N=8 for Hs/Hs males, N=10 for Hs/Hs females, N=7 for 
WT/WT males, and N=11 for WT/WT females). MAs concentration was below LOD in 70 out of 
72 urine samples collected from WT/WT mice during the 4 collection intervals; a value of 0 µg 
As/L was imputed for MAs concentrations in these samples. Within each panel, statistically 
significant differences between strains and sexes are marked with different letters: a,b,c %iAs, d,e,f 
%MAs, g,h %DMAs. (ANOVA with Student-Newman-Keuls post-test.). 

Figure S8. Concentrations of total arsenic (μg As/kg) in livers and kidneys of humanized (Hs/Hs) 
and wild type (WT/WT) male (M) and female (F) mice after 4-week exposure to iAs in drinking 
water (400 μg As/L). Total arsenic was calculated as sum of inorganic arsenic, methyl-arsenic 
and dimethyl-arsenic. Mean (x), median (―), 25th and 75th percentiles (box), maximum and 
minimum (whiskers), and individual values including outliers are shown (Mean+SD; N=8 for Hs/
Hs males, N=10 for Hs/Hs females, N=7 for WT/WT males, and N=11 for WT/WT females). 
DMAs was below LOD in 16 out of 18 liver samples collected from Hs/Hs mice; a value of 0 μg 
As/kg was imputed for DMAs concentrations in these samples.  a,b,c Within each panel, 
statistically significant differences between strains and sexes are marked with different letters. 
(ANOVA with Student-Newman-Keuls post-test.). 
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Table S1:  Haplotype for selected single nucleotide polymorphisms (SNPs) of human BORCS7-

AS3MT segment included in the humanized locus of Hs/Hs mice 

A. AS3MT SNPs previously associated with iAs metabolism

SNP Allele Frequency AA 

rs3740393 G 78.97% - 

rs3740390 C 84.29% - 

rs11191439 T 90.72% Met 

rs10748835 G 55.87% - 

B. GWAS schizophrenia-associated top eQTL (expression quantitative trait loci)

Gene Top eQTL Allele Frequency 

AS3MT rs7085104 A 61.86% 

BORCS7 rs11441374 - 82.33% 

C. AS3MT VNTR

SNP Allele Frequency 

rs45567337 3 copies 59.17% 

The segment of DNA used to generate the humanized locus was derived from the tilepath 

bacterial artificial chromosome (BAC) encompassing the genes encoding for BLOC-1 Related 

Complex Subunit 7 (BORCS7) and arsenic (+3 oxidation state) methyltransferase (AS3MT), and 

therefore the sequence of the humanized locus matches the human reference allele 

(GRCh38/hg38 assembly). A. Haplotype based on SNPs previously reported to be associated 

with altered metabolism of inorganic arsenic (iAs). The haplotype carried by the reference allele 

corresponds to the previously described GCTG haplotype (Apata et al. 2017). B. Haplotype for 

SNPs carried by the humanized locus that have previously been associated with schizophrenia 

(Li et al. 2016). C. Haplotype for variable number tandem repeat (VNTR) in the AS3MT gene 

that has previously been associated with risk of schizophrenia (Li et al. 2016). 



 

Table S2: Predesigned primers used in PCR reactions during the assembly of Borcs5/As3mt 

