Appendix for "On high-dimensional constrained maximum likelihood inference"

A Technical details of the counter example

Lemma 1 (A counter example) In (5) in the main text, we write $y = \beta_0 + \boldsymbol{\beta}^{\top} \boldsymbol{x}$, where $\boldsymbol{x} = (x_1, \dots, x_p)$ are independently distributed from $N(\mu_i, 1)$ with $\mu_1 = 0$ and $\mu_j = 1$; $2 \le j \le p$, and ϵ is $N(0, 1 - n^{-1})$, independent of \boldsymbol{x} . Assume that $\beta_0 = 0$ and $\boldsymbol{\beta} = n^{-1/2}, 0, \dots, 0$, or, $y = n^{-1/2}x_1 + \epsilon$. Then Assumption 3 is violated. Now consider a hypothesis test of $H_0: \beta_0 = 0$ versus $H_1: \beta_0 \neq 0$. If $\frac{\log p}{n} \to 0$ as $n, p \to \infty$, then $\Lambda_n(B) \stackrel{p}{\to} \infty$ as $n, p \to \infty$, with $B = \{0\}$.

Proof of Lemma 1. Under the linear model, we have that

$$y_i = \beta_0 + \boldsymbol{\beta}^{\mathsf{T}} \boldsymbol{x}_i + \epsilon_i; i = 1, \dots, n,$$
(A.1)

where $\boldsymbol{\beta} = (\beta_1, 0, \dots, 0)$ and $\beta_0 = 0$, $\boldsymbol{x}_i = (x_{i1}, \dots, x_{ip}) \sim N(\boldsymbol{\mu}, \boldsymbol{I}_{p \times p})$, and $\epsilon_i \sim N(0, 1 - \beta_1^2)$ and is independent of \boldsymbol{x}_i . Then, the constrained MLE for β_0 is

$$\hat{\beta}_0^{(1)} = \underset{\sum_{i=1}^p \mathbb{I}(\beta_i \neq 0) \le 1}{\operatorname{argmin}} \sum_{i=1}^n (y_i - \beta_0 - \boldsymbol{\beta}^\top \boldsymbol{x}_i)^2 = \bar{y} - \widehat{\operatorname{cor}}(x_{\cdot j^*}, y) \frac{s_y}{s_{x_{\cdot j^*}}} \bar{x}_{\cdot j^*},$$
(A.2)

where $x_{.j}$ denotes a n-dimensional vector (x_{1j}, \ldots, x_{nj}) , $\widehat{\text{cor}}$ denotes the sample correlation between two vectors, \bar{x} and s_x denote the sample mean and sample covariance of a vector x,

respectively, and

$$j^* = \underset{1 \le j \le p}{\operatorname{argmax}} \ \widehat{\operatorname{cor}}(x_{\cdot j}, y) \tag{A.3}$$

denotes the index of which feature has the largest sample correlation between y. For each observation (y_i, x_i) , it is easy to write out its joint distribution

$$(y_i, x_{i1}, \dots, x_{ip}) \sim N \begin{pmatrix} 1 & \beta_1 & 0 & \cdots & 0 \\ \beta_1 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & & \ddots & \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$
(A.4)

Hence, the conditional distribution of x_i given y_i is

$$\boldsymbol{x}_{i}|y_{i} \sim N \begin{pmatrix} (\beta_{1}(y_{i} - \beta_{1}\mu_{1}) + \mu_{1}, \mu_{2}, \dots, \mu_{p})^{\top}, & 1 - \beta_{1}^{2} & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$
(A.5)

from which we can easily see that components of x_i are conditionally independent given y_i . Note that

$$\widehat{\text{cor}}(x_{.j}, y) = \frac{(n-1)^{-1} \sum_{i=1}^{n} x_{ij} (y_i - \bar{y})}{s_{.j} s_y}, j = 1, \dots, p$$
(A.6)

and $Var(y) = Var(x_{ij}) = 1$. Hence,

$$\sqrt{n}\widehat{\operatorname{cor}}(x_{j},y)|y \stackrel{d}{=} Z_{j} + o_{p}(1), \qquad (A.7)$$

where $Z_j = \frac{\sum_{i=1}^n x_{ij}(y_i - \bar{y})}{(n-1)s_y}$, $j = 1, \dots, p$, and Z_j 's are independent and normally distributed

conditioned on y. By (A.5), we have that

$$Z_1 \sim N(\beta_1 s_y, 1 - \beta_1^2)$$
 and $Z_j \sim N(0, 1)$ for $j = 2, \dots, p$. (A.8)

Consequently, conditioned on y,

$$\hat{\beta}_{0}^{(1)} = \bar{y} - \widehat{\text{cor}}(x_{\cdot j^{\star}}, y) \frac{s_{y}}{s_{x_{\cdot j^{\star}}}} \bar{x}_{\cdot j^{\star}} = \bar{y} - \beta_{1} \mu_{1} + \beta_{1} \mu_{1} - \widehat{\text{cor}}(x_{\cdot j^{\star}}, y) s_{y} \frac{\bar{x}_{\cdot j^{\star}} - \mu_{j^{\star}}}{s_{x_{\cdot j^{\star}}}} - \widehat{\text{cor}}(x_{\cdot j^{\star}}, y) s_{y} \frac{\mu_{j^{\star}}}{s_{x_{\cdot j^{\star}}}} + \widehat{\text{cor}}(x_{\cdot j^{\star}}, y) s_{y} \frac{\mu_{j^{\star}}$$

Now, we let $\mu_1 = 0$ and $\mu_2 = \cdots = \mu_p = 1$. Moreover, note that

$$\bar{y} - \beta_1 \mu_1 = O_p \left(\frac{1}{\sqrt{n}} \right) \text{ and } \left| \frac{\bar{x}_{j^*} - \mu_{j^*}}{s_{x_{j^*}}} \right| \le \max_{1 \le j \le p} \left| \frac{\bar{x}_j - \mu_j}{s_{x_j}} \right| \le O\left(\sqrt{\frac{\log p}{n}}\right).$$
(A.9)

Hence, if $\sqrt{\frac{\log p}{n}} \le O(1)$, then

$$\hat{\beta}_0^{(1)} = -\widehat{\text{cor}}(x_{.j^*}, y) s_y \frac{\mu_{j^*}}{s_{x_{.j^*}}} + O_p\left(\frac{1}{\sqrt{n}}\right). \tag{A.10}$$

Now we choose β_1 to be small number so that with nonzero probability $\{j^* \neq 1\}$, that is, we need $\mathbb{P}(Z_1 \leq \min_{2 \leq j \leq p} Z_j)$ to be nonzero, which is easy to achieve when β_1 is chosen to be close to 0. Under the event $\{j^* \geq 2\}$

$$\hat{\beta}_0^{(1)} = -\widehat{\cot}(x_{\cdot j^*}, y) s_y \frac{\mu_{j^*}}{s_{x_{\cdot j^*}}} + O_p\left(\frac{1}{\sqrt{n}}\right) = -\max_{2 \le j \le p} \widehat{\cot}(x_{\cdot j}, y) \frac{s_y}{s_{x_{\cdot j^*}}} + O_p\left(\frac{1}{\sqrt{n}}\right)$$

$$= O_p\left(\sqrt{\frac{\log p}{n}}\right) + O_p\left(\frac{1}{\sqrt{n}}\right),$$

because $\max_{2 \le j \le p} \widehat{\operatorname{cor}}(x_{\cdot j}, y) = O_p\left(\sqrt{\frac{\log p}{n}}\right)$ and $s_y \to 1$ in probability and $s_{x_{\cdot j^{\star}}} \to 1$ in probability. Hence, $n\left(\hat{\beta}_0^{(1)}\right)^2 \to \infty$ if $p \to \infty$ as $n \to \infty$. Next, we show that under this model, the log-likelihood ratio test statistic is of the same order as $n\hat{\beta}_0^2$ under the null model.

Toward this end, denote by $f(\beta_0) = \sup_{\|\boldsymbol{\beta}\|_0 \le 1, \sigma > 0} n^{-1} L_n(\beta_0, \boldsymbol{\beta}, \sigma)$. By definition of $\hat{\beta}_0^{(1)}$, it must maximizes $f(\beta_0)$ as a function of β_0 and hence must satisfies $f'(\hat{\beta}_0^{(1)}) = 0$. Moreover, we note that the log-likelihood ratio can be rewritten in terms of $f(\cdot)$

$$\Lambda_n(B) = 2n(f(\hat{\beta}_0^{(1)}) - f(0)) \tag{A.11}$$

Applying a Taylor expansion around $\hat{\beta}_0^{(1)}$, we obtain

$$\Lambda_n(B) = -n(\hat{\beta}_0^{(1)})^2 f''(\beta^*) \tag{A.12}$$

where β^* is some number between 0 and $\hat{\beta}_0^{(1)}$. Under $\log p/n \to 0$, it is easy to show that $\hat{\beta}_0^{(1)}$ is consistent, hence converges to 0 in probability. Hence, $\Lambda_n(B) = -n(\hat{\beta}_0^{(1)})^2 (f''(0) + o_p(1)) \xrightarrow{\mathbb{P}} \infty$, which completes the proof.

B Proofs of Lemmas 2-9

This section provides detailed proofs of Lemmas 2-9 to be used in "On high-dimensional constrained maximum likelihood inference".

Lemma 2 For any symmetric matrices C_1 and C_2 , $\text{vec}(C_1)^{\top} \text{vec}(C_2) = \text{tr}(C_1C_2)$. Moreover, for any positive definite matrix $C \succ 0$,

$$\nabla (\log \det \mathbf{C}) = -\operatorname{vec}(\mathbf{C}^{-1}), \quad \nabla^2 (-\log \det \Omega^0) = \mathbf{C}^{-1} \otimes_s \mathbf{C}^{-1},$$
 (B.1)

$$I = \frac{1}{2} \Sigma^0 \otimes_s \Sigma^0, \tag{B.2}$$

$$\operatorname{Var}\left(\operatorname{vec}(\boldsymbol{X}\boldsymbol{X}^{\top})\right) = 4\boldsymbol{I} \text{ with } \boldsymbol{X} \sim N(0, \boldsymbol{\Sigma}^{0}), \tag{B.3}$$

$$\operatorname{vec}(\boldsymbol{C})^{\top} \boldsymbol{I} \operatorname{vec}(\boldsymbol{C}) = \frac{1}{2} \operatorname{tr} \left(\boldsymbol{\Sigma}^{0} \boldsymbol{C} \boldsymbol{\Sigma}^{0} \boldsymbol{C} \right) . \tag{B.4}$$

Proof of Lemma 2: By the definition, (B.1) follows from an identity:

$$\operatorname{vec}(\mathbf{C}_1)^{\top} \operatorname{vec}(\mathbf{C}_2) = \sum_{i \leq j} (1 + \mathbb{I}(i \neq j)) \mathbf{S}_1(i, j) \mathbf{S}_2(i, j) = \sum_{i, j} \mathbf{S}_1(i, j) \mathbf{S}_2(i, j) = \operatorname{tr}(\mathbf{S}_1 \mathbf{S}_2).$$

Moreover, it follows from Taylor's expansion of the log det function that

$$\log \det(\boldsymbol{C} + \boldsymbol{\Delta}) - \log \det(\boldsymbol{C}) = \operatorname{tr}(\boldsymbol{C}^{-1}\boldsymbol{\Delta}) - \frac{1}{2}\operatorname{tr}\left((\boldsymbol{C}^{-1}\boldsymbol{\Delta})^{2}\right) + o(\|\boldsymbol{C}^{-1/2}\boldsymbol{\Delta}\boldsymbol{C}^{-1/2}\|_{F}^{2})$$

$$= \operatorname{vec}(\boldsymbol{C}^{-1})^{\top}\operatorname{vec}(\boldsymbol{\Delta}) - \frac{1}{2}\operatorname{vec}(\boldsymbol{\Delta})^{\top}\operatorname{vec}(\boldsymbol{C}^{-1}\boldsymbol{\Delta}\boldsymbol{C}^{-1}) + o(\|\boldsymbol{C}^{-1/2}\boldsymbol{\Delta}\boldsymbol{C}^{-1/2}\|_{F}^{2})$$

$$= \operatorname{vec}(\boldsymbol{C}^{-1})^{\top}\operatorname{vec}(\boldsymbol{\Delta}) - \frac{1}{2}\operatorname{vec}(\boldsymbol{\Delta})^{\top}\left(\boldsymbol{C}^{-1}\otimes_{s}\boldsymbol{C}^{-1}\right)\operatorname{vec}(\boldsymbol{\Delta}) + o(\|\boldsymbol{C}^{-1/2}\boldsymbol{\Delta}\boldsymbol{C}^{-1/2}\|_{F}^{2}),$$

where the definition of \otimes_s and (B.1) have been used. This yields (B.2).

For (B.3), the log-likelihood for $\boldsymbol{X} \sim N(0, \boldsymbol{\Sigma}^0)$ is $-\frac{1}{2} \operatorname{vec}(\boldsymbol{\Omega}^0)^{\top} \operatorname{vec}(\boldsymbol{X} \boldsymbol{X}^{\top}) + \frac{1}{2} \log \det(\boldsymbol{\Omega}^0)$. Using properties of the exponential family [2], $\operatorname{Var}\left(\frac{1}{2}\operatorname{vec}(\boldsymbol{X} \boldsymbol{X}^{\top})\right) = \nabla^2\left(-\frac{1}{2}\log \det \boldsymbol{\Omega}^0\right) = \boldsymbol{I}$, implying (B.3). Finally, for any symmetric matrix \boldsymbol{C} , note that

$$\operatorname{vec}(\boldsymbol{C})^{\top} \boldsymbol{I} \operatorname{vec}(\boldsymbol{C}) = \frac{1}{2} \operatorname{vec}(\boldsymbol{C})^{\top} \left(\boldsymbol{\Sigma}^{0} \otimes_{s} \boldsymbol{\Sigma}^{0} \right) \operatorname{vec}(\boldsymbol{C})$$
$$= \frac{1}{2} \operatorname{vec}(\boldsymbol{C})^{\top} \operatorname{vec}(\boldsymbol{\Sigma}^{0} \boldsymbol{C} \boldsymbol{\Sigma}^{0}) = \frac{1}{2} \operatorname{tr}(\boldsymbol{C} \boldsymbol{\Sigma}^{0} \boldsymbol{C} \boldsymbol{\Sigma}^{0}),$$

leading to (B.4). This completes the proof.

Lemma 3 For any symmetric matrix T and $\nu > 0$

$$\mathbb{P}\left(\left|\operatorname{tr}\left((\boldsymbol{S} - \boldsymbol{\Sigma}^{0})\boldsymbol{T}\right)\right| \ge \nu\right) \le 2\exp\left(-n\frac{\nu^{2}}{9\|\boldsymbol{T}\|^{2} + 8\nu\|\boldsymbol{T}\|}\right),\tag{B.5}$$

where $\|\boldsymbol{T}\|^2 = \frac{n}{2} \operatorname{Var} \left(\operatorname{tr} \left((\boldsymbol{S} - \boldsymbol{\Sigma}^0) \boldsymbol{T} \right) \right)$. Furthermore, for $\boldsymbol{T}_1, \cdots, \boldsymbol{T}_K$ such that $\|\boldsymbol{T}_k\| \leq c_0; k = 1$

 $1, \dots, K$ with $c_0 > 0$ and any $\nu > 0$, we have that

$$\mathbb{P}\left(\max_{1\leq k\leq K} \left| \operatorname{tr}((\boldsymbol{S} - \boldsymbol{\Sigma}^0)\boldsymbol{T}_k) \right| \geq \nu\right) \leq 2 \exp\left(-n\frac{\nu^2}{9c_0^2 + 8c_0\nu} + \log K\right), \tag{B.6}$$

which implies that $\max_{1 \le k \le K} |\operatorname{tr}((\boldsymbol{S} - \boldsymbol{\Sigma}^0) \boldsymbol{T}_k)| = O_p\left(c_0 \sqrt{\frac{\log K}{n}}\right)$. Particularly, for any $\nu > 0$ and any index set B,

$$\mathbb{P}\left(\|\operatorname{vec}_{B}(\boldsymbol{S} - \boldsymbol{\Sigma}^{0})\|_{\infty} \ge \nu\right) \le 2\exp\left(-n\frac{\nu^{2}}{9\lambda_{max}^{2}(\boldsymbol{\Sigma}^{0}) + 8\nu\lambda_{max}(\boldsymbol{\Sigma}^{0})} + \log|B|\right), \quad (B.7)$$

implying that
$$\|\operatorname{vec}_B(\mathbf{S} - \mathbf{\Sigma}^0)\|_{\infty} = O_p\left(\lambda_{\max}(\mathbf{\Sigma}^0)\sqrt{\frac{\log |B|}{n}}\right).$$

