Appendix for “On high-dimensional constrained
maximum likelihood inference”

A Technical details of the counter example

Lemma 1 (A counter example) In (5) in the main text, we write y = By + B x, where x =
(21,...,2p) are independently distributed from N (p;, 1) with py =0 and p; =1; 2 < j <p,
and € is N(0,1 —n™"), independent of x. Assume that By = 0 and B = n='/2,0,...,0),
or, y = n~ 2z, + €. Then Assumption 3 is violated. Now consider a hypothesis test of
Hy : By = 0 versus Hy : By # 0. ]flo% — 0 as n,p — oo, then Ap(B) 2 0o asn,p — oo,

with B = {0}.
Proof of Lemma 1. Under the linear model, we have that
yi=Bo+B m+ei=1...n, (A1)

where 3 = ($1,0,---,0) and By = 0, &; = (i1, ..., Tip) ~ N(p, Lxp), and € ~ N(0,1 — 5?)

and is independent of «;. Then, the constrained MLE for (3, is

n

A1 . - Sy
ﬁé )= argmin z:(yZ — By — B x;)? =G — cor(wje, y) —Tjr (A.2)
P 1(Bi#0)<1 ] Sz
where z.; denotes a n-dimensional vector (14, ...,2,;), cor denotes the sample correlation

between two vectors, T and s, denote the sample mean and sample covariance of a vector z,



respectively, and

J* = argmax cor(z.;,y) (A.3)
1<j<p

denotes the index of which feature has the largest sample correlation between y. For each

observation (y;, @;), it is easy to write out its joint distribution

1 B 0 -+ 0

B 1 0 -+ 0

(yiaxilw"axip) ~ N (Blulyub'"nup)—r? 0 0 1 --- 0 . (A4)
0 0 0 1

Hence, the conditional distribution of x; given y; is

11— 0 0
. 0 1 .- 0

xilyi ~ N | (Bu(ys — Bupa) + g, pos - p) _ o . (A.5)
0 0 - 1

from which we can easily see that components of x; are conditionally independent given v;.

Note that

cor(x.j,y) = =120 T =, p (A.6)

and Var(y) = Var(x;;) = 1. Hence,

_ d
vneor(z.g,y)|ly = Z; + o,(1), (A.7)
where Z; = 2":(;?—{)(3;—33)’ j=1,...,p, and Z;’s are independent and normally distributed



conditioned on y. By (A.5), we have that

A NN(ﬂlsy,l—ﬂf) and Z; ~ N(0,1) for j =2,...,p. (A.8)

Consequently, conditioned on y,

A _— C _ - T.ix — Lhix o .
B8) = §—cor (., y)s—yf-j* = §— Bup + Brjun — cor (x4, y)SyJS—MJ — Cor(2.j+, y) SMJ
x‘j* a:_j* x4j*
Now, we let ;11 = 0 and pg = --- = p, = 1. Moreover, note that
_ 1 jj* — [hj* jf] — My logp
_ — i — < — | < . .
y— P =0, <\/ﬁ) and 5. = 1125%; 5e, <0 0 (A.9)
Hence, if 10% < O(1), then
B =~ )5, 22+ 0, (=) - (A.10)
J

Now we choose (; to be small number so that with nonzero probability {j* # 1}, that is,
we need P(Z; < miny<j<, Z;) to be nonzero, which is easy to achieve when f; is chosen to

be close to 0. Under the event {j* > 2}

A1 1 _ 5 1
By = —coi(w e, y)s ~t 0 <%> = —2§?§300T($-17y)i +0, (%)
logp 1
- (/" ) ()
because maxs< <, €or(z = 0, <\/ logp ) and s, — 1 in probability and s, , — 1 in

probability. Hence, n (50 ) — o0 if p = o0 as n — oo. Next, we show that under this

model, the log-likelihood ratio test statistic is of the same order as nt under the null model.



Toward this end, denote by f(80) = supygj,<1,0>0 n~'L,(Bo,3,0). By definition of B(()l),

it must maximizes f(fp) as a function of 5y and hence must satisfies f’ (Bél)) = 0. Moreover,

we note that the log-likelihood ratio can be rewritten in terms of f(+)

An(B) = 2n(f(B5") — f(0)) (A.11)

Applying a Taylor expansion around 381)7 we obtain

An(B) = —n(BM)2F"(67) (A.12)

where £* is some number between 0 and Bél). Under log p/n — 0, it is easy to show that B((]l)

is consistent, hence converges to 0 in probability. Hence, A, (B) = —n(8")2(f7(0)+0,(1)) =

00, which completes the proof.