displacer and gene expression analyses 

Primer # Sequence

215317 TTCTCTGTCCTTCCTGTGCGACGGTTACGCCGCTCCATGAGCTTATCGCGACGCGTAAAGCTAGCCTGCCTCAAAAC

213218 TATTATGAACCCCATGGGCCAAGAGGACAAAAACTGCTGAGTGTATTTTCCTAAGCACTGTGGGCTAGGGTCTTGACTCG

215319 TAAAGCTAGCCTGCCTCAAAAC

215320 CAGCGCGTACGCCCATGGGGCGGTACCGGGAGGAGGAGGAAACTAGC

215323 ATGGCCCTTTCGTCTTCCTAGACCAGCCAGGACAGAAATG

215324 GGAAGGCAAGCAGTCTTCGGCCGCGTATTGGGCGCTCTTC

215325 ATACGCGGCCGAAGACTGCTTGCCTTCCTGTTGGGATTGT

215326 GAGAGAGAAGACCGCGGCCGCGTGGCCCCAGCTCTGGCTCGAACT

215330 AAATTGTAAGCGACGCGTTTGGGCACTAGAGGAAGAGGTGA

215332 GGCTGGTCTAGGAAGACGAAAGGGCCATCCTGCGCTCAGG

215336 CGCGCGTACGCCAGGCTGGCTGCTATCCGTGCAGAAGCCCTTGTA

215337 CACCACCCATGTGGTTCATCATCTCA

215338 TTGTAAGCGACGCGTGCCCAAAGTAGACCTCTGACCAGA

215339 CTACTTTGGGCACGCGTCGCTTACAATTTAGGTGGCACTTT

56719 CTTTGGCCGCCGCCCAGTCCTGCTCGCTTCGCTACTTGGAGCCACTATCGATGATCTTTTCTACGGGGTCTGACG

ScreenF ATGCCCATGCTCTTCTCTTATGCT

176268 AAATTAAGGGCCAGCTCATTCCTC

common TTTACCCCCAATTTCACTATGAAG

displaced GCTCCATCTGCTAAATCTACATCC

endo TGGGAGAATTATTGATTCGACATC

d2d3-F GCCGAGGAGACAATATTATGGCT

d2d3-R TGGTCATGTCTATTCCAGTCACGT

full-F CGAGGAGACATGGCTGCAC

full-R GTGGTGACACAGCCGTTGG



 

Table S3: The pFloxxerX plasmid used during the assembly of Borcs5/As3mt displacer to derive 

the vector backbone carrying a ColE1 origin of replication and a spectinomycin gene.  



 



 



 



 



 



 

Table S4: The pSfiI-JT15-neoJTZ17-SfiI vector used during the assembly of Borcs5/As3mt 

displacer as a source of the neomycin resistance gene. 



 



 



 



 



 

Figure S1: Comparison of AS3MT and As3mt expression levels in adrenals and liver of  the 

humanized (Hs/Hs) and wild type (WT/WT) mice and the WT/Hs heterozygotes: A. Relative 

expression of the human AS3MT; B. Relative expression of the mouse As3mt. 2 µg RNA was 

reverse transcribed and quantitative PCR was run using AS3MT (Hs00960526_q1), As3mt 

(Mm00491075_m1), and 18S gene expression assays (Applied Biosystems) and qPCRBIO Probe 

Blue Mix (low ROX, Genesee Scientific). For each tissue, expression level in the mice 

homozygous for the gene was assigned a value of 1 (Mean +SE, N=6 for adrenals, N=3 for 

liver). 
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Figure S2: Expression of BORCS7-AS3MT read-through transcripts in tissues of the humanized 

(Hs/Hs) and wild type (WT/WT) mice and the WT/Hs heterozygotes. A. Read-through transcript 

expression in testes, adrenal glands, and liver of Hs/Hs mice (N=1/tissue).  B. Separation of 

cDNA from testes of WT/WT, WT/Hs and Hs/Hs mice on a 1.6% agarose gel (N=1/genotype):  

(a) 100 bp fragment, consistent with the previously described read-through transcript; (b) 220 bp

fragment of a read-through transcript that has not been previously reported. C. Schematic 

structures of the unspliced BORCS7 isoforms (lavender), AS3MT (blue) and the previously 

reported (orange) (Lu X et al. 2015) and novel (red) BORCS7-AS3MT read-through transcripts. 

Introns are indicated by thin lines, untranslated exonic sequence by medium lines, and exonic 

coding sequence by thick lines. The position of the stop codon is indicated for the top two 

BORCS7 transcripts. The PCR used for quantification and sequencing of the BORCS7-AS3MT 

junction of the read-through transcripts is indicated at the bottom of the figure (green). 



 

Figure S3: Concentrations of inorganic arsenic (iAs), methyl-arsenic (MAs) and dimethyl-

arsenic (DMAs) (μg As/L) in urine of humanized (Hs/Hs) and wild type (WT/WT) male (M) and 

female (F) mice collected during 24-h intervals after oral administration of a single dose of iAs 

(20 μg As/kg body weight). Mean (x), median (―), 25
th

 and 75
th

 percentiles (box), maximum

and minimum (whiskers), and individual values including outliers are shown (N=8 for Hs/Hs 

males, N=10 for Hs/Hs females, N=7 for WT/WT males, and N=11 for WT/WT females). MAs 

concentration was below limit od detection in 52 out of 54 urine samples collected from WT/WT 

mice during the 3 collection intervals; a value of 0 µg As/L was imputed for MAs concentrations 

in these samples.
 a,b,c 

Within each panel, statistically significant differences between strains and

sexes are marked with different letters. (ANOVA with Student-Newman-Keuls post-test.)  
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Figure S4: Proportions of total arsenic (%tAs) represented by inorganic arsenic (%iAs), methyl-

arsenic (%MAs) and dimethyl-arsenic (%DMAs) in urine of humanized (Hs/Hs) and wild type 