Proof of Lemma 3: By Markov's inequality, for any $\nu > 0$,

$$P\left(\operatorname{tr}\left((\boldsymbol{S}-\boldsymbol{\Sigma}^{0})\boldsymbol{T}\right) \geq \nu\right) \leq \exp\left(-\frac{\gamma\sqrt{n}\nu}{2}\right) \mathbb{E}\exp\left(\frac{\gamma\sqrt{n}}{2}\operatorname{tr}\left((\boldsymbol{S}-\boldsymbol{\Sigma}^{0})\boldsymbol{T}\right)\right) \\ \leq \exp\left(\underbrace{\log\mathbb{E}\exp\left(\frac{\gamma\sqrt{n}}{2}tr\left((\boldsymbol{S}-\boldsymbol{\Sigma}^{0})\boldsymbol{T}\right)\right) - \frac{\gamma\sqrt{n}\nu}{2}}_{I_{1}}\right),$$

where γ is chosen such that $\gamma \in \left[0, \frac{M_0 \sqrt{n}}{\|\sqrt{\mathbf{\Sigma}^0} T \sqrt{\mathbf{\Sigma}^0}\|_F}\right]$ for some constant $0 < M_0 < 1$, which is to be determined later. Moreover, after some calculations, we have that

$$\mathbb{E} \exp\left(\frac{\gamma\sqrt{n}}{2}\operatorname{tr}\left((\boldsymbol{S}-\boldsymbol{\Sigma}^{0})\boldsymbol{T}\right)\right) = \left(\mathbb{E} \exp\left(\frac{\gamma\sqrt{n}}{2}\operatorname{tr}\left((\boldsymbol{X}\boldsymbol{X}^{T}-\boldsymbol{\Sigma}^{0})\boldsymbol{T}\right)\right)\right)^{n}$$

$$= \exp\left(-\frac{\gamma\sqrt{n}}{2}\operatorname{tr}(\boldsymbol{\Sigma}^{0}\boldsymbol{T})\right)\operatorname{det}\left(\boldsymbol{I}-\frac{\gamma}{\sqrt{n}}\boldsymbol{\Sigma}^{0}\boldsymbol{T}\right)^{-n/2}(B.8)$$

where $X \sim N(\mathbf{0}, \mathbf{\Sigma}^0)$ and the last equality requires that $\sqrt{n}\mathbf{\Omega}^0 \succeq \gamma T$, which is ensured by the fact that $\gamma \leq \frac{M_0\sqrt{n}}{\|\sqrt{\mathbf{\Sigma}^0}T\sqrt{\mathbf{\Sigma}^0}\|_F} < \frac{\sqrt{n}}{\|\sqrt{\mathbf{\Sigma}^0}T\sqrt{\mathbf{\Sigma}^0}\|_F}$. Consequently,

$$\log \mathbb{E} \exp \left(\frac{\gamma \sqrt{n}}{2} \operatorname{tr} \left((\mathbf{S} - \mathbf{\Sigma}^0) \mathbf{T} \right) \right) = \log \det \left(\mathbf{I} - \frac{\gamma}{\sqrt{n}} \mathbf{\Sigma}^0 \mathbf{T} \right)^{-n/2} - \frac{\gamma \sqrt{n}}{2} \operatorname{tr} (\mathbf{\Sigma}^0 \mathbf{T}). \quad (B.9)$$

An expansion of the log det function gives

$$\log \det(\boldsymbol{I} - \frac{\gamma}{\sqrt{n}} \boldsymbol{\Sigma}^{0} \boldsymbol{T})^{-n/2}$$

$$= \frac{\gamma \sqrt{n}}{2} \operatorname{tr}(\boldsymbol{\Sigma}^{0} \boldsymbol{T}) + \frac{\gamma^{2}}{4} \operatorname{tr}((\boldsymbol{\Sigma}^{0} \boldsymbol{T})^{2}) + \underbrace{\frac{n}{2} \sum_{l=3}^{\infty} l^{-1} \operatorname{tr}\left((\frac{\gamma \boldsymbol{\Sigma}^{0} \boldsymbol{T}}{\sqrt{n}})^{l}\right)}_{I_{2}}.$$
(B.10)

For I_2 , note that $I_2 \leq \frac{n}{2} \sum_{l=3}^{\infty} l^{-1} \left(\frac{\gamma || \boldsymbol{T} ||}{\sqrt{n}} \right)^l \leq \gamma^2 || \boldsymbol{T} ||^2 \frac{3-M_0}{12(1-M_0)}$. Similarly, $I_1 \leq \frac{M_1+1}{4} \gamma^2 || \boldsymbol{T} ||^2 - \frac{\gamma \sqrt{n} \nu}{2}$, where $M_1 = \frac{3-M_0}{3(1-M_0)}$. Minimizing this upper bound of I_1 as a function of γ over the interval $\left[0, \frac{M_0 \sqrt{n}}{|| \boldsymbol{T} ||}\right]$, we obtain that

$$I_1 \le -\frac{n\nu^2}{4(1+M_1)\|\boldsymbol{T}\|^2}$$
 if $\nu \le M_0(1+M_1)\|\boldsymbol{T}\|$
 $I_1 \le -\frac{nM_0}{2\|\boldsymbol{T}\|} \left(\nu - \frac{M_0(1+M_1)}{2}\|\boldsymbol{T}\|\right)$ otherwise.

A combination of these two cases yields that $I_1 \leq -\frac{nM_0\nu^2}{4M_0(M_1+1)\|\boldsymbol{T}\|^2+2\nu\|\boldsymbol{T}\|}$. Set $M_0 = 4^{-1}$, and then $M_1 = 11/9$, we obtain the desired results

$$P\left(\operatorname{tr}\left((\boldsymbol{S}-\boldsymbol{\Sigma}^{0})\boldsymbol{T}\right) \geq \nu\right) \leq \exp\left(-n\frac{\nu^{2}}{9\|\boldsymbol{T}\|^{2}+8\nu\|\boldsymbol{T}\|}\right),$$

for any $\nu > 0$. The other direction follows exactly the same argument, and thus is omitted.

Finally, (B.7) follows by letting $\{\boldsymbol{T}_1, \cdots, \boldsymbol{T}_k\} = \{(\boldsymbol{e}_i^{\top} \boldsymbol{e}_j + \boldsymbol{e}_j^{\top} \boldsymbol{e}_i)/2\}_{(i,j)\in B}$ then applying an inequality $\|\sqrt{\boldsymbol{\Sigma}^0}(\boldsymbol{e}_i^{\top} \boldsymbol{e}_j + \boldsymbol{e}_j^{\top} \boldsymbol{e}_i)\sqrt{\boldsymbol{\Sigma}^0}/2\|_F^2 \leq \lambda_{\max}(\boldsymbol{\Sigma}^0)$ and a union bound. This completes the proof.

Lemma 4 (The Kullback-Leibler divergence and Fisher-norm) For a positive definite matrix

 Ω the following connection holds:

$$K(\mathbf{\Omega}^0, \mathbf{\Omega}) \geq \min\left(\frac{1}{16\sqrt{2}}, \frac{\sqrt{K(\mathbf{\Omega}^0, \mathbf{\Omega})}}{2\sqrt{6}}\right) \|\mathbf{\Omega} - \mathbf{\Omega}^0\|,$$
 (B.11)

$$K(\mathbf{\Omega}^0, \mathbf{\Omega}) \geq \min\left(\frac{1}{16\sqrt{2}}, \frac{\|\mathbf{\Omega} - \mathbf{\Omega}^0\|}{24}\right)\|\mathbf{\Omega} - \mathbf{\Omega}^0\|.$$
 (B.12)

Proof of Lemma 4: Let $\Delta = \Omega - \Omega^0$ and $\lambda_1, \dots, \lambda_p$ be the eigenvalues of $\sqrt{\Sigma^0} \Delta \sqrt{\Sigma^0}$. Then $\lambda_j > -1$; $j = 1, \dots, p$, because $I_{p \times p} + \sqrt{\Sigma^0} \Delta \sqrt{\Sigma^0} = \sqrt{\Sigma^0} \Omega \sqrt{\Sigma^0}$ is positive definite. Moreover, let $B_1 = \sum_{i=1}^p \lambda_i^2 \mathbb{I}(\lambda_i \leq 1/3)$, $B_2 = \sum_{i=1}^p \lambda_i^2 \mathbb{I}(\lambda_i > 1/3)$, and $B_3 = \sum_{i=1}^p \lambda_i \mathbb{I}(\lambda_i > 1/3)$. Easily, $\|\Omega - \Omega^0\| = \sqrt{B_1 + B_2}$. Using the inequality $x - \log(1 + x) \geq 6^{-1}x^2\mathbb{I}(x \leq 1/3) + 8^{-1}x\mathbb{I}(x > 1/3)$ for x > -1, we have that

$$K(\mathbf{\Omega}^{0}, \mathbf{\Omega}) = \frac{1}{2} \left(\operatorname{tr}(\sqrt{\mathbf{\Sigma}^{0}} \mathbf{\Delta} \sqrt{\mathbf{\Sigma}^{0}}) - \log \det(\mathbf{I}_{p \times p} + \sqrt{\mathbf{\Sigma}^{0}} \mathbf{\Delta} \sqrt{\mathbf{\Sigma}^{0}}) \right)$$

$$= \frac{1}{2} \sum_{i=1}^{p} \lambda_{i} - \frac{1}{2} \sum_{i=1}^{p} \log(1 + \lambda_{i})$$

$$\geq 12^{-1} \sum_{i=1}^{p} \lambda_{i}^{2} \mathbb{I}(\lambda_{i} \leq 1/3) + 16^{-1} \sum_{i=1}^{p} \lambda_{i} \mathbb{I}(\lambda_{i} > 1/3) = 12^{-1} B_{1} + 16^{-1} B_{3}.$$

Next we examine two cases. First, if $B_1 < B_2$, then $\frac{K(\mathbf{\Omega}^0, \mathbf{\Omega})}{\|\mathbf{\Omega} - \mathbf{\Omega}^0\|} \ge \frac{12^{-1}B_1 + 16^{-1}B_3}{\sqrt{B_1 + B_2}} \ge \frac{B_3}{16\sqrt{2B_2}} \ge \frac{1}{16\sqrt{2}}$ because $B_3^2 \ge B_2$. If $B_1 \ge B_2$, then

$$\frac{K(\mathbf{\Omega}^0,\mathbf{\Omega})}{\|\mathbf{\Omega}-\mathbf{\Omega}^0\|} \geq \frac{12^{-1}B_1 + 16^{-1}B_3}{\sqrt{B_1 + B_2}} \geq \frac{B_1}{12\sqrt{B_1 + B_2}} \geq \frac{B_1 + B_2}{24\sqrt{B_1 + B_2}} \geq \frac{\sqrt{B_1 + B_2}}{24} = \frac{\|\mathbf{\Omega}-\mathbf{\Omega}^0\|}{24}.$$

Similarly,

$$\frac{K(\Omega^0,\Omega)}{\|\Omega-\Omega^0\|} \geq \sqrt{K(\Omega^0,\Omega)} \frac{\sqrt{12^{-1}B_1 + 16^{-1}B_3}}{\sqrt{B_1 + B_2}} \geq \sqrt{K(\Omega^0,\Omega)} \frac{\sqrt{24^{-1}(B_1 + B_2)}}{\sqrt{B_1 + B_2}} = \frac{\sqrt{K(\Omega^0,\Omega)}}{2\sqrt{6}}.$$

This leads to (B.12) and (B.11).

Lemma 5 (Rate of convergence of constrained MLE) Let $\tilde{A} \supseteq A^0$ be an index set. For $\widehat{\Omega}_{\tilde{A}}$, we have that

$$\|\widehat{\boldsymbol{\Omega}}_{\tilde{A}} - \boldsymbol{\Omega}^{0}\| \le 12 \|\boldsymbol{I}_{\tilde{A},\tilde{A}}^{-1/2} \operatorname{vec}(\boldsymbol{\Sigma}^{0} - \boldsymbol{S})\|_{2}.$$
(B.13)

on the event that $\{\|\boldsymbol{I}_{\tilde{A},\tilde{A}}^{-1/2}\operatorname{vec}_{\tilde{A}}(\boldsymbol{\Sigma}^0-\boldsymbol{S})\|_2<\frac{1}{8\sqrt{2}}\}$. Moreover, if $\frac{|\tilde{A}|\log p}{n}\to 0$, then

$$\|\widehat{\Omega}_{\tilde{A}} - \Omega^0\| = O_p\left(\sqrt{\frac{|\tilde{A}|\log p}{n}}\right). \tag{B.14}$$

Proof of Lemma 5: By definition of the CMLE, $L_n(\widehat{\Omega}_{\tilde{A}}) - L_n(\Omega^0) \ge 0$, or $-\log \det \widehat{\Omega}_{\tilde{A}} + \log \det \Omega^0 \le -\operatorname{tr}((\widehat{\Omega}_{\tilde{A}} - \Omega^0)S)$. By the Cauchy-Schwarz inequality, this inequality becomes

$$2K(\boldsymbol{\Omega}^{0}, \widehat{\boldsymbol{\Omega}}_{\tilde{A}}) \leq \operatorname{tr}((\widehat{\boldsymbol{\Omega}}_{\tilde{A}} - \boldsymbol{\Omega}^{0})(\boldsymbol{\Sigma}^{0} - \boldsymbol{S})) \leq \|\sqrt{\boldsymbol{\Sigma}^{0}}(\widehat{\boldsymbol{\Omega}}_{\tilde{A}} - \boldsymbol{\Omega}^{0})\sqrt{\boldsymbol{\Sigma}^{0}}\|_{F} \|\boldsymbol{I}_{\tilde{A},\tilde{A}}^{-1/2} \operatorname{vec}_{\tilde{A}}(\boldsymbol{\Sigma}^{0} - \boldsymbol{S})\|_{2}$$

$$= \|\widehat{\boldsymbol{\Omega}}_{\tilde{A}} - \boldsymbol{\Omega}^{0}\| \|\boldsymbol{I}_{\tilde{A},\tilde{A}}^{-1/2} \operatorname{vec}_{\tilde{A}}(\boldsymbol{\Sigma}^{0} - \boldsymbol{S})\|_{2}$$
(B.15)

On the other hand, by (B.12) $\frac{K(\Omega^0, \widehat{\Omega}_{\tilde{A}})}{\|\widehat{\Omega}_{\tilde{A}} - \Omega^0\|} \ge \min\left(\frac{1}{16\sqrt{2}}, \frac{\|\widehat{\Omega}_{\tilde{A}} - \Omega^0\|}{24}\right)$, which, together with (B.15), implies that $\min\left(\frac{1}{8\sqrt{2}}, \frac{\|\widehat{\Omega}_{\tilde{A}} - \Omega^0\|}{12}\right) \le \|\boldsymbol{I}_{\tilde{A},\tilde{A}}^{-1/2} \operatorname{vec}_{\tilde{A}}(\boldsymbol{\Sigma}^0 - \boldsymbol{S})\|_2$. If $\frac{\|\widehat{\Omega}_{\tilde{A}} - \Omega^0\|}{12} \le \frac{1}{8\sqrt{2}}$, then it follows immediately that $\|\widehat{\Omega}_{\tilde{A}} - \Omega^0\| \le 12 \|\boldsymbol{I}_{\tilde{A},\tilde{A}}^{-1/2} \operatorname{vec}_{\tilde{A}}(\boldsymbol{\Sigma}^0 - \boldsymbol{S})\|_2$. If $\frac{\|\widehat{\Omega}_{\tilde{A}} - \Omega^0\|}{12} > \frac{1}{8\sqrt{2}}$, then $\frac{1}{8\sqrt{2}} \le \|\boldsymbol{I}_{\tilde{A},\tilde{A}}^{-1/2} \operatorname{vec}(\boldsymbol{\Sigma}^0 - \boldsymbol{S})\|_2$, which does not happen on the event $\{\|\boldsymbol{I}_{\tilde{A},\tilde{A}}^{-1/2} \operatorname{vec}_{\tilde{A}}(\boldsymbol{\Sigma}^0 - \boldsymbol{S})\|_2 < \frac{1}{8\sqrt{2}}\}$. Moreover, by property of exponential family [2], $\operatorname{Var}(\operatorname{vec}_{\tilde{A}}(\boldsymbol{\Sigma}^0 - \boldsymbol{S})) = 4n^{-1}\boldsymbol{I}_{\tilde{A},\tilde{A}}$. Thus, $\operatorname{Var}(\boldsymbol{I}_{\tilde{A},\tilde{A}}^{-1/2} \operatorname{vec}_{\tilde{A}}(\boldsymbol{\Sigma}^0 - \boldsymbol{S})) = 4n^{-1}\boldsymbol{I}_{\tilde{A},\tilde{A}}$. Thus, combined with Lemma 3, implies that

$$\|\boldsymbol{I}_{\tilde{A},\tilde{A}}^{-1/2}\operatorname{vec}_{\tilde{A}}(\boldsymbol{\Sigma}^{0}-\boldsymbol{S})\|_{2} \leq \sqrt{|\tilde{A}|}\|\boldsymbol{I}_{\tilde{A},\tilde{A}}^{-1/2}\operatorname{vec}_{\tilde{A}}(\boldsymbol{\Sigma}^{0}-\boldsymbol{S})\|_{\infty} = O_{p}\left(\sqrt{\frac{|\tilde{A}|\log p}{n}}\right)$$
(B.16)

on the event that $\{\|\boldsymbol{I}_{\tilde{A},\tilde{A}}^{-1/2}\operatorname{vec}_{\tilde{A}}(\boldsymbol{\Sigma}^{0}-\boldsymbol{S})\|_{2}<\frac{1}{8\sqrt{2}}\}$. This event, on the other hand, happens with probability tending to 1 by the assumption that $\frac{|\tilde{A}|\log p}{n}\to 0$. This completes the proof.

Lemma 6 (Selection consistency) If $K = |A^0|$, $\tau \leq \frac{\bar{\lambda}_{min} \min(\sqrt{C_{min}}, C_{min}^2)}{12|A^0|}$, then

$$\max \left(P\left(\widehat{\mathbf{\Omega}}^{(0)} \neq \widehat{\mathbf{\Omega}}_{A^0} \right), P\left(\widehat{\mathbf{\Omega}}^{(1)} \neq \widehat{\mathbf{\Omega}}_{A^0 \cup B} \right) \right) \\
\leq 2 \exp\left(\frac{-nC_{min}}{2560} + 2\log p \right) + \exp\left(\frac{-n}{2560 \times 512} + |A^0| \log p \right) \\
+2 \exp\left(-n\frac{\min\left(\sqrt{\frac{\min(C_{min}/512,3/32)}{48\lambda_{max}^2(|A^0| + |B|)}}, \lambda_{max}(\mathbf{\Sigma}^0) \right)^2}{18\lambda_{max}^2(\mathbf{\Sigma}^0)} + 2\log p \right) \longrightarrow 0 \quad (B.17)$$

as $n \to \infty$ under Assumptions 1-2, where $\widehat{\Omega}^{(0)}$, $\widehat{\Omega}^{(1)}$, and C_{min} are as defined in (1)-(3).

Proof of Lemma 6: Let $\hat{A} = \{(i,j) : |\widehat{\omega}_{ij}^{(1)}| \geq \tau, (i,j) \notin B\}$. By definition, $|\hat{A}| \leq |A^0|$, $\hat{A} \cap B = \emptyset$ and $\sum_{(i,j)\notin \hat{A}\cup B} |\widehat{\omega}_{ij}^{(1)}| \leq \tau(|A^0| - |\hat{A}|)$. Hence, if $\hat{A} = A^0$, then $\widehat{\Omega}^{(1)} = \widehat{\Omega}_{A^0\cup B}$. Suppose $\hat{A} \neq A^0$. On event $\{\hat{A} = A\}$; with fixed $A \neq A^0$, $|A| \leq |A^0|$, and $A \cap B = \emptyset$, we bound the Fisher-norm between $\widehat{\Omega}_{A\cup B}^{(1)}$ and an approximating point of Ω^0 , $\bar{\Omega}_{A\cup B}^0 = \arg\min_{\Omega:\Omega_{(A\cup B)^c}=\mathbf{0}} K(\Omega^0, \Omega)$. Let $\bar{\Sigma}_{A\cup B}^0 = (\bar{\Omega}_{A\cup B}^0)^{-1}$. By the Karush-Kuhn-Tucker conditions, $\operatorname{vec}_{A\cup B}(\bar{\Sigma}_{A\cup B}^0) = \operatorname{vec}_{A\cup B}(\Sigma^0)$. Moreover, let $\bar{\lambda}_{\max} = \max_{A:|A|\leq K, A\cap B=\emptyset} \lambda_{\max}(\bar{\Omega}_{A\cup B}^0)$ and $\bar{\lambda}_{\min} = \min_{A:|A|\leq K, A\cap B=\emptyset} \lambda_{\min}(\bar{\Omega}_{A\cup B}^0)$. We also define

$$\mathcal{G} = \left\{ \| \boldsymbol{S} - \boldsymbol{\Sigma}^0 \|_{\infty} \leq \min \left(\frac{1}{16\sqrt{2}\bar{\lambda}_{\max}\sqrt{|A^0| + |B|}}, \sqrt{\frac{\tilde{C}_{\min}}{48\bar{\lambda}_{\max}^2|A^0 \cup B|}}, \lambda_{\max}(\boldsymbol{\Sigma}^0) \right) \right\},$$

where

$$\tilde{C}_{\min} = \min_{A: A \neq A^0, |A| = |A^0|, A \cap B = \emptyset} \min \left(\frac{\max(K(\mathbf{\Omega}^0, \bar{\mathbf{\Omega}}_{A \cup B}^0), K^2(\mathbf{\Omega}^0, \bar{\mathbf{\Omega}}_{A \cup B}^0))}{|A^0 \setminus A|}, 1 \right). \tag{B.18}$$

By definition of the CMLE, $L_n(\widehat{\Omega}^{(1)}) - L_n(\overline{\Omega}^0_{A \cup B}) \geq 0$, or $-\log \det \widehat{\Omega}^{(1)} + \log \det \overline{\Omega}^0_{A \cup B} \leq -\operatorname{tr}((\widehat{\Omega}^{(1)} - \overline{\Omega}^0_{A \cup B})S)$. Now let $\widehat{\Delta} = \widehat{\Omega}^{(1)}_{A \cup B} - \overline{\Omega}^0_{A \cup B}$ and $\Phi = \widehat{\Omega}^{(1)} - \widehat{\Omega}^{(1)}_{A \cup B}$, where $\|\Phi\|_1 = \sum_{(i,j) \notin \widehat{A} \cup B} |\widehat{\omega}^{(1)}_{ij}| \leq (|A^0| - |A|)\tau$. By the Cauchy-Schwarz inequality, the forgoing inequality

becomes

$$-\log \det(\boldsymbol{I}_{p \times p} + \sqrt{\bar{\Sigma}_{A \cup B}^{0}}(\widehat{\boldsymbol{\Delta}} + \boldsymbol{\Phi})\sqrt{\bar{\Sigma}_{A \cup B}^{0}}) + \operatorname{tr}(\sqrt{\bar{\Sigma}_{A \cup B}^{0}}(\widehat{\boldsymbol{\Delta}} + \boldsymbol{\Phi})\sqrt{\bar{\Sigma}_{A \cup B}^{0}})$$

$$\leq \operatorname{tr}((\widehat{\boldsymbol{\Delta}} + \boldsymbol{\Phi})(\bar{\Sigma}_{A \cup B}^{0} - \boldsymbol{S})) = \operatorname{vec}_{A}(\widehat{\boldsymbol{\Delta}})^{\top} \operatorname{vec}_{A}(\bar{\Sigma}_{A \cup B}^{0} - \boldsymbol{S}) + \operatorname{tr}(\boldsymbol{\Phi}(\bar{\Sigma}_{A \cup B}^{0} - \boldsymbol{S}))$$

$$= (\bar{\boldsymbol{I}}_{A \cup B, A \cup B}^{1/2} \operatorname{vec}_{A \cup B}(\widehat{\boldsymbol{\Delta}}))^{\top} \bar{\boldsymbol{I}}_{A \cup B, A \cup B}^{-1/2} \operatorname{vec}_{A \cup B}(\Sigma_{A \cup B}^{0} - \boldsymbol{S}) + \operatorname{tr}(\boldsymbol{\Phi}(\bar{\Sigma}_{A \cup B}^{0} - \boldsymbol{S}))$$

$$\leq \left\|\sqrt{\bar{\Sigma}_{A \cup B}^{0}} \widehat{\boldsymbol{\Delta}}\sqrt{\bar{\Sigma}_{A \cup B}^{0}} \right\|_{F} \left\|\bar{\boldsymbol{I}}_{A \cup B, A \cup B}^{-1/2} \operatorname{vec}_{A \cup B}(\Sigma_{A \cup B}^{0} - \boldsymbol{S})\right\|_{2} + \tau(|A^{0}| - |A|)\|\bar{\Sigma}_{A \cup B}^{0} - \boldsymbol{S}\|_{\infty}$$

$$\leq \left\|\sqrt{\bar{\Sigma}_{A \cup B}^{0}} \widehat{\boldsymbol{\Delta}}\sqrt{\bar{\Sigma}_{A \cup B}^{0}} \right\|_{F} \lambda_{\max}(\bar{\Omega}_{A \cup B}^{0})\sqrt{|A \cup B|}\|\boldsymbol{\Sigma}^{0} - \boldsymbol{S}\|_{\infty}$$

$$+(2\lambda_{\max}(\boldsymbol{\Sigma}^{0}) + \lambda_{\max}(\bar{\Sigma}_{A \cup B}^{0}))\tau K$$

$$\leq \bar{\lambda}_{\max}\sqrt{|A^{0} \cup B|} \left\|\sqrt{\bar{\Sigma}_{A \cup B}^{0}} \widehat{\boldsymbol{\Delta}}\sqrt{\bar{\Sigma}_{A \cup B}^{0}} \right\|_{F} \|\boldsymbol{\Sigma}^{0} - \boldsymbol{S}\|_{\infty} + 3\bar{\lambda}_{\min}^{-1}\tau K \tag{B.19}$$

on the event \mathcal{G} , where $\bar{I}_{A\cup B,A\cup B} = \left[\bar{\Sigma}^0_{A\cup B,A\cup B} \otimes_s \bar{\Sigma}^0_{A\cup B,A\cup B}\right]_{A\cup B,A\cup B}$. On the other hand, by Lemma 4,

$$-\log\det(\boldsymbol{I}_{p\times p} + \sqrt{\bar{\Sigma}_{A\cup B}^{0}}(\widehat{\boldsymbol{\Delta}} + \boldsymbol{\Phi})\sqrt{\bar{\Sigma}_{A\cup B}^{0}}) + \operatorname{tr}(\sqrt{\bar{\Sigma}_{A\cup B}^{0}}(\widehat{\boldsymbol{\Delta}} + \boldsymbol{\Phi})\sqrt{\bar{\Sigma}_{A\cup B}^{0}})$$

$$\geq \min\left(\frac{\|\sqrt{\bar{\Sigma}_{A\cup B}^{0}}(\widehat{\boldsymbol{\Delta}} + \boldsymbol{\Phi})\sqrt{\bar{\Sigma}_{A\cup B}^{0}}\|_{F}}{8\sqrt{2}}, \frac{\|\sqrt{\bar{\Sigma}_{A\cup B}^{0}}(\widehat{\boldsymbol{\Delta}} + \boldsymbol{\Phi})\sqrt{\bar{\Sigma}_{A\cup B}^{0}}\|_{F}^{2}}{12}\right)$$

$$\geq \min\left(\frac{\|\sqrt{\bar{\Sigma}_{A\cup B}^{0}}\widehat{\boldsymbol{\Delta}}\sqrt{\bar{\Sigma}_{A\cup B}^{0}}\|_{F}}{8\sqrt{2}}, \frac{\|\sqrt{\bar{\Sigma}_{A\cup B}^{0}}\widehat{\boldsymbol{\Delta}}\sqrt{\bar{\Sigma}_{A\cup B}^{0}}\|_{F}^{2}}{24}\right)$$

$$- \max\left(\frac{(|A^{0}| - |A|)\lambda_{\max}(\bar{\boldsymbol{\Sigma}_{A\cup B}^{0}})\tau}{8\sqrt{2}}, \frac{(|A^{0}| - |A|)^{2}\lambda_{\max}^{2}(\bar{\boldsymbol{\Sigma}_{A\cup B}^{0}})\tau^{2}}{12}\right)$$

$$\geq \min\left(\frac{\|\sqrt{\bar{\Sigma}_{A\cup B}^{0}}\widehat{\boldsymbol{\Delta}}\sqrt{\bar{\Sigma}_{A\cup B}^{0}}\|_{F}}{8\sqrt{2}}, \frac{\|\sqrt{\bar{\Sigma}_{A\cup B}^{0}}\widehat{\boldsymbol{\Delta}}\sqrt{\bar{\Sigma}_{A\cup B}^{0}}\|_{F}^{2}}{24}\right) - \frac{\lambda_{\max}(\bar{\boldsymbol{\Sigma}_{A\cup B}^{0}})K\tau}{8}$$

where the last two inequalities use that $\|\boldsymbol{M}_1 + \boldsymbol{M}_2\|_F^2 \ge 2^{-1} \|\boldsymbol{M}_1\|_F^2 - \|\boldsymbol{M}_2\|_F^2$, $\|\sqrt{\bar{\Sigma}_{A \cup B}^0} \boldsymbol{\Phi} \sqrt{\bar{\Sigma}_{A \cup B}^0} \|_F^2 \le \lambda_{\max}^2 (\bar{\Sigma}_{A \cup B}^0) \|\boldsymbol{\Phi}\|_F^2 \le \lambda_{\max}^2 (\bar{\Sigma}_{A \cup B}^0) \|\boldsymbol{\Phi$

 $\min(a,c) - \max(b,d)$. Combining this with (B.19), we obtain

$$\bar{\lambda}_{\max} \sqrt{|A^0 \cup B|} \left\| \sqrt{\bar{\Sigma}_{A \cup B}^0} \widehat{\boldsymbol{\Delta}} \sqrt{\bar{\Sigma}_{A \cup B}^0} \right\|_F \|\boldsymbol{\Sigma}^0 - \boldsymbol{S}\|_{\infty} + 4\bar{\lambda}_{\min}^{-1} \tau K$$

$$\geq \min \left(\frac{\|\sqrt{\bar{\Sigma}_{A \cup B}^0} \widehat{\boldsymbol{\Delta}} \sqrt{\bar{\Sigma}_{A \cup B}^0} \|_F}{8\sqrt{2}}, \frac{\|\sqrt{\bar{\Sigma}_{A \cup B}^0} \widehat{\boldsymbol{\Delta}} \sqrt{\bar{\Sigma}_{A \cup B}^0} \|_F^2}{24} \right),$$

which implies that

$$\left\| \sqrt{\bar{\Sigma}_{A \cup B}^0} \widehat{\boldsymbol{\Delta}} \sqrt{\bar{\Sigma}_{A \cup B}^0} \right\|_F \le 24 \bar{\lambda}_{\max} \sqrt{|A^0 \cup B|} \|\boldsymbol{S} - \boldsymbol{\Sigma}^0\|_{\infty} + 4 \sqrt{6 \bar{\lambda}_{\min}^{-1} \tau K},$$

on the event $\{\hat{A} = A\} \cap \mathcal{G}$. Next, note that

$$\frac{2}{n} \left(L_{n}(\widehat{\Omega}^{(1)}) - L_{n}(\Omega^{0}) \right) + 2 \left(L(\Omega^{0}) - L(\bar{\Omega}_{A \cup B}^{0}) \right)
= \frac{2}{n} \left(L_{n}(\widehat{\Omega}^{(1)}) - L_{n}(\bar{\Omega}_{A \cup B}^{0}) \right) + \operatorname{tr} \left((\Omega^{0} - \bar{\Omega}_{A \cup B}^{0})(S - \Sigma^{0}) \right)
= 2 \left(L(\widehat{\Omega}^{(1)}) - L(\bar{\Omega}_{A \cup B}^{0}) \right) + \operatorname{tr} \left((S - \bar{\Sigma}_{A \cup B}^{0})(\widehat{\Omega}^{(1)} - \bar{\Omega}_{A \cup B}^{0}) \right) + \operatorname{tr} \left((\Omega^{0} - \bar{\Omega}_{A \cup B}^{0})(S - \Sigma^{0}) \right)
\leq \operatorname{tr} \left((S - \bar{\Sigma}_{A \cup B}^{0})(\widehat{\Omega}^{(1)} - \widehat{\Omega}_{A \cup B}^{(1)}) + \operatorname{tr} \left((S - \Sigma^{0})(\widehat{\Omega}_{A \cup B}^{(1)} - \bar{\Omega}_{A \cup B}^{0}) \right)
+ \operatorname{tr} \left((\Omega^{0} - \bar{\Omega}_{A \cup B}^{0})(S - \Sigma^{0}) \right)$$
(B.20)

For the first two terms, using $\tau \leq \frac{\bar{\lambda}_{\min}\min(\sqrt{\tilde{C}_{\min}},\tilde{C}_{\min}^2)}{12|A^0|}$ and $\|S - \Sigma^0\|_{\infty} \leq \sqrt{\frac{\tilde{C}_{\min}}{48\bar{\lambda}_{\max}^2(|A^0| + |B|)}}$, we have that on the event \mathcal{G}

$$\operatorname{tr}((\boldsymbol{S} - \boldsymbol{\Sigma}^{0})(\widehat{\boldsymbol{\Omega}}_{A \cup B}^{(1)} - \bar{\boldsymbol{\Omega}}_{A \cup B}^{0})) + \operatorname{tr}((\boldsymbol{S} - \bar{\boldsymbol{\Sigma}}_{A \cup B}^{0})(\widehat{\boldsymbol{\Omega}}^{(1)} - \widehat{\boldsymbol{\Omega}}_{A \cup B}^{(1)})$$

$$\leq \left\| \sqrt{\bar{\boldsymbol{\Sigma}}_{A \cup B}^{0}} \widehat{\boldsymbol{\Delta}} \sqrt{\bar{\boldsymbol{\Sigma}}_{A \cup B}^{0}} \right\|_{F} \left\| \bar{\boldsymbol{I}}_{A \cup B, A \cup B}^{-1/2} \operatorname{vec}_{A \cup B}(\boldsymbol{S} - \boldsymbol{\Sigma}^{0}) \right\|_{2} + \tau K \|\boldsymbol{S} - \bar{\boldsymbol{\Sigma}}_{A \cup B}^{0}\|_{\infty}$$

$$\leq 24 \min \left(\bar{\lambda}_{\max}^{2} |A^{0} \cup B| \|\boldsymbol{S} - \boldsymbol{\Sigma}^{0}\|_{\infty}^{2}, \frac{\bar{\lambda}_{\max} \sqrt{|A^{0} \cup B|} \|\boldsymbol{S} - \boldsymbol{\Sigma}^{0}\|_{\infty}}{16\sqrt{2}} \right)$$

$$+ \frac{\sqrt{3\bar{\lambda}_{\min}^{-1} \tau K}}{4} + 3\bar{\lambda}_{\min}^{-1} \tau K$$

$$\leq 2^{-1} K(\boldsymbol{\Omega}^{0}, \bar{\boldsymbol{\Omega}}_{A \cup B}^{0}) + 2^{-1} K(\boldsymbol{\Omega}^{0}, \bar{\boldsymbol{\Omega}}_{A \cup B}^{0})) = L(\boldsymbol{\Omega}^{0}) - L(\bar{\boldsymbol{\Omega}}_{A \cup B}^{0}),$$

which, together with (B.20), implies that for any $A \neq A^0$, $|A| \leq K$, $A \cap B = \emptyset$, we have that

$$\left\{ L_n(\widehat{\Omega}^{(1)}) - L_n(\Omega^0) \ge 0; \hat{A} = A; \mathcal{G} \right\} \subseteq \left\{ \operatorname{tr} \left((\Omega^0 - \bar{\Omega}_{A \cup B}^0) (S - \Sigma^0) \right) \ge L(\Omega^0) - L(\bar{\Omega}_{A \cup B}^0) \right\}$$