(WT/WT) male (M) and female (F) mice collected during 24-h intervals after oral administration 

of a single dose of iAs (20 μg As/kg body weight). Mean +SD (N=8 for Hs/Hs males, N=10 for 

Hs/Hs females, N=7 for WT/WT males, and N=11 for WT/WT females). MAs concentration 

was below limit od detection in 52 out of 54 urine samples collected from WT/WT mice during 

the 3 collection intervals; a value of 0 µg As/L was imputed for MAs Within each panel, 

statistically significant differences between strains and sexes are marked with different letters: 

a,b,c 
for differences in

 
%iAs, 

d,e,f 
for differences in

 
%MAs, 

g,hi 
for differences in

 
%DMAs.

(ANOVA with Student-Newman-Keuls post-test.) 
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Figure S5: Concentrations of inorganic arsenic (iAs), methyl-arsenic (MAs) and dimethyl-

arsenic (DMAs) (μg As/L) in feces of humanized (Hs/Hs) and wild type (WT/WT) male (M) and 

female (F) mice collected during 24-h intervals after oral administration of a single dose of iAs 

(20 μg As/kg body weight). Mean (x), median (―), 25
th

 and 75
th

 percentiles (box), maximum

and minimum (whiskers), and individual values including outliers are shown (N=8 for Hs/Hs 

males, N=10 for Hs/Hs females, N=7 for WT/WT males, and N=11 for WT/WT females). 

DMAs concentration was below limit of detection in 48 out of 54 fecal samples collected during 

the 3 collection intervals from male and female Hs/Hs mice; a value of 0 µg As/kg was imputed 

for DMAs concentrations in these samples.
 a,b 

Within each panel, statistically significant

differences between strains and sexes are marked with different letters. (ANOVA with Student-

Newman-Keuls post-test.)  
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Figure S6: Proportions of total arsenic (%tAs) represented by inorganic arsenic (%iAs), methyl-

arsenic (%MAs) and dimethyl-arsenic (%DMAs) in feces of humanized (Hs/Hs) and wild type 

(WT/WT) male (M) and female (F) mice collected during 24-h intervals after oral administration 

of a single dose of iAs (20 μg As/kg body weight). Mean +SD (N=8 for Hs/Hs males, N=10 for 

Hs/Hs females, N=7 for WT/WT males, and N=11 for WT/WT females). DMAs concentration 

was below limit of detection in 48 out of 54 fecal samples collected during the 3 collection 

intervals from male and female Hs/Hs mice; a value of 0 µg As/kg was imputed for DMAs 

concentrations in these samples.
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Figure S7: Proportions of total arsenic (%tAs) represented by inorganic arsenic (%iAs), methyl-

arsenic (%MAs) and dimethyl-arsenic (%DMAs) in urine of humanized (Hs/Hs) and wild type 

(WT/WT) male (M) and female (F) mice collected during 4-week exposure to iAs in drinking 

water (400 μg As/L). Mean +SD (N=8 for Hs/Hs males, N=10 for Hs/Hs females, N=7 for 

WT/WT males, and N=11 for WT/WT females). MAs concentration was below LOD in 70 out 

of 72 urine samples collected from WT/WT mice during the 4 collection intervals; a value of 0 

µg As/L was imputed for MAs concentrations in these samples. Within each panel, statistically 

significant differences between strains and sexes are marked with different letters: 
a,b,c 

%iAs, 
d,e,f

%MAs, 
g,h 

%DMAs. (ANOVA with Student-Newman-Keuls post-test.)
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Figure S8: Concentrations of total arsenic (μg As/kg) in livers and kidneys of humanized 

(Hs/Hs) and wild type (WT/WT) male (M) and female (F) mice after 4-week exposure to iAs in 

drinking water (400 μg As/L). Total arsenic was calculated as sum of inorganic arsenic, methyl-

arsenic and dimethyl-arsenic. Mean (x), median (―), 25
th

 and 75
th

 percentiles (box), maximum

and minimum (whiskers), and individual values including outliers are shown (Mean+SD; N=8 

for Hs/Hs males, N=10 for Hs/Hs females, N=7 for WT/WT males, and N=11 for WT/WT 

females). DMAs was below LOD in 16 out of 18 liver samples collected from Hs/Hs mice; a 

value of 0 μg As/kg was imputed for DMAs concentrations in these samples.  
a,b,c 

Within each

panel, statistically significant differences between strains and sexes are marked with different 

letters. (ANOVA with Student-Newman-Keuls post-test.) 
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