Hence,

$$\mathbb{P}\left(\widehat{\Omega}^{(1)} \neq \widehat{\Omega}_{A^0 \cup B}\right) \leq \sum_{A: A \neq A^0, |A| \leq K, A \cap B = \emptyset} \mathbb{P}\left(L_n(\widehat{\Omega}^{(1)}) - L_n(\Omega^0) \geq 0; \widehat{A} = A; \mathcal{G}\right) + \mathbb{P}(\mathcal{G}^c)$$

$$\leq \sum_{A: A \neq A^0, |A| \leq K, A \cap B = \emptyset} \mathbb{P}\left(\operatorname{tr}\left((\Omega^0 - \bar{\Omega}_{A \cup B}^0)(S - \Sigma^0)\right) \geq L(\Omega^0) - L(\bar{\Omega}_{A \cup B}^0)\right) + \mathbb{P}(\mathcal{G}^c),$$

where the first probability can be further bounded by applying Lemmas 3 and 4.

$$\begin{split} \sum_{A:A \neq A^0, |A| \leq K, A \cap B = \emptyset} \mathbb{P} \left(\operatorname{tr} \left((\Omega^0 - \bar{\Omega}^0_{A \cup B}) (S - \Sigma^0) \right) \geq L(\Omega^0) - L(\bar{\Omega}^0_{A \cup B}) \right) \\ \leq \sum_{A:A \neq A^0, |A| \leq K, A \cap B = \emptyset} \exp \left(\frac{-n10^{-1} K^2 (\Omega^0, \bar{\Omega}^0_{A \cup B})}{\|\bar{\Omega}^0_{A \cup B} - \Omega^0\|^2 + K(\Omega^0, \bar{\Omega}^0_{A \cup B}) \|\bar{\Omega}^0_{A \cup B} - \Omega^0\|} \right) \\ \leq \sum_{A:A \neq A^0, |A| \leq K, A \cap B = \emptyset} \exp \left(\frac{-n \min \left(128^{-1}, K(\Omega^0, \bar{\Omega}^0_{A \cup B}) \right)}{20} \right) \\ \leq \sum_{A:A \neq A^0, |A| \leq K, A \cap B = \emptyset, K(\Omega^0, \bar{\Omega}^0_{A \cup B}) \leq 1} \exp \left(\frac{-nK(\Omega^0, \bar{\Omega}^0_{A \cup B})}{2560} \right) \right) \\ + \sum_{A:A \neq A^0, |A| \leq K, A \cap B = \emptyset, K(\Omega^0, \bar{\Omega}^0_{A \cup B}) > 1} \exp \left(\frac{-n}{2560} \right) \\ \leq \sum_{j=1}^{|A^0|} \sum_{i=1}^{|A^0|-j} \binom{|A^0|}{j} \binom{p - |A^0|}{i} \exp \left(\frac{-nj\tilde{C}_{\min}}{2560} \right) + \exp \left(\frac{-n}{2560} + |A^0|\log p \right) \\ \leq \sum_{j=1}^{|A^0|} \exp \left(\frac{-nj\tilde{C}_{\min}}{2560} + 2j\log p \right) + \exp \left(\frac{-n}{2560} + |A^0|\log p \right) \\ \leq 2 \exp \left(\frac{-n\tilde{C}_{\min}}{2560} + 2\log p \right) + \exp \left(\frac{-n}{2560} + |A^0|\log p \right) \longrightarrow 0 \end{split}$$

as $n \to \infty$, provided that $\frac{|A^0| \log p}{n} \le 3000^{-1}$ and $\tilde{C}_{\min} \ge 3000 \frac{\log p}{n}$.

To bound $\mathbb{P}(\mathcal{G}^c)$, we apply Lemma 3 with $\nu = \min\left(\frac{1}{16\sqrt{2}\bar{\lambda}_{\max}\sqrt{|A^0|+|B|}}, \sqrt{\frac{\tilde{C}_{\min}}{48\bar{\lambda}_{\max}^2|A^0\cup B|}}, \lambda_{\max}(\mathbf{\Sigma}^0)\right)$ and get

$$\mathbb{P}(\mathcal{G}^{c}) \leq \mathbb{P}\left(\|\mathbf{S} - \mathbf{\Sigma}^{0}\|_{\infty} \geq \nu\right) \leq 2 \exp\left(-n \frac{\nu^{2}}{9\lambda_{\max}^{2}(\mathbf{\Sigma}^{0}) + 8\nu\lambda_{\max}(\mathbf{\Sigma}^{0})} + 2\log p\right) \\
\leq 2 \exp\left(-n \frac{\nu^{2}}{18\lambda_{\max}^{2}(\mathbf{\Sigma}^{0})} + 2\log p\right) \longrightarrow 0,$$

provided that $\tilde{C}_{\min} \geq 2000 \frac{\bar{\lambda}_{\max}^2}{\lambda_{\min}^2(\mathbf{\Omega}^0)} \frac{(|A^0| + |B|) \log p}{n}$ and $\frac{\bar{\lambda}_{\max}^2}{\lambda_{\min}^2(\mathbf{\Omega}^0)} \frac{(|A^0| + |B|) \log p}{n} \leq 18000$. Combining, we obtain

$$P\left(\widehat{\Omega}^{(1)} \neq \widehat{\Omega}_{A^0 \cup B}\right) \leq \exp\left(\frac{-n\widetilde{C}_{\min}}{2560} + 2\log p\right) + \exp\left(\frac{-n}{2560} + |A^0|\log p\right)$$
$$+ \exp\left(-n\frac{\min\left(\sqrt{\frac{\min(\widetilde{C}_{\min}, 3/32)}{48\lambda_{\max}^2(|A^0| + |B|)}}, \lambda_{\max}(\Sigma^0)\right)^2}{18\lambda_{\max}^2(\Sigma^0)} + 2\log p\right)$$

For $\mathbb{P}\left(\widehat{\Omega}^{(0)} \neq \widehat{\Omega}_{A^0}\right)$, we let $B = \emptyset$ and a similar bound can be established. Moreover, by Lemma 4, it is easy to see that $\max(K(\Omega^0, \Omega), K^2(\Omega^0, \Omega)) \geq \frac{\|\Omega^0 - \Omega\|^2}{512}$ for any Ω . Consequently, $\widetilde{C}_{\min} \geq \frac{C_{\min}}{512}$. Thus, the bound in (B.17) is established. This completes the proof.

Lemma 7 Let $\Gamma_k = (\gamma_{k1}, \dots, \gamma_{km}) \in \mathbb{R}^m$; $k = 1, \dots, n$ be iid random vectors with $\text{Var}(\boldsymbol{\gamma}_1) = \boldsymbol{I}_{m \times m}$. If m is fixed, then

$$n^{-1} \| \sum_{k=1}^{n} \gamma_k \|_2^2 \xrightarrow{d} \chi_m^2, \text{ as } n \to \infty.$$
 (B.21)

Otherwise, if $\max (m, m_2 m/n, m_3/n, m_3 m^{3/2}/n^2) \to 0$, where $m_j = \max_{1 \le i \le m} \mathbb{E} \gamma_{1i}^{2j}$; j = 2, 3, then

$$\frac{\|\sum_{k=1}^{n} \gamma_k\|_2^2 - nm}{n\sqrt{2m}} \xrightarrow{d} N(0,1), \text{ as } n \to \infty.$$
(B.22)

Proof of Lemma 7: If m is fixed, then (B.21) follows from the central limit theorem and the continuous mapping theorem.

For (B.22), let $\Gamma_k = \sum_{j=1}^k \gamma_j$; $k = 1, \dots, n$ be a partial sum of k iid m-dimensional vectors γ_j 's. Next we apply Theorem 18.1 of [1] to show that $\frac{\|\Gamma_n\|_2^2 - nm}{n\sqrt{2m}} \to N(0, 1)$ for triangular arrays of martingale differences $\{\eta_{n,k} = \frac{\|\Gamma_k\|_2^2 - \|\Gamma_{k-1}\|_2^2 - m}{n\sqrt{2m}} = \frac{\|\gamma_k\|_2^2 - m + 2\gamma_k^\top \Gamma_{k-1}}{n\sqrt{2m}}\}$. Towards this end, we verify that

$$\sum_{k=1}^{n} \mathbb{E}\left(\eta_{n,k}^{2} \mid \boldsymbol{\gamma}_{1}, \cdots, \boldsymbol{\gamma}_{k-1}\right) \stackrel{P}{\to} 1, \quad \sum_{k=1}^{n} \mathbb{E}|\eta_{n,k}|^{3} \to 0.$$
 (B.23)

For the first condition of (B.23), we compute \mathbb{E} and Var of $\mathbb{E}(\eta_{n,k}^2 | \gamma_1, \dots, \gamma_{k-1})$. Note that $\gamma_1, \dots, \gamma_m$ are iid vectors with $\operatorname{Var}(\gamma_m) = I_{m \times m}$, $\mathbb{E}\Gamma_{k-1} = 0$, and $\mathbb{E}\|\Gamma_{k-1}\|_2^2 = (k-1)m$. Then, for each $k = 1, \dots, n$, $\mathbb{E}\mathbb{E}(\eta_{n,k}^2 | \gamma_1, \dots, \gamma_{k-1})$ becomes

$$(2mn^{2})^{-1} \Big(\mathbb{E} \big(\| \boldsymbol{\gamma}_{k} \|_{2}^{2} - m \big)^{2} + 4 \mathbb{E} \big((\| \boldsymbol{\gamma}_{k} \|_{2}^{2} - m) \boldsymbol{\gamma}_{k} \big)^{\top} \mathbb{E} \boldsymbol{\Gamma}_{k-1} + 4 \mathbb{E} \mathbb{E} \big((\boldsymbol{\gamma}_{k}^{\top} \boldsymbol{\Gamma}_{k-1})^{2} \mid \boldsymbol{\gamma}_{1}, \cdots, \boldsymbol{\gamma}_{k-1} \big) \Big)$$

$$= (2mn^{2})^{-1} \Big(\operatorname{Var} (\| \boldsymbol{\gamma}_{k} \|_{2}^{2}) + 4 \mathbb{E} \| \boldsymbol{\Gamma}_{k-1} \|_{2}^{2} \Big) = (2mn^{2})^{-1} \Big(\operatorname{Var} (\| \boldsymbol{\gamma}_{k} \|_{2}^{2}) + 4(k-1)m \Big),$$

which, after summing over $k = 1, \dots, n$, leads to

$$\sum_{k=1}^{n} \frac{2(k-1)}{n^2} \le \mathbb{E}\left(\sum_{k=1}^{n} \mathbb{E}\left(\eta_{n,k}^2 \mid \gamma_1, \cdots, \gamma_{k-1}\right)\right) \le \frac{mm_2}{2n} + \sum_{k=1}^{n} \frac{2(k-1)}{n^2},$$

where $\operatorname{Var}(\|\boldsymbol{\gamma}_k\|_2) \leq m^2 m_2$; $k = 1, \dots, n$. Consequently, $\left| \mathbb{E}\left(\sum_{k=1}^n \mathbb{E}\left(\eta_{n,k}^2 \mid \boldsymbol{\gamma}_1, \dots, \boldsymbol{\gamma}_{k-1}\right)\right) - 1 \right| \leq \frac{2}{n} + \frac{m m_2}{2n}$. Let $\boldsymbol{a} = \mathbb{E}\left((\|\boldsymbol{\gamma}_1\|_2^2 - m)\boldsymbol{\gamma}_1\right)$. Similarly, using an inequality $(a_1 + a_2 + a_3)^2 \leq m$

 $3(a_1^2 + a_2^2 + a_3^2)$ for real numbers a_j ; $j = 1, \dots, 3$.

$$\operatorname{Var}\left(\sum_{k=1}^{n} \mathbb{E}\left(\eta_{n,k}^{2} \mid \boldsymbol{\gamma}_{1}, \cdots, \boldsymbol{\gamma}_{k-1}\right)\right) = \frac{4}{m^{2}n^{4}} \operatorname{Var}\left(\sum_{k=1}^{n} \left(\boldsymbol{a}^{\top}\boldsymbol{\Gamma}_{k-1} + \|\boldsymbol{\Gamma}_{k-1}\|_{2}^{2}\right)\right)$$

$$= \frac{4}{m^{2}n^{4}} \operatorname{Var}\left(\sum_{k=1}^{n} (n-k) \left(\boldsymbol{a}^{\top}\boldsymbol{\gamma}_{k} + \|\boldsymbol{\gamma}_{k}\|_{2}^{2}\right) + 2 \sum_{k < k'} (n-(k \vee k')) \boldsymbol{\gamma}_{k}^{\top} \boldsymbol{\gamma}_{k'}\right)$$

$$\leq \frac{12}{m^{2}n^{4}} \left[\operatorname{Var}\left(\sum_{k=1}^{n} (n-k) \boldsymbol{a}^{\top} \boldsymbol{\gamma}_{k}\right) + \operatorname{Var}\left(\sum_{k=1}^{n} (n-k) \|\boldsymbol{\gamma}_{k}\|_{2}^{2}\right) + \operatorname{Var}\left(\sum_{k < k'} (n-(k \vee k')) \boldsymbol{\gamma}_{k}^{\top} \boldsymbol{\gamma}_{k'}\right)\right] \equiv \frac{12}{m^{2}n^{4}} \left[T_{1} + T_{2} + T_{3}\right]. \tag{B.24}$$

For T_1 , note that $\|\boldsymbol{a}\|_2^2 \leq \sum_{k=1}^m \mathbb{E}^2 ((\|\boldsymbol{\gamma}_1\|_2^2 - m)\gamma_{1k}) \leq \sum_{k=1}^m \mathbb{E} ((\|\boldsymbol{\gamma}_1\|_2^2 - m)^2) \mathbb{E} \gamma_{1k}^2 \leq m^3 m_2$. Then

$$\operatorname{Var}\left(\sum_{k=1}^{n}(n-k)\boldsymbol{a}^{\top}\boldsymbol{\gamma}_{k}\right) = \sum_{k=1}^{n}(n-k)^{2}\mathbb{E}\left(\boldsymbol{a}^{\top}\boldsymbol{\gamma}_{k}\right)^{2} = \sum_{k=1}^{n}(n-k)^{2}\sum_{j=1}^{m}a_{j}^{2}\mathbb{E}\gamma_{kj}^{2}$$
$$= \frac{\|\boldsymbol{a}\|_{2}^{2}}{6}(n-1)n(2n-1) \leq n^{3}m^{3}m_{2}.$$

For T_2 , note that $\text{Var}\left(\sum_{k=1}^n (n-k) \| \gamma_k \|_2^2\right) \leq \sum_{k=1}^n (n-k)^2 m^2 m_2 = \frac{1}{6} (n-1) n (2n-1) m^2 m_2$. To bound T_3 , note that, for $k \neq k'$ and $j \neq j'$, $\mathbb{E}\left(\gamma_k^\top \gamma_{k'} \gamma_j^\top \gamma_{j'}\right) = \mathbb{I}(\{j, j'\} = \{k, k'\}) \mathbb{E}\left(\gamma_k^\top \gamma_{k'}\right)^2 = \mathbb{I}(\{j, j'\} = \{k, k'\}) m$, yielding that

$$\operatorname{Var}\left(\sum_{k < k'} (n - (k \vee k')) \boldsymbol{\gamma}_k^{\top} \boldsymbol{\gamma}_{k'}\right) = \sum_{k < k'} (n - (k \vee k'))^2 \mathbb{E}\left(\boldsymbol{\gamma}_k^{\top} \boldsymbol{\gamma}_{k'}\right)^2 \le n^4 m.$$

Combining (B.24) with the bounds of $T_1 - T_3$, we obtain

$$\operatorname{Var}\left(\sum_{k=1}^{n} \mathbb{E}\left(\eta_{n,k}^{2} \mid \boldsymbol{\gamma}_{1}, \cdots, \boldsymbol{\gamma}_{k-1}\right)\right) \leq \frac{12\left(n^{3}m^{3}m_{2} + n^{3}m^{2}m_{2} + n^{4}m\right)}{m^{2}n^{4}}.$$

Hence the first condition of (B.23) is implied by the assumption that $mm_2/n \rightarrow 0$ and

 $m \to \infty$.

For the second condition of (B.23), note that $\mathbb{E}|\eta_{n,k}|^3 = \mathbb{E}\left(\left|\|\boldsymbol{\gamma}_k\|_2^2 - m + 2\boldsymbol{\gamma}_k^{\top}\boldsymbol{\Gamma}_{k-1}\right|^3\right)$ is bounded by

$$4\mathbb{E}\left(\left|\|\boldsymbol{\gamma}_{k}\|_{2}^{2}-m\right|^{3}\right)+16\mathbb{E}\left(\left|\boldsymbol{\gamma}_{k}^{\top}\boldsymbol{\Gamma}_{k-1}\right|^{3}\right)\leq\mathbb{E}\left(\|\boldsymbol{\gamma}_{k}\|_{2}^{6}\right)+\sqrt{\mathbb{E}\left(\left(\boldsymbol{\gamma}_{k}^{\top}\boldsymbol{\Gamma}_{k-1}\right)^{6}\right)}$$

$$\leq m^{3}m_{3}+\sqrt{(k-1)^{3}m^{3}m_{3}+(k-1)^{2}m^{3}m_{2}m_{3}+(k-1)m^{3}m_{3}^{2}}$$

$$\leq m^{3}m_{3}+k^{3/2}m_{3}^{3/2}m_{3}^{1/2}+km^{3/2}m_{2}^{1/2}m_{3}^{1/2}+k^{1/2}m^{3/2}m_{3}.$$

Summing over k, $\frac{\sum_{k=1}^{n} \mathbb{E}\left(|\|\boldsymbol{\gamma}_{k}\|_{2}^{2}-m+2\boldsymbol{\gamma}_{k}^{\top}\boldsymbol{\Gamma}_{k-1}|^{3}\right)}{n^{3}m^{3/2}}$ is upper bounded by

$$\begin{split} & \frac{\left(nm^3m_3 + n^{5/2}m^{3/2}m_3^{1/2} + n^2m^{3/2}m_2^{1/2}m_3^{1/2} + n^{3/2}m^{3/2}m_3\right)}{n^3m^{3/2}} \\ = & \frac{m^{3/2}m_3}{n^2} + \frac{m_3^{1/2}}{n^{1/2}} + \frac{m_2^{1/2}m_3^{1/2}}{n} + \frac{m_3}{n^{3/2}} \to 0 \,, \end{split}$$

provided that $\max(m_2m/n, m_3/n, m_3m^{3/2}/n^2) \to 0$. Thus the second condition in (B.23) is met. As a consequence of Theorem 18.1 of [1], the desired asymptotic normality is established. This completes the proof.

Lemma 8 Let $X \sim N(\mathbf{0}, \Sigma^0)$ and $\gamma = \operatorname{tr}(XX^\top - \Sigma^0)T$) with T a symmetric matrix. Then

$$\mathbb{E}(\gamma^{2m}) \le (2m-1)! \, 2^{m-1} \left(\mathbb{E}(\gamma^2) \right)^m \text{ for any integer } m \ge 1.$$
 (B.25)

Proof of Lemma 8: As in (B.8) and (B.10), we expand the moment generating function of γ : $M_{\gamma}(\lambda) = \mathbb{E} \exp(\lambda \gamma) = \lambda^2 \|\sqrt{\Sigma^0} T \sqrt{\Sigma^0}\|_F^2 + (1/2) \sum_{l=3}^{\infty} l^{-1} \lambda^l \operatorname{tr} \left[(2T\Sigma^0)^l \right]$ for any $|\lambda| < \|\sqrt{\Sigma^0} T \sqrt{\Sigma^0}\|_F/2$. Direct computation of high-order derivatives of $M_{\gamma}(\lambda)$ in λ yields that $\mathbb{E}(\gamma^{2m}) = (2m-1)! \, 2^{2m-1} \operatorname{tr} \left((T\Sigma^0)^{2m} \right)$ for any integer $m \geq 1$. An application of $\operatorname{tr} \left((T\Sigma^0)^{2m} \right) \leq \|\sqrt{\Sigma^0} T \sqrt{\Sigma^0}\|_F^{2m}$ yields that $\mathbb{E}(\gamma^{2m}) \leq (2m-1)! \, 2^{2m-1} \|\sqrt{\Sigma^0} T \sqrt{\Sigma^0}\|_F^{2m} = (2m-1)! \, 2^{m-1} \left(\mathbb{E}(\gamma^2) \right)^m$. This completes the proof.

Proof of Lemma 9: Let $\widehat{\Delta}_{\tilde{A}} = \widehat{\Omega}_{\tilde{A}} - \Omega^0$ for any $\tilde{A} \supseteq A^0$. Applying Lemma 5 to $\widehat{\Delta}_{\tilde{A}}$ and $\widehat{\Delta}_{A^0}$, we have that both $\|\widehat{\Delta}_{\tilde{A}}\|$ and $\|\widehat{\Delta}_{A^0}\|$ tend to zero in probability as n goes to infinity. Hence, we could assume throughout the proof that $\max\left(\|\widehat{\Delta}_{\tilde{A}}\|,\|\widehat{\Delta}_{A^0}\|\right) \le 1/2$ holds with probability tending to one. Note that $\Omega^0 = (\Sigma^0)^{-1}$, and $\log \det(\widehat{\Omega}_{\tilde{A}}) = \log \det(I_{p \times p} + \widehat{\Delta}_{\tilde{A}}\Sigma^0) + \log \det(\Omega^0)$. Then

$$\log \det(\boldsymbol{I}_{p \times p} + \widehat{\boldsymbol{\Delta}}_{\tilde{A}} \boldsymbol{\Sigma}^{0})$$

$$= \log \det(\boldsymbol{I}_{p \times p} + [\boldsymbol{\Sigma}^{0}]^{1/2} \widehat{\boldsymbol{\Delta}}_{\tilde{A}} [\boldsymbol{\Sigma}^{0}]^{1/2}) = \operatorname{tr}(\log(\boldsymbol{I}_{p \times p} + [\boldsymbol{\Sigma}^{0}]^{1/2} \widehat{\boldsymbol{\Delta}}_{\tilde{A}} [\boldsymbol{\Sigma}^{0}]^{1/2}))$$

$$= \operatorname{tr}\left(\sum_{i=1}^{\infty} (-1)^{i+1} \frac{\left([\boldsymbol{\Sigma}^{0}]^{1/2} \widehat{\boldsymbol{\Delta}}_{\tilde{A}} [\boldsymbol{\Sigma}^{0}]^{1/2}\right)^{i}}{i}\right),$$

$$= \operatorname{tr}\left(\widehat{\boldsymbol{\Delta}}_{\tilde{A}} \boldsymbol{\Sigma}^{0}\right) - \frac{1}{2} \operatorname{tr}\left(\widehat{\boldsymbol{\Delta}}_{\tilde{A}} \boldsymbol{\Sigma}^{0} \widehat{\boldsymbol{\Delta}}_{\tilde{A}} \boldsymbol{\Sigma}^{0}\right) + R_{1}(\widehat{\boldsymbol{\Delta}}_{\tilde{A}}), \tag{B.26}$$

where $R_1(\widehat{\Delta}_{\tilde{A}}) = \sum_{i=3}^{\infty} \frac{(-1)^{i+1}}{i} \operatorname{tr}\left(\left(\widehat{\Delta}_{\tilde{A}} \Sigma^0\right)^i\right)$ and the expansion is valid since $\|\widehat{\Delta}_{\tilde{A}}\| \le 1/2 < 1$

1. As a result,

$$n^{-1} \left(L_n(\widehat{\Omega}_{\tilde{A}}) - L_n(\Omega^0) \right)$$

$$= \frac{1}{2} \operatorname{tr} \left(\widehat{\Delta}_{\tilde{A}} \Sigma^0 \right) - \frac{1}{4} \operatorname{tr} \left(\widehat{\Delta}_{\tilde{A}} \Sigma^0 \widehat{\Delta}_{\tilde{A}} \Sigma^0 \right) - \frac{1}{2} \operatorname{tr} (\widehat{\Delta}_{\tilde{A}} S) + \frac{1}{2} R_1(\widehat{\Delta}_{\tilde{A}})$$

$$= \frac{1}{2} \operatorname{tr} \left(\widehat{\Delta}_{\tilde{A}} (\Sigma^0 - S) \right) - \frac{1}{4} \|\widehat{\Delta}_{\tilde{A}}\|^2 + \frac{1}{2} R_1(\widehat{\Delta}_{\tilde{A}}). \tag{B.27}$$

Moreover, using the property of the CMLE, $\widehat{\Delta}_{\tilde{A}}$ satisfies a score equation: $[-(\widehat{\Delta}_{\tilde{A}} + \Omega^0)^{-1} + S]_{\tilde{A}} = 0$. This, in turn, yields that

$$\left[\boldsymbol{\Sigma}^{0}\widehat{\boldsymbol{\Delta}}_{\tilde{A}}\boldsymbol{\Sigma}^{0}\right]_{\tilde{A}} = \left[R_{2}(\widehat{\boldsymbol{\Delta}}_{\tilde{A}}) + \boldsymbol{\Sigma}^{0} - \boldsymbol{S}\right]_{\tilde{A}}, \tag{B.28}$$

where $(\widehat{\Delta}_{\tilde{A}} + \Omega^0)^{-1} = \Sigma^0 - \Sigma^0 \widehat{\Delta}_{\tilde{A}} \Sigma^0 + R_2(\widehat{\Delta}_{\tilde{A}})$ is used, and $R_2(\widehat{\Delta}_{\tilde{A}}) = \Sigma^0 \sum_{i=2}^{\infty} (-1)^i (\widehat{\Delta}_{\tilde{A}} \Sigma^0)^i$.

By the definition of \otimes and (B.2), (B.28) can be rewritten in a vector form as

$$2I_{\tilde{A},\tilde{A}}\operatorname{vec}_{\tilde{A}}(\widehat{\Delta}_{\tilde{A}}) = \operatorname{vec}\left(R_2(\widehat{\Delta}_{\tilde{A}}) + \Sigma^0 - S\right).$$
(B.29)

Moreover, after taking the inner product with $\widehat{\Delta}_{\tilde{A}}$ for both sides of (B.28), we obtain

$$\operatorname{tr}\left(\widehat{\boldsymbol{\Delta}}_{\tilde{A}}\boldsymbol{\Sigma}^{0}\widehat{\boldsymbol{\Delta}}_{\tilde{A}}\boldsymbol{\Sigma}^{0}\right) = \operatorname{tr}\left(\widehat{\boldsymbol{\Delta}}_{\tilde{A}}R_{2}(\widehat{\boldsymbol{\Delta}}_{\tilde{A}})\right) + \operatorname{tr}\left(\widehat{\boldsymbol{\Delta}}_{\tilde{A}}(\boldsymbol{\Lambda})\right), \tag{B.30}$$

where $\Lambda = \Sigma^0 - S$. Hence, combining (B.29) and (B.30) with (B.27) yields that

$$2n^{-1} \left(L_n(\widehat{\Omega}_{\tilde{A}}) - L_n(\Omega^0) \right) = \frac{1}{2} \operatorname{tr} \left(\widehat{\Delta}_{\tilde{A}} \Lambda \right) - \frac{1}{2} \operatorname{tr} \left(\widehat{\Delta}_{\tilde{A}} R_2(\widehat{\Delta}_{\tilde{A}}) \right) + R_1(\widehat{\Delta}_{\tilde{A}})$$

$$= \frac{1}{2} \left(\operatorname{vec}_{\tilde{A}}(\widehat{\Delta}) \right)^{\top} \operatorname{vec}_{\tilde{A}} \left(\Lambda - R_2(\widehat{\Delta}_{\tilde{A}}) \right) + R_1(\widehat{\Delta}_{\tilde{A}})$$

$$= \frac{1}{4} \operatorname{vec}_{\tilde{A}} \left(\Lambda + R_2(\widehat{\Delta}_{\tilde{A}}) \right)^{\top} \boldsymbol{I}_{\tilde{A},\tilde{A}}^{-1} \operatorname{vec}_{\tilde{A}} \left(\Lambda - R_2(\widehat{\Delta}_{\tilde{A}}) \right) + R_1(\widehat{\Delta}_{\tilde{A}})$$

$$= \frac{1}{4} \operatorname{vec}_{\tilde{A}} (\Lambda)^{\top} \boldsymbol{I}_{\tilde{A},\tilde{A}}^{-1} \operatorname{vec}_{\tilde{A}} (\Lambda) - \frac{1}{4} \operatorname{vec}_{\tilde{A}} \left(R_2(\widehat{\Delta}_{\tilde{A}}) \right)^{\top} \boldsymbol{I}_{\tilde{A},\tilde{A}}^{-1} \operatorname{vec}_{\tilde{A}} \left(R_2(\widehat{\Delta}_{\tilde{A}}) \right) + R_1(\widehat{\Delta}_{\tilde{A}}).$$

Similarly,

$$2n^{-1} \left(L_n(\widehat{\boldsymbol{\Omega}}_{A^0}) - L_n(\boldsymbol{\Omega}^0) \right)$$

$$= \frac{1}{4} \operatorname{vec}_{A^0}(\boldsymbol{\Lambda})^{\top} \boldsymbol{I}_{A^0,A^0}^{-1} \operatorname{vec}_{A^0}(\boldsymbol{\Lambda}) - \frac{1}{4} \operatorname{vec}_{A^0} \left(R_2(\widehat{\boldsymbol{\Delta}}_{A^0}) \right) \boldsymbol{I}_{A^0,A^0}^{-1} \operatorname{vec}_{A^0} \left(R_2(\widehat{\boldsymbol{\Delta}}_{A^0}) \right) + R_1(\widehat{\boldsymbol{\Delta}}_{A^0}).$$

Combining, we obtain that

$$2\left(L_{n}(\widehat{\boldsymbol{\Omega}}_{\tilde{A}}) - L_{n}(\widehat{\boldsymbol{\Omega}}_{A^{0}})\right) = \frac{n}{4}\operatorname{vec}_{\tilde{A}}\left(\boldsymbol{\Lambda}\right)^{\top}\boldsymbol{I}_{B,B}^{-1}\operatorname{vec}_{\tilde{A}}\left(\boldsymbol{\Lambda}\right) - \frac{n}{4}\operatorname{vec}_{A^{0}}\left(\boldsymbol{\Lambda}\right)^{\top}\boldsymbol{I}_{A^{0},A^{0}}^{-1}\operatorname{vec}_{A^{0}}\left(\boldsymbol{\Lambda}\right) + R(\widehat{\boldsymbol{\Delta}}_{\tilde{A}},\widehat{\boldsymbol{\Delta}}_{A^{0}}) \quad (B.31)$$

where

$$R(\widehat{\boldsymbol{\Delta}}_{\tilde{A}}, \widehat{\boldsymbol{\Delta}}_{A^{0}}) = nR_{1}(\widehat{\boldsymbol{\Delta}}_{\tilde{A}}) - \frac{n}{4} \operatorname{vec}_{\tilde{A}} \left(R_{2}(\widehat{\boldsymbol{\Delta}}_{\tilde{A}}) \right)^{\top} \boldsymbol{I}_{\tilde{A}, \tilde{A}}^{-1} \operatorname{vec}_{\tilde{A}} \left(R_{2}(\widehat{\boldsymbol{\Delta}}_{\tilde{A}}) \right)$$
$$-nR_{1}(\widehat{\boldsymbol{\Delta}}_{A^{0}}) + \frac{n}{4} \operatorname{vec}_{A^{0}} \left(R_{2}(\widehat{\boldsymbol{\Delta}}_{A^{0}}) \right)^{\top} \boldsymbol{I}_{A^{0}, A^{0}}^{-1} \operatorname{vec}_{A^{0}} \left(R_{2}(\widehat{\boldsymbol{\Delta}}_{A^{0}}) \right)$$
(B.32)

is the remainder to be bounded subsequently. For now, we focus on the leading term in the likelihood ratio expansion. Let $\lambda = \sqrt{n} \operatorname{vec}_{\tilde{A}} \left(\Sigma^0 - S \right)$. Now write $I_{\tilde{A},\tilde{A}}^{-1}$ as

$$I_{\tilde{A},\tilde{A}}^{-1} = \begin{pmatrix} J_{A^0,A^0} & J_{A^0,B} \\ J_{B,A^0} & J_{B,B} \end{pmatrix}.$$
(B.33)

Note that $I_{A^0,A^0} = [J^{-1}]_{A^0,A^0} = (J_{A^0,A^0} - J_{A^0,B}J_{B,B}^{-1}J_{B,A^0})^{-1}$. Thus,

$$\frac{n}{4} \operatorname{vec}_{\tilde{A}} \left(\boldsymbol{\Lambda} \right)^{\top} \boldsymbol{I}_{\tilde{A}, \tilde{A}}^{-1} \operatorname{vec}_{\tilde{A}} \left(\boldsymbol{\Lambda} \right) - \frac{n}{4} \operatorname{vec}_{A^{0}} \left(\boldsymbol{\Lambda} \right)^{\top} \boldsymbol{I}_{A^{0}, A^{0}}^{-1} \operatorname{vec}_{A^{0}} \left(\boldsymbol{\Lambda} \right)$$

$$= \frac{1}{4} \boldsymbol{\lambda}_{\tilde{A}}^{\top} \boldsymbol{I}_{\tilde{A}, \tilde{A}}^{-1} \boldsymbol{\lambda}_{\tilde{A}} - \frac{1}{4} \boldsymbol{\lambda}_{A^{0}}^{\top} \boldsymbol{I}_{A^{0}, A^{0}}^{-1} \boldsymbol{\lambda}_{A^{0}}$$

$$= \frac{1}{4} \boldsymbol{\lambda}_{\tilde{A}}^{\top} \boldsymbol{J} \boldsymbol{\lambda}_{\tilde{A}} - \frac{1}{4} \boldsymbol{\lambda}_{A^{0}}^{\top} \left(\boldsymbol{J}_{A^{0}, A^{0}} - \boldsymbol{J}_{A^{0}, B} \boldsymbol{J}_{B, B}^{-1} \boldsymbol{J}_{B, A^{0}} \right) \boldsymbol{\lambda}_{A^{0}}$$

$$= \frac{1}{4} \left(\boldsymbol{J}_{B, A^{0}} \boldsymbol{\lambda}_{A^{0}} + \boldsymbol{J}_{\tilde{A} \backslash A^{0}, B \backslash A^{0}} \boldsymbol{\lambda}_{B} \right)^{\top} \boldsymbol{J}_{A \backslash A^{0}, B}^{-1} \left(\boldsymbol{J}_{\tilde{A} \backslash A^{0}, A^{0}} \boldsymbol{\lambda}_{A^{0}} + \boldsymbol{J}_{B \backslash A^{0}, B} \boldsymbol{\lambda}_{B} \right)$$

$$= \frac{1}{4} \boldsymbol{\lambda}_{\tilde{A}}^{\top} \boldsymbol{J}_{\tilde{A}, B} \boldsymbol{J}_{B, B}^{-1} \boldsymbol{J}_{\tilde{A} \backslash A^{0}, A} \boldsymbol{\lambda}_{\tilde{A}} = \left\| \frac{1}{2} \boldsymbol{J}_{B, B}^{-1/2} \boldsymbol{J}_{B, \tilde{A}} \sqrt{n} \operatorname{vec}_{\tilde{A}} (\boldsymbol{\Lambda}) \right\|_{0}^{2}. \tag{B.34}$$

This, together with (B.31), implies that

$$2\left(L_n(\widehat{\Omega}_{\tilde{A}}) - L_n(\widehat{\Omega}_{A^0})\right) = \left\|\frac{1}{2}\boldsymbol{J}_{B,B}^{-1/2}\boldsymbol{J}_{B,\tilde{A}}\sqrt{n}\operatorname{vec}_{\tilde{A}}(\boldsymbol{\Lambda})\right\|_2^2 + R(\widehat{\boldsymbol{\Delta}}_{\tilde{A}},\widehat{\boldsymbol{\Delta}}_{A^0}), \quad (B.35)$$

Recall from (B.47) that $\operatorname{Var}\left(\frac{1}{2}\boldsymbol{J}_{B,B}^{-1/2}\boldsymbol{J}_{B,\tilde{A}}\sqrt{n}\operatorname{vec}_{A}(\boldsymbol{\Lambda})\right) = \boldsymbol{I}_{|B|\times|B|}$, thus by Lemma 7 and Lemma 8, if |B| is a fixed constant, $2\left(L_{n}(\widehat{\boldsymbol{\Omega}}_{\tilde{A}})-L_{n}(\widehat{\boldsymbol{\Omega}}_{A^{0}})\right) \xrightarrow{P_{0}} W_{|\tilde{A}\backslash A^{0}|}$ provided that $R(\widehat{\boldsymbol{\Delta}}_{\tilde{A}},\widehat{\boldsymbol{\Delta}}_{A^{0}}) = o_{p}(1)$; if $|\tilde{A}\backslash A^{0}| \to \infty$, $(2|\tilde{A}\backslash A^{0}|)^{-1/2}\left(2\left(L_{n}(\widehat{\boldsymbol{\Omega}}_{\tilde{A}})-L_{n}(\widehat{\boldsymbol{\Omega}}_{A^{0}})\right)-|\tilde{A}\backslash A^{0}|\right) \xrightarrow{P_{0}} N(0,1)$ provided that $R(\widehat{\boldsymbol{\Delta}}_{\tilde{A}},\widehat{\boldsymbol{\Delta}}_{A^{0}})/\sqrt{|B|} = o_{p}(1)$. Next it remains to prove that the remainder term $R(\widehat{\boldsymbol{\Delta}}_{\tilde{A}},\widehat{\boldsymbol{\Delta}}_{A^{0}})$ satisfies the aforementioned conditions. Toward this end, we bound $R_{1}(\widehat{\boldsymbol{\Delta}}_{\tilde{A}})-R_{1}(\widehat{\boldsymbol{\Delta}}_{A^{0}})$ and $\operatorname{vec}_{\tilde{A}}\left(R_{2}(\widehat{\boldsymbol{\Delta}}_{\tilde{A}})\right)\boldsymbol{I}_{\tilde{A},\tilde{A}}^{-1}\operatorname{vec}_{\tilde{A}}\left(R_{2}(\widehat{\boldsymbol{\Delta}}_{\tilde{A}})\right)-\operatorname{vec}_{A^{0}}\left(R_{2}(\widehat{\boldsymbol{\Delta}}_{A^{0}})\right)\boldsymbol{I}_{A^{0},A^{0}}^{-1}\operatorname{vec}_{A^{0}}\left(R_{2}(\widehat{\boldsymbol{\Delta}}_{A^{0}})\right)$ respectively.

For $\operatorname{vec}_{\tilde{A}}(R_2(\widehat{\Delta}_{\tilde{A}})) I_{\tilde{A},\tilde{A}}^{-1} \operatorname{vec}_{\tilde{A}}(R_2(\widehat{\Delta}_{\tilde{A}}))$, recursively applying $\|C_1C_2\|_F \leq \|C_1\|_F \|C_2\|_F$ and using the fact that $\|C_1C_2\|_F \leq \lambda_{\max}(C_2)\|C_1\|_F$ and $\|C_1C_2\|_F \leq \lambda_{\max}(C_1)\|C_2\|_F$, we obtain

$$\left\| \operatorname{vec}_{\tilde{A}} \left(\Sigma^{0} \left(\widehat{\Delta}_{\tilde{A}} \Sigma^{0} \right)^{i} \right) \right\|_{2} \leq \left\| \sqrt{\Sigma^{0}} \left(\sqrt{\Sigma^{0}} \widehat{\Delta}_{\tilde{A}} \sqrt{\Sigma^{0}} \right)^{i} \sqrt{\Sigma^{0}} \right\|_{F}$$

$$\leq \lambda_{\max}(\Sigma^{0}) \left\| \sqrt{\Sigma^{0}} \widehat{\Delta}_{\tilde{A}} \sqrt{\Sigma^{0}} \right\|_{F}^{i} = \lambda_{\max}(\Sigma^{0}) \|\widehat{\Delta}_{\tilde{A}}\|^{i} \quad (B.36)$$

Summing over i yields that

$$\left\| \operatorname{vec}_{\tilde{A}} \left(R_{2}(\widehat{\Delta}_{\tilde{A}}) \right) \right\|_{2} \leq \sum_{i=2}^{\infty} \left\| \operatorname{vec}_{\tilde{A}} \left(\Sigma^{0} \left(\widehat{\Delta}_{\tilde{A}} \Sigma^{0} \right)^{i} \right) \right\|_{2}$$

$$\leq \lambda_{\max}(\Sigma^{0}) \sum_{i=2}^{\infty} \|\widehat{\Delta}_{\tilde{A}}\|^{i} \leq 2\lambda_{\max}(\Sigma^{0}) \|\widehat{\Delta}_{\tilde{A}}\|^{2}. \tag{B.37}$$

Consequently,

$$\operatorname{vec}_{B}\left(R_{2}(\widehat{\boldsymbol{\Delta}}_{\tilde{A}})\right)\boldsymbol{I}_{B,B}^{-1}\operatorname{vec}_{\tilde{A}}\left(R_{2}(\widehat{\boldsymbol{\Delta}}_{\tilde{A}})\right) \leq \left\|\boldsymbol{I}_{B,B}^{-1}\right\|_{\operatorname{opt}}\left\|\operatorname{vec}_{\tilde{A}}\left(R_{2}(\widehat{\boldsymbol{\Delta}}_{\tilde{A}})\right)\right\|_{2}^{2}$$

$$\leq \lambda_{\min}^{-2}(\boldsymbol{\Sigma}^{0})\left\|\operatorname{vec}_{\tilde{A}}\left(R_{2}(\widehat{\boldsymbol{\Delta}}_{\tilde{A}})\right)\right\|_{2}^{2} \leq 4\kappa_{0}^{2}\|\widehat{\boldsymbol{\Delta}}_{\tilde{A}}\|^{4}. \tag{B.38}$$

Similarly, $\operatorname{vec}_{A^0}\left(R_2(\widehat{\boldsymbol{\Delta}}_{A^0})\right)\boldsymbol{I}_{A^0,A^0}^{-1}\operatorname{vec}_{A^0}\left(R_2(\widehat{\boldsymbol{\Delta}}_{A^0})\right) \leq 4\kappa_0^2\|\widehat{\boldsymbol{\Delta}}_{A^0}\|^4$. Hence,

$$\frac{1}{4}\operatorname{vec}_{\tilde{A}}\left(R_{2}(\widehat{\boldsymbol{\Delta}}_{\tilde{A}})\right)\boldsymbol{I}_{\tilde{A},\tilde{A}}^{-1}\operatorname{vec}_{\tilde{A}}\left(R_{2}(\widehat{\boldsymbol{\Delta}}_{\tilde{A}})\right) - \frac{1}{4}\operatorname{vec}_{A^{0}}\left(R_{2}(\widehat{\boldsymbol{\Delta}}_{A^{0}})\right)\boldsymbol{I}_{A^{0},A^{0}}^{-1}\operatorname{vec}_{A^{0}}\left(R_{2}(\widehat{\boldsymbol{\Delta}}_{A^{0}})\right)$$

$$\leq \kappa_0^2 \|\widehat{\Delta}_{\tilde{A}}\|^4 + \kappa_0^2 \|\widehat{\Delta}_{A^0}\|^4 \tag{B.39}$$

For $R_1(\widehat{\Delta}_{\tilde{A}}) - R_1(\widehat{\Delta}_{A^0})$, by Cauchy-Schwartz inequality, we have that $\operatorname{tr}((\widehat{\Delta}_{\tilde{A}}\Sigma^0)^i) \leq$

$$\|\sqrt{\Sigma^{0}}\widehat{\Delta}_{\tilde{A}}\sqrt{\Sigma^{0}}\|_{F} \|(\sqrt{\Sigma^{0}}\widehat{\Delta}_{\tilde{A}}\sqrt{\Sigma^{0}})^{i-1}\|_{F} \leq \|\widehat{\Delta}_{\tilde{A}}\|^{i}; i = 2, \cdots, \text{ Hence,}$$

$$\left|\sum_{i=4}^{\infty} \frac{(-1)^{i+1}}{i} \operatorname{tr}((\widehat{\Delta}_{\tilde{A}}\Sigma^{0})^{i})\right| \leq \sum_{i=4}^{\infty} i^{-1} \|\widehat{\Delta}_{\tilde{A}}\|^{i} \leq \frac{\|\widehat{\Delta}_{\tilde{A}}\|^{4}}{4(1-\|\widehat{\Delta}_{\tilde{A}}\|)} \leq \frac{1}{2} \|\widehat{\Delta}_{\tilde{A}}\|^{4}. \quad (B.40)$$

$$\left| R_1(\widehat{\Delta}_{\tilde{A}}) - R_1(\widehat{\Delta}_{A^0}) \right| \leq \frac{\left| \operatorname{tr} \left(\left(\widehat{\Delta}_{\tilde{A}} \Sigma^0 \right)^3 \right) - \operatorname{tr} \left(\left(\widehat{\Delta}_{A^0} \Sigma^0 \right)^3 \right) \right|}{3} + \frac{\|\widehat{\Delta}_{\tilde{A}}\|^4 + \|\widehat{\Delta}_{A^0}\|^4}{2} (B.41)$$

Let $f_{\tilde{A}}(\operatorname{vec}_{\tilde{A}}(\Delta)) = \operatorname{tr}\left(\left(\Delta\Sigma^{0}\right)^{3}\right)$ with $\operatorname{vec}_{A^{c}}(\Delta) = \mathbf{0}$. A Taylor expansion of $f_{\tilde{A}}(\operatorname{vec}_{\tilde{A}}(\Delta))$

at $\operatorname{vec}_{A^0}(\Delta)$) yields that

$$\frac{1}{3} \left| \operatorname{tr} \left(\left(\widehat{\Delta}_{\tilde{A}} \Sigma^{0} \right)^{3} \right) - \operatorname{tr} \left(\left(\widehat{\Delta}_{A^{0}} \Sigma^{0} \right)^{3} \right) \right| = \frac{1}{3} \left(\operatorname{vec}_{\tilde{A}} (\widehat{\Delta}_{\tilde{A}}) - \operatorname{vec}_{\tilde{A}} (\widehat{\Delta}_{A^{0}}) \right)^{\top} \nabla f(\operatorname{vec}_{\tilde{A}} (\widehat{\Delta}^{*}))$$

$$= \left(\operatorname{vec}_{\tilde{A}} (\widehat{\Delta}_{\tilde{A}} - \widehat{\Delta}_{A^{0}}) \right)^{\top} \operatorname{vec}_{\tilde{A}} \left(\Sigma^{0} (\widehat{\Delta}^{*} \Sigma^{0})^{2} \right) = \operatorname{tr} \left(\Sigma^{0} (\widehat{\Delta}_{\tilde{A}} - \widehat{\Delta}_{A^{0}}) (\Sigma^{0} \widehat{\Delta}^{*})^{2} \right)$$

$$\leq 2 \left\| \sqrt{\Sigma^{0}} (\widehat{\Delta}_{\tilde{A}} - \widehat{\Delta}_{A^{0}}) \sqrt{\Sigma^{0}} \right\|_{F} \max \left(\left\| \sqrt{\Sigma^{0}} \widehat{\Delta}_{A^{0}} \sqrt{\Sigma^{0}} \right\|_{F}^{2}, \left\| \sqrt{\Sigma^{0}} \widehat{\Delta}_{\tilde{A}} \sqrt{\Sigma^{0}} \right\|_{F}^{2} \right) \tag{B.42}$$

where $\widehat{\Delta}^*$ is some convex combination of $\widehat{\Delta}_{\tilde{A}}$ and $\widehat{\Delta}_{A^0}$ and the last equality uses (B.36).

Lastly, we bound $\left\|\sqrt{\Sigma^0}(\widehat{\Delta}_{\tilde{A}}-\widehat{\Delta}_{A^0})\sqrt{\Sigma^0}\right\|_F = \left\|I_{\tilde{A},\tilde{A}}^{1/2}\operatorname{vec}_{\tilde{A}}(\widehat{\Delta}_{\tilde{A}}-\widehat{\Delta}_{A^0})\right\|_2$. By (B.29), we have that

$$I_{\tilde{A},\tilde{A}}^{1/2} \operatorname{vec}_{\tilde{A}}(\widehat{\Delta}_{\tilde{A}} - \widehat{\Delta}_{A^{0}}) = I_{\tilde{A},\tilde{A}}^{1/2} \left(\operatorname{vec}_{\tilde{A}}(\widehat{\Omega}_{\tilde{A}} - \Omega^{0}) - \operatorname{vec}_{\tilde{A}}(\widehat{\Omega}_{A^{0}} - \Omega^{0}) \right)$$

$$= \frac{1}{2} I_{\tilde{A},\tilde{A}}^{-1/2} \operatorname{vec}_{\tilde{A}}(\Lambda + R_{2}(\widehat{\Delta}_{\tilde{A}})) - \frac{1}{2} I_{\tilde{A},\tilde{A}}^{1/2} \begin{bmatrix} I_{A^{0},A^{0}}^{-1} \operatorname{vec}_{A^{0}}(\Lambda + R_{2}(\widehat{\Delta}_{A^{0}})) \\ 0 \end{bmatrix}$$

$$= \frac{1}{2} I_{\tilde{A},\tilde{A}}^{-1/2} \left(\operatorname{vec}_{\tilde{A}}(\Lambda + R_{2}(\widehat{\Delta}_{\tilde{A}})) - \begin{bmatrix} \operatorname{vec}_{A^{0}}(\Lambda + R_{2}(\widehat{\Delta}_{A^{0}})) \\ I_{B,A^{0}} I_{A^{0},A^{0}}^{-1} \operatorname{vec}_{A^{0}}(\Lambda + R_{2}(\widehat{\Delta}_{A^{0}})) \end{bmatrix} \right)$$

$$= \frac{1}{2} I_{\tilde{A},\tilde{A}}^{-1/2} \begin{bmatrix} \operatorname{vec}_{A^{0}}(R_{2}(\widehat{\Delta}_{\tilde{A}}) - R_{2}(\widehat{\Delta}_{A^{0}})) \\ \operatorname{vec}_{B}(\Lambda + R_{2}(\widehat{\Delta}_{\tilde{A}})) - I_{B,A^{0}} I_{A^{0},A^{0}}^{-1} \operatorname{vec}_{A^{0}}(\Lambda + R_{2}(\widehat{\Delta}_{A^{0}})) \end{bmatrix}, \quad (B.43)$$

where $\Lambda = \Sigma^0 - S$. Let $J = I_{\tilde{A},\tilde{A}}^{-1}$. An application of an inequality $\|I_{\tilde{A},\tilde{A}}^{-1/2}x\|_2^2 = x^\top Jx \le 1$

 $2\boldsymbol{x}_{A^0}^{\top}\boldsymbol{J}_{A^0,A^0}\boldsymbol{x}_{A^0} + 2\boldsymbol{x}_B^{\top}\boldsymbol{J}_{B,B}\boldsymbol{x}_B$ yields that

$$\left\| \boldsymbol{I}_{\tilde{A},\tilde{A}}^{-1/2} \begin{bmatrix} \operatorname{vec}_{A^{0}}(R_{2}(\widehat{\boldsymbol{\Delta}}_{\tilde{A}}) - R_{2}(\widehat{\boldsymbol{\Delta}}_{A^{0}})) \\ \operatorname{vec}_{B}(\boldsymbol{\Lambda} + R_{2}(\widehat{\boldsymbol{\Delta}}_{\tilde{A}})) - \boldsymbol{I}_{B,A^{0}}\boldsymbol{I}_{A^{0},A^{0}}^{-1} \operatorname{vec}_{A^{0}}(\boldsymbol{\Lambda} + R_{2}(\widehat{\boldsymbol{\Delta}}_{A^{0}})) \end{bmatrix} \right\|_{F}^{2}$$

$$\leq 2 \left\| \boldsymbol{J}_{B,B}^{1/2} \left(\operatorname{vec}_{B \setminus A^{0}}(\boldsymbol{\Lambda} + R_{2}(\widehat{\boldsymbol{\Delta}}_{\tilde{A}})) - \boldsymbol{I}_{B,A^{0}}\boldsymbol{I}_{A^{0},A^{0}}^{-1} \operatorname{vec}_{A^{0}}(\boldsymbol{\Lambda} + R_{2}(\widehat{\boldsymbol{\Delta}}_{A^{0}})) \right) \right\|_{2}^{2}$$

$$+ 2 \left\| \boldsymbol{J}_{A^{0},A^{0}}^{1/2} \operatorname{vec}_{A^{0}}(R_{2}(\widehat{\boldsymbol{\Delta}}_{\tilde{A}}) - R_{2}(\widehat{\boldsymbol{\Delta}}_{A^{0}})) \right\|_{2}^{2}. \tag{B.44}$$

Moreover, $J_{B,B}^{-1}J_{B,A^0} + I_{B,A^0}I_{A^0,A^0}^{-1} = 0$. Using this, we have that

$$\left\| \boldsymbol{J}_{B,B}^{1/2} \left(\operatorname{vec}_{B}(\boldsymbol{\Lambda}) - \boldsymbol{I}_{B,A^{0}} \boldsymbol{I}_{A^{0},A^{0}}^{-1} \operatorname{vec}_{A^{0}}(\boldsymbol{\Lambda}) \right) \right\|_{2}^{2}$$

$$= \left\| \boldsymbol{J}_{B,B}^{-1/2} \left(\boldsymbol{J}_{B,B} \operatorname{vec}_{B}(\boldsymbol{\Lambda}) + \boldsymbol{J}_{B,A^{0}} \operatorname{vec}_{A^{0}}(\boldsymbol{\Lambda}) \right) \right\|_{2}^{2} = \left\| \boldsymbol{J}_{B,B}^{-1/2} \boldsymbol{J}_{B,\tilde{A}} \operatorname{vec}_{\tilde{A}}(\boldsymbol{\Lambda}) \right\|_{2}^{2}. \quad (B.45)$$

This, together with (B.43) and (B.44), implies that

$$\left\| \sqrt{\Sigma^{0}} (\widehat{\Delta}_{\tilde{A}} - \widehat{\Delta}_{A^{0}}) \sqrt{\Sigma^{0}} \right\|_{F}^{2}$$

$$\leq \frac{1}{2} \left\| \boldsymbol{J}_{A^{0},A^{0}}^{1/2} \operatorname{vec}_{A^{0}} (R_{2}(\widehat{\Delta}_{\tilde{A}}) - R_{2}(\widehat{\Delta}_{A^{0}})) \right\|_{2}^{2} + \frac{1}{2} \left\| \boldsymbol{J}_{B,B}^{-1/2} \boldsymbol{J}_{B,B} \operatorname{vec}_{B}(\boldsymbol{\Lambda}) \right\|_{2}^{2}. \quad (B.46)$$

By (B.3), the covariance matrix of $J_{B,B}^{-1/2}J_{B,B}\operatorname{vec}_{\tilde{A}}(\Lambda)$ is

$$\operatorname{Var}\left(\boldsymbol{J}_{B,B}^{-1/2}\boldsymbol{J}_{B,B}\operatorname{vec}_{B}(\boldsymbol{\Lambda})\right) = n^{-1}\boldsymbol{J}_{B,B}^{-1/2}\boldsymbol{J}_{B,B}\operatorname{Var}\left(\sqrt{n}\operatorname{vec}_{\tilde{\boldsymbol{A}}}(\boldsymbol{\Lambda})\right)\boldsymbol{J}_{\tilde{\boldsymbol{A}},B}\boldsymbol{J}_{B,B}^{-1/2}$$

=
$$n^{-1} \boldsymbol{J}_{B,B}^{-1/2} \boldsymbol{J}_{B,\tilde{A}} (4\boldsymbol{J}^{-1}) \boldsymbol{J}_{\tilde{A},B} \boldsymbol{J}_{B,B}^{-1/2} = 4n^{-1} \boldsymbol{J}_{B,B}^{-1/2} \boldsymbol{J}_{B,B} \boldsymbol{J}_{B,B}^{-1/2} = 4n^{-1} \boldsymbol{I}_{|B| \times |B|}, (B.47)$$

 $= n^{-1} \boldsymbol{J}_{B,B}^{-1/2} \boldsymbol{J}_{B,\tilde{A}} \left(4\boldsymbol{J}^{-1} \right) \boldsymbol{J}_{\tilde{A},B} \boldsymbol{J}_{B,B}^{-1/2} = 4n^{-1} \boldsymbol{J}_{B,B}^{-1/2} \boldsymbol{J}_{B,B} \boldsymbol{J}_{B,B}^{-1/2} = 4n^{-1} \boldsymbol{I}_{|B| \times |B|}, \text{ (B.47)}$ By Lemma 3, $\left\| \boldsymbol{J}_{B,B}^{-1/2} \boldsymbol{J}_{B,A} \operatorname{vec}_{\tilde{A}}(\boldsymbol{\Lambda}) \right\|_{2}^{2} \leq |B| \left\| \boldsymbol{J}_{B,B}^{-1/2} \boldsymbol{J}_{B,\tilde{A}} \operatorname{vec}_{A}(\boldsymbol{\Lambda}) \right\|_{\infty}^{2} = O_{p} \left(\frac{|B| \log |B|}{n} \right). \text{ Using}$ this and (B.37), we bound (B.46) as follows:

$$\left\| \sqrt{\mathbf{\Sigma}^{0}} (\widehat{\boldsymbol{\Delta}}_{\tilde{A}} - \widehat{\boldsymbol{\Delta}}_{A^{0}}) \sqrt{\mathbf{\Sigma}^{0}} \right\|_{F}^{2} \leq 2^{-1} \lambda_{\min}^{-2}(\mathbf{\Sigma}^{0}) \left\| R_{2}(\widehat{\boldsymbol{\Delta}}_{\tilde{A}}) - R_{2}(\widehat{\boldsymbol{\Delta}}_{A^{0}}) \right\|_{F}^{2} + O_{p} \left(\frac{|B| \log |B|}{n} \right)$$

$$\leq 2\lambda_{\min}^{-2}(\mathbf{\Sigma}^{0}) \max \left(\left\| R_{2}(\widehat{\boldsymbol{\Delta}}_{\tilde{A}}) \right\|_{F}^{2}, \left\| R_{2}(\widehat{\boldsymbol{\Delta}}_{A^{0}}) \right\|_{F}^{2} \right) + O_{p} \left(\frac{|B| \log |B|}{n} \right)$$

$$\leq 8\kappa_{0}^{2} \max \left(\left\| \widehat{\boldsymbol{\Delta}}_{\tilde{A}} \right\|^{4}, \left\| \widehat{\boldsymbol{\Delta}}_{A^{0}} \right\|^{4} \right) + O_{p} \left(\frac{|B| \log |B|}{n} \right).$$

Let $\Delta = \max(\|\widehat{\Delta}_{\widetilde{A}}\|, \|\widehat{\Delta}_{A^0}\|)$. Then combining the above bound with (B.42), we obtain

$$\frac{1}{3} \left| \operatorname{tr} \left((\widehat{\Delta}_{\tilde{A}} \Sigma^{0})^{3} \right) - \operatorname{tr} \left((\widehat{\Delta}_{A^{0}} \Sigma^{0})^{3} \right) \right| \\
\leq 2 \left\| \sqrt{\Sigma^{0}} (\widehat{\Delta}_{\tilde{A}} - \widehat{\Delta}_{A^{0}}) \sqrt{\Sigma^{0}} \right\|_{F} \max \left(\|\widehat{\Delta}_{A^{0}}\|^{2}, \|\widehat{\Delta}_{\tilde{A}}\|^{2} \right) \\
\leq 4\Delta^{2} \max \left(3\kappa_{0} \Delta^{2}, O_{p} \left(\sqrt{\frac{|B| \log |B|}{n}} \right) \right).$$

This together with (B.39) and (B.41) implies that the remainder term $R(\widehat{\Delta}_{\tilde{A}}, \widehat{\Delta}_{A^0})$ defined in (B.32) is bounded by $n\Delta^2 \max\left(\kappa_0^2\Delta^2, O_p\left(\sqrt{\frac{|B|\log|B|}{n}}\right)\right)$ up to some positive constants. By Lemma 5, we have that $\Delta^2 = O_p\left(\frac{|\tilde{A}|\log p}{n}\right)$. This together with (B.39) and (B.41) yields that

$$R(\widehat{\boldsymbol{\Delta}}_{\tilde{A}}, \widehat{\boldsymbol{\Delta}}_{A^0}) = O_p\left(\max\left(\frac{\kappa_0^2|\tilde{A}|^2\log^2(p+1)}{n}, |\tilde{A}|\log(p+1)\sqrt{\frac{|B|\log|B|}{n}}\right)\right)$$
 Hence, if $|B|$ is fixed, $R(\widehat{\boldsymbol{\Delta}}_{\tilde{A}}, \widehat{\boldsymbol{\Delta}}_{A^0}) = o_p(1)$, provided that $\frac{\kappa_0^2|A|^2\log^2p}{n} \to 0$; and if $|\tilde{A}\backslash A^0| \to \infty$,

 $R(\widehat{\Delta}_{\tilde{A}}, \widehat{\Delta}_{A^0})/\sqrt{|B|} = o_p(1)$, provided that $\frac{\kappa_0^2 |\tilde{A}|^2 \log^2 p \log(|B|)}{n} \to 0$. This completes the proof.

C Proofs of Theorem 3 and 4

Proof of Theorem 3. Let $\Lambda_n(B)$ be the likelihood ratio test statistic defined in Theorem 1. A measure change from \mathbb{P}_{θ^n} to \mathbb{P}_{θ^0} yields that for any $u \geq 0$,

$$\mathbb{P}_{\boldsymbol{\theta}^n}(\Lambda_n(B) \ge u) = \mathbb{E}_{\boldsymbol{\theta}^n} \mathbb{I}(\Lambda_n(B) \ge u)$$

$$= \mathbb{E}_{\boldsymbol{\theta}^0} \left(\mathbb{I}(\Lambda_n(B) > u) \exp(\sqrt{n} \operatorname{vec}_B(\delta_n)^\top Z_n - \frac{n \operatorname{vec}_B(\delta_n)^\top I_{B,B} \operatorname{vec}_B(\delta_n)}{2} + R_n(\boldsymbol{\theta}^0, \delta_n)) \right),$$

where $\mathbb{P}_{\boldsymbol{\theta}^n}$ is the probability measure under H_a , $Z_n = n^{-1/2} \frac{\partial L_n(\boldsymbol{\theta}^0)}{\partial \theta_B}$, \boldsymbol{I} is the Fisher information matrix, and $R_n(\boldsymbol{\theta}^0, \delta_n) = L_n(\boldsymbol{\theta}^n) - L_n(\boldsymbol{\theta}^0) - \sqrt{n} \operatorname{vec}_B(\delta_n)^\top Z_n + \frac{n \operatorname{vec}_B(\delta_n)^\top \boldsymbol{I}_{B,B} \operatorname{vec}_B(\delta_n)}{2}$. We will verify later that

$$R_n(\boldsymbol{\theta}^0, \delta_n)) \xrightarrow{\mathbb{P}_{\boldsymbol{\theta}^0}} 0$$
 (C.1)

in the Gaussian graphical model and linear regression model.

For the Gaussian graphical model, we first verify (C.1). Now let $\mathbf{h}_n = \sqrt{n} \operatorname{vec}_B(\delta_n)$ with $\|\mathbf{h}_n\|_2 = h$. Then $Z_n = n^{-1/2} \frac{\partial L_n(\Omega)}{\partial \Omega_B} = \sqrt{n} \operatorname{vec}_B((\mathbf{\Omega}^0)^{-1} - \mathbf{S}) = \sqrt{n} \operatorname{vec}_B(\mathbf{\Lambda})$. It follows from the Taylor expansion of $\log \det(\cdot)$ that

$$L_n(\boldsymbol{\theta}^n) - L_n(\boldsymbol{\theta}^0) = n \left(\log \det(\boldsymbol{\Omega}^n) - \operatorname{tr}(\boldsymbol{\Omega}^n \boldsymbol{S}) - \log \det(\boldsymbol{\Omega}^0) + \operatorname{tr}(\boldsymbol{\Omega}^0 \boldsymbol{S}) \right)$$

$$= \boldsymbol{h}_n^{\top} \sqrt{n} \operatorname{vec}_B((\boldsymbol{\Omega}^0)^{-1} - \boldsymbol{S}) - \sqrt{n} \boldsymbol{h}_n^{\top} \operatorname{vec}_B((\boldsymbol{\Omega}^0)^{-1}) + n (\log \det(\boldsymbol{\Omega}^n) - \log \det(\boldsymbol{\Omega}^0))$$

$$= \boldsymbol{h}_n^{\top} Z_n - \frac{1}{2} \boldsymbol{h}_n^{\top} \boldsymbol{I}_{B,B} \boldsymbol{h}_n + r(\boldsymbol{\Omega}^n),$$

where we have used (B.26) and

$$r(\mathbf{\Omega}^n) = n \sum_{i=3}^{\infty} (-1)^{i+1} \frac{\operatorname{tr}\left[\left(\sqrt{\Sigma^0}(\mathbf{\Omega}^n - \mathbf{\Omega}^0)\sqrt{\Sigma^0}\right)^i\right]}{i}$$
 (C.2)

By similar calculations as in (B.40), we have that

$$|r(\mathbf{\Omega}^n)| \le \begin{cases} \frac{n}{3} \sum_{i=3}^n (\mathbf{h}_n^{\top} \mathbf{I}_{B,B} \mathbf{h}_n)^{i/2} \left(\frac{|B|^{1/4}}{\sqrt{n}}\right)^i & \text{if } |B| \to \infty \\ \frac{n}{3} \sum_{i=3}^n (\mathbf{h}_n^{\top} \mathbf{I}_{B,B} \mathbf{h}_n)^{i/2} \left(\frac{1}{\sqrt{n}}\right)^i & \text{if } |B| \text{ is fixed.} \end{cases}$$
(C.3)

Hence, when |B| is fixed and n is large enough, we have that $|r(\mathbf{\Omega}^n)| \leq (\mathbf{h}_n^{\top} \mathbf{I}_{B,B} \mathbf{h}_n)^{3/2} n^{-1/2} \rightarrow 0$. When $|B| \rightarrow \infty$ but $|B|^{3/2}/n \rightarrow 0$, we have that $|r(\mathbf{\Omega}^n)| \leq (\mathbf{h}_n^{\top} \mathbf{I}_{B,B} \mathbf{h}_n)^{3/2} \frac{|B|^{3/4}}{n^{1/2}} \rightarrow 0$. Therefore,

$$R_n(\boldsymbol{\theta}^0, \delta_n) = L_n(\boldsymbol{\theta}^n) - L_n(\boldsymbol{\theta}^0) - \boldsymbol{h}_n^{\top} Z_n + \frac{1}{2} \boldsymbol{h}_n^{\top} \boldsymbol{I}_{B,B} \boldsymbol{h}_n = r(\boldsymbol{\Omega}^n) \to 0.$$
 (C.4)

By (B.35), we have that, with probability tending to 1 under P_{θ_0} ,

$$\Lambda_n(B) = \left\| \frac{1}{2} \boldsymbol{J}_{B,B}^{-1/2} \boldsymbol{J}_{B,\tilde{A}} \sqrt{n} \operatorname{vec}_{\tilde{A}}(\boldsymbol{\Lambda}) \right\|_2^2 + R(\widehat{\boldsymbol{\Delta}}_{\tilde{A}}, \widehat{\boldsymbol{\Delta}}_{A^0}).$$
 (C.5)

Note that $\operatorname{Var}(\operatorname{vec}_{\tilde{A}}(\Lambda)) = 4I$. Hence, by Lemmas 7 and 8,

$$\left(\frac{1}{2}\boldsymbol{J}_{B,B}^{-1/2}\boldsymbol{J}_{B,\tilde{A}}\sqrt{n}\operatorname{vec}_{\tilde{A}}(\boldsymbol{\Lambda}), \frac{1}{2}\sqrt{n}\operatorname{vec}_{B}(\boldsymbol{\Lambda})\right) \stackrel{d}{\to} (Z_{1}, Z_{2}) \sim N\left(\boldsymbol{0}, \begin{pmatrix} \boldsymbol{I}_{|B| \times |B|} & \boldsymbol{J}_{B,B}^{-1/2} \\ \boldsymbol{J}_{B,B}^{-1/2} & \boldsymbol{I}_{B,B} \end{pmatrix}\right),$$
(C.6)

where $\boldsymbol{J} = \boldsymbol{I}^{-1}$. Therefore,

$$Z_1 \sim N(0, I_{|B| \times |B|}) \text{ and } Z_2 \mid Z_1 = z_1 \sim N\left(\boldsymbol{J}_{B,B}^{-1/2} z_1, \boldsymbol{I}_{B,A^0} \boldsymbol{I}_{A^0,A^0}^{-1} \boldsymbol{I}_{A^0,B}\right)$$
 (C.7)

where the fact that $J_{B,B} = (I_{B,B} - I_{B,A^0}I_{A^0,A^0}^{-1}I_{A^0,B})^{-1}$ is used. Hence, for any $\theta_j; j \in B^c$,

$$P_{H_a}(\Lambda_n(B) \geq u) \rightarrow \mathbb{E}\left(\mathbb{I}(\|Z_1\|_2^2 \geq u) \exp(\boldsymbol{h}_n^{\top} Z_2 - \frac{1}{2} \boldsymbol{h}_n^{\top} \boldsymbol{I}_{B,B} \boldsymbol{h}_n)\right)$$

$$= \exp\left(-\frac{1}{2} \boldsymbol{h}_n^{\top} \boldsymbol{I}_{B,B} \boldsymbol{h}_n\right) \mathbb{E}_{Z_1} \left[\mathbb{I}(\|Z_1\|_2^2 \geq u) \mathbb{E}_{Z_2|Z_1} \left(\exp(\boldsymbol{h}_n^{\top} Z_2)\right)\right]$$

$$= \exp\left(-\frac{1}{2} \boldsymbol{h}_n^{\top} \boldsymbol{J}_{B,B}^{-1} \boldsymbol{h}_n\right) \mathbb{E}_{Z_1} \left[\mathbb{I}(\|Z_1\|_2^2 \geq u) \exp\left(Z_1^{\top} \boldsymbol{J}_{B,B}^{-1/2} \boldsymbol{h}_n\right)\right]$$

$$= \mathbb{E}_{Z_1} \mathbb{I}(\|Z_1 + \boldsymbol{J}_{B,B}^{-1/2} \boldsymbol{h}_n\|_2^2 \geq u) = \mathbb{P}\left(\|Z_1 + \boldsymbol{J}_{B,B}^{-1/2} \boldsymbol{h}_n\|_2^2 \geq u\right)$$

where we have used the fact that $\boldsymbol{J}_{B,B}^{-1} = \boldsymbol{I}_{B,B} - \boldsymbol{I}_{B,A^0} \boldsymbol{I}_{A^0,A^0}^{-1} \boldsymbol{I}_{A^0,B}$. Hence, we must have $\Lambda_n(B) \stackrel{d}{\to} \|Z_1 + bmJ_{B,B}^{-1/2}\boldsymbol{h}_n\|_2^2$ with $Z_1 \sim N(\boldsymbol{0}, I_{|B| \times |B|})$ when |B| is fixed. When $|B| \to \infty$, for any vector v with $\|v\|_2 = c|B|^{1/4}$ for some constant c, we have that

$$\frac{\|Z + v\|_2^2 - |B|}{\sqrt{2|B|}} = \frac{\|Z\|_2^2 - |B|}{\sqrt{2|B|}} + \frac{\|v\|_2}{\sqrt{2}|B|^{1/4}} \left(\frac{2v^\top Z}{\|v\|_2 |B|^{1/4}} + \frac{\|v\|_2}{|B|^{1/4}} \right) \stackrel{d}{\to} N\left(\frac{c^2}{\sqrt{2}}, 1\right) , \quad (C.8)$$

because the first term converges to N(0,1) by CLT, and the second term converges $c^2/\sqrt{2}$ to since $\frac{2v^{\top}Z}{\|v\|_2|B|^{1/4}} \to 0$ in probability.

Consequently, the *local limiting power functions* for the proposed CMLR test is

$$\pi_{LR}(h, \theta_{B^c}) = \begin{cases} \mathbb{P}\left(\|\boldsymbol{Z} + \boldsymbol{J}_{B,B}^{-1/2}\boldsymbol{h}_n\|_2^2 \ge \chi_{\alpha,|B|}^2\right) & \text{when } |B| \text{ is fixed,} \\ \mathbb{P}\left(Z + \frac{\boldsymbol{h}_n^{\mathsf{T}}\boldsymbol{J}_{B,B}^{-1}\boldsymbol{h}_n}{\sqrt{2|B|}} \ge z_{\alpha}\right) & \text{when } |B| \to \infty, \end{cases}$$

where $\alpha > 0$ is the level of significance, $\mathbf{Z} \sim N(\mathbf{0}, \mathbf{I}_{|B| \times |B|})$ is a multivariate normal random variable, and $\mathbf{J}_{B,B}$ is the asymptotic variance of $\text{vec}_B(\widehat{\Omega}^{(1)})$.

To make a comparison between the debiased lasso test proposed in [3], we consider the case when |B| = 1. Assume that $B = \{(i, j)\}$. In this case, the local limiting power functions

for the proposed method is

$$\pi_{LR}(h, \theta_{B^c}) = \mathbb{P}\left(\left(Z + \frac{|h|}{\sigma_{LR}}\right)^2 > \chi_{\alpha}^2\right) = \mathbb{P}\left(\left|Z + \frac{|h|}{\sigma}\right| > z_{\alpha/2}\right) \tag{C.9}$$

where σ_{LR}^2 is the asymptotic variance of $\hat{\omega}_{ij}^{(1)}$. In contrast, The local limiting power functions for the debiased lasso test proposed in [3] is

$$\pi_{debias}(h, \theta_{B^c}) = \mathbb{P}\left(\left|Z + \frac{|h|}{\sqrt{\omega_{ij}^2 + \omega_{ii}\omega_{jj}}}\right| > z_{\alpha/2}\right)$$
(C.10)

where $Z \sim N(0,1)$ is a standard normal random variable. By applying Corollary 1, we have that $\sigma_{LR}^2 < \omega_{ij}^2 + \omega_{ii}\omega_{jj}$, which implies that our $\pi_{LR}(h,\theta_{B^c}) \geq \pi_{debias}(h,\theta_{B^c})$. This completes the proof.

Proof of Theorem 4. The proof is similar to that of Theorem 3. Again, we first verify that (C.1) is satisfied for linear regression. Toward that end, let $\mathbf{h}_n = \sqrt{n} \operatorname{vec}_B(\delta_n)$ with $\|\mathbf{h}_n\|_2 = h$. Notice that $L_n(\theta) = L_n(\beta, \sigma) = n \log(1/\sqrt{2\pi}\sigma) - (2\sigma^2)^{-1} \|y - X\beta\|_2^2$.

$$Z_n = n^{-1/2} \frac{\partial L_n(\beta^0)}{\partial \beta_B^0} = n^{-1/2} \sigma^{-2} \operatorname{vec}_B \left(X^\top (y - X\beta^0) \right) = n^{-1/2} \sigma^{-2} \operatorname{vec}_B (X^\top \epsilon) , \quad (C.11)$$

where $\epsilon \sim N(0, \sigma^2 I_{n \times n})$. Moreover, we have that

$$L_{n}(\boldsymbol{\theta}^{n}) - L_{n}(\boldsymbol{\theta}^{0}) = (2\sigma^{2})^{-1} \left(\|y - X\beta^{0}\|_{2}^{2} - \|y - X(\beta^{0} + \delta_{n})\|_{2}^{2} \right)$$

$$= \sqrt{n} \operatorname{vec}_{B}(\delta_{n})^{\top} n^{-1/2} \sigma^{-2} \operatorname{vec}_{B}(X^{\top}(y - X\beta^{0})) - (2\sigma^{2})^{-1} \operatorname{vec}_{B}(\delta_{n})^{\top} (X^{\top}X)_{B,B} \operatorname{vec}_{B}(\delta_{n})$$

$$= \boldsymbol{h}_{n}^{\top} Z_{n} - \frac{1}{2} \boldsymbol{h}_{n}^{\top} \boldsymbol{I}_{B,B} \boldsymbol{h}_{n}$$

where $I = (n\sigma^2)^{-1}X^{\top}X$. Hence (C.1) is satisfied with the remaining term to be exactly 0. By similar arguments used in Theorem 2 and the fact that $\|\epsilon\|_2^2/n \xrightarrow{\mathbb{P}_{\beta^0}} 0$, we have that the likelihood ratio test statistic is

$$\Lambda_n(B) = \boldsymbol{\epsilon}^{\top} (\boldsymbol{P}_{A^0 \cup B} - \boldsymbol{P}_{A^0}) \boldsymbol{\epsilon} + R(\boldsymbol{\epsilon})$$
 (C.12)

where $R(\boldsymbol{\epsilon}) \xrightarrow{\mathbb{P}_{\beta^0}} 0$. Moreover, since the matrix $\boldsymbol{P}_{A^0 \cup B} - \boldsymbol{P}_{A^0}$ is idempotent and has rank |B|, there must exist $\boldsymbol{a}_1, \dots, \boldsymbol{a}_{|B|}$ such that $\boldsymbol{P}_{A^0 \cup B} - \boldsymbol{P}_{A^0} = \sum_{k=1}^{|B|} \boldsymbol{a}_k \boldsymbol{a}_k^{\top}$ and

$$\Lambda_n(B) = \sum_{k=1}^{|B|} (\boldsymbol{a}_k^{\top} \boldsymbol{\epsilon})^2 + R(\boldsymbol{\epsilon})$$
 (C.13)

Note that, under \mathbb{P}_{β^0} , we have that

$$((\boldsymbol{a}_{1}^{\top}\boldsymbol{\epsilon},\dots\boldsymbol{a}_{|B|}^{\top}\boldsymbol{\epsilon}),\operatorname{vec}_{B}(X^{\top}\boldsymbol{\epsilon})) = (Z_{1},Z_{2}) \sim N \begin{pmatrix} \boldsymbol{0}, \begin{pmatrix} I_{|B|\times|B|} & \boldsymbol{A}\boldsymbol{X}_{B} \\ \boldsymbol{X}_{B}^{\top}\boldsymbol{A}^{\top} & \boldsymbol{X}_{B}^{\top}\boldsymbol{X}_{B} \end{pmatrix} \end{pmatrix}$$
(C.14)

where $\boldsymbol{A} = (\boldsymbol{a}_1, \dots, \boldsymbol{a}_{|B|})^{\top} \in \mathbb{R}^{|B| \times n}$.

Therefore,

$$Z_1 \sim N(0, I_{|B| \times |B|}) \text{ and } Z_2 \mid Z_1 = z_1 \sim N\left(\boldsymbol{X}_B^{\top} \boldsymbol{A}^{\top} z_1, \boldsymbol{X}_B^{\top} (I_{n \times n} - \boldsymbol{A}^{\top} \boldsymbol{A}) \boldsymbol{X}_B\right)$$
 (C.15)

Hence, for any β_j ; $j \in B^c$ and any $u \ge 0$,

$$P_{H_{a}}(\Lambda_{n}(B) \geq u)$$

$$\rightarrow \mathbb{E}\left(\mathbb{I}(\|Z_{1}\|_{2}^{2} \geq u) \exp(\boldsymbol{h}_{n}^{\top}Z_{2} - \frac{1}{2}\boldsymbol{h}_{n}^{\top}\boldsymbol{X}_{B}^{\top}\boldsymbol{X}_{B}\boldsymbol{h}_{n}\right)$$

$$= \exp\left(-\frac{1}{2}\boldsymbol{h}_{n}^{\top}\boldsymbol{X}_{B}^{\top}\boldsymbol{X}_{B}\boldsymbol{h}_{n}\right) \mathbb{E}_{Z_{1}}\left[\mathbb{I}(\|Z_{1}\|_{2}^{2} \geq u)\mathbb{E}_{Z_{2}|Z_{1}}\left(\exp(\boldsymbol{h}_{n}^{\top}Z_{2})\right)\right]$$

$$= \exp\left(-\frac{1}{2}\boldsymbol{h}_{n}^{\top}\boldsymbol{X}_{B}^{\top}\boldsymbol{X}_{B}\boldsymbol{h}_{n}\right) \mathbb{E}_{Z_{1}}\left[\mathbb{I}(\|Z_{1}\|_{2}^{2} \geq u) \exp\left(Z_{1}^{\top}\boldsymbol{A}\boldsymbol{X}_{B}\boldsymbol{h}_{n} + \frac{1}{2}\boldsymbol{h}_{n}^{\top}\boldsymbol{X}_{B}^{\top}(I_{n\times n} - \boldsymbol{A}^{\top}\boldsymbol{A})\boldsymbol{X}_{B}\boldsymbol{h}_{n}\right)\right]$$

$$= \exp\left(-\frac{1}{2}\boldsymbol{h}_{n}^{\top}\boldsymbol{X}_{B}^{\top}\boldsymbol{A}^{\top}\boldsymbol{A}\boldsymbol{X}_{B}\boldsymbol{h}_{n}\right) \mathbb{E}_{Z_{1}}\left[\mathbb{I}(\|Z_{1}\|_{2}^{2} \geq u) \exp\left(Z_{1}^{\top}\boldsymbol{A}\boldsymbol{X}_{B}\boldsymbol{h}_{n}\right)\right]$$

$$= \mathbb{E}_{Z_{1}}\mathbb{I}(\|Z_{1} + \boldsymbol{A}\boldsymbol{X}_{B}\boldsymbol{h}_{n}\|_{2}^{2} \geq u) = \mathbb{P}\left(\|Z_{1} + \boldsymbol{A}\boldsymbol{X}_{B}\boldsymbol{h}_{n}\|_{2}^{2} \geq u\right)$$

Hence, we must have $\Lambda_n(B) \stackrel{d}{\to} \|Z + AX_B h_n\|_2^2$ with $Z \sim N(\mathbf{0}, I_{|B| \times |B|})$ when |B| is fixed. When $|B| \to \infty$, a similar argument used in Theorem 3 can be applied.

Consequently, the *local limiting power functions* for the proposed CMLR test is

$$\pi_{LR}(h, \beta_{B^c}) = \begin{cases} \mathbb{P}\left(\|Z + \mathbf{A}\mathbf{X}_B \mathbf{h}_n\|_2^2 \ge \chi_{\alpha, |B|}^2\right) & \text{if } |B| \text{ is fixed,} \\ \mathbb{P}\left(Z_1 + \frac{\|\mathbf{A}\mathbf{X}_B \mathbf{h}_n\|_2^2}{\sqrt{2|B|}} \ge z_{\alpha}\right) & \text{if } |B| \to \infty \end{cases}$$
(C.16)

where $\alpha > 0$ is the level of significance, $Z \sim N(\mathbf{0}, \mathbf{I}_{|B| \times |B|})$ is a multivariate normal random variable, and $Z_1 \sim N(0, 1)$ is a standard normal random variable.

Since AX_B has full rank |B|, it is easy to see that when $||h_n||_2 \to \infty$ and |B| is finite, then $\pi_{LR}(h, \beta_{B^c}) \to 1$; and when $||h_n||_2^2/\sqrt{|B|} \to \infty$ and $|B| \to \infty$, then $\pi_{LR}(h, \beta_{B^c}) \to 1$. This completes the proof.

References

- [1] P. Billingsley. Convergence of probability measures, volume 493. John Wiley & Sons, 2009.
- [2] L. D. Brown. Fundamentals of statistical exponential families with applications in statistical decision theory. *Lecture Notes-monograph series*, pages 1–279, 1986.
- [3] J. Janková and S. Van de Geer. Honest confidence regions and optimality in highdimensional precision matrix estimation. *TEST*, pages 1–20, 2016.