B Proofs of Lemmas 2-9

This section provides detailed proofs of Lemmas 2-9 to be used in “On high-dimensional

constrained maximum likelihood inference”.

Lemma 2 For any symmetric matrices Cy and C,, vec(Cy) " vec(Cy) = tr(C,Cy). More-

over, for any positive definite matriz C > 0,

V (logdet C) = —vec(C™Y), V?(—logdetQ’)=C1®,C™!, (B.1)
I=:3"@,%° (B.2)

Var (vec(X X ")) =4I with X ~ N(0,%9), (B.3)
vee(C) I vec(C) = 5 tr (2°CX°C) . (B.4)



Proof of Lemma 2: By the definition, (B.1) follows from an identity:
vec(Cy) " vec(Co) = > (L+1(i # 5))S1(i, ) Sa(i,j) = Y _ Si(i,§)Sa(i, j) = tr(81.S5) .
i<j 4,3

Moreover, it follows from Taylor’s expansion of the logdet function that

l05 det(C + A) ~ log det(C) = tx(C'A) — L1 ((CAY) + of|C™2AC 2
1
= vec(C™H " vec(A) — 5 vec(A) vec(CTTAC™) + O(||C_1/2AC_1/2||%)

1
= vec(C™HT vec(A) — 3 vec(A)T (C7' @, C7) vee(A) + o(|[CTH2ACT2)3),

where the definition of ®¢ and (B.1) have been used. This yields (B.2).
For (B.3), the log-likelihood for X ~ N (0, %) is —3 vec(Q°) " vec(X X T)+4 log det(Q2°).
Using properties of the exponential family [2], Var (3 vec(X X ")) = V? (=1 logdet Q°) =1,

implying (B.3). Finally, for any symmetric matrix C, note that

1

vec(C) "I vec(C) = 5 vec(C)' (2° @, £°) vec(C)
1 1
= §vec(C’)T vec(X'CXY) = étr(CZOCEO),

leading to (B.4). This completes the proof.

Lemma 3 For any symmetric matriz T and v > 0

P(|tr (S — ZOT)| > v) < 2exp (—ngprpor ) (B.5)

v
n
I T*+8v[IT||

where | T||* = % Var (tr (S — X°)T)). Furthermore, for Ty, - -- , Tk such that |Ty|| < co; k =



1, K with ¢co > 0 and any v > 0, we have that

2
-0 > < I
P (1%%}% tr((S — =OT)| > V) < 2exp ( nQC% = + log K) : (B.6)
which implies that max;<p<x |tr((S — X)T})| = O, (cm / %) . Particularly, for anyv > 0

and any index set B,

V2

(32°9) + 8V 4 (20)

"oz

max

P (|| vecs(S — X ||o > ) < 2exp (— + log |B|) : (B.7)

implying that || vecg(S — )|l = O, ()\max(zo) logBI)'

n

Proof of Lemma 3: By Markov’s inequality, for any v > 0,

oo () ey (2 (5 5m)

< exp <logEeXp (#tr ((S - EO)T)) - véﬁy) )

P(tr ((S-%0T) >v)

IN

(.

v~

I

. Moy/n o
where 7 is chosen such that v € [0, VTS, @HF} for some constant 0 < M, < 1, which is to

be determined later. Moreover, after some calculations, we have that

Eexp (@ w((S-39T)) = (Eexp (%ﬁ tr (XXT - ZO)T)> )
— exp <—¥ tr(EOT)> det <I - %EOT) _n/2(,B.8)

where X ~ N(0,X°) and the last equality requires that v/nQ° = T, which is ensured by

Mov/n AL
the fact that v < TSI, < VSTV Consequently,

—n/2
log E exp (”gﬁ tr ((S — EO)T)> — log det (I - %2%) - ’Vf tr(S°T).  (B.9)
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An expansion of the logdet function gives

fy

log det(I — —=X01")""/2
n

- %ﬁ tr(20T) + -t (B°T)) + 5 D1 e (o)), (B.10)

l
For I, note that I < 2 32,11 (%) < | TIP s . Similarly, 1, < M2 T2 -
Vv 3—Mo

5> Where M; = M) Minimizing this upper bound of I; as a function of v over the

interval [0, %ﬂ , we obtain that

2

L < _inl_]\;"(l)l (l/ - MHTD otherwise.
A combination of these two cases yields that I; < nMou? Set My = 47", and

 AMo(Mi 1) T+2v|[T]

then M; = 11/9, we obtain the desired results

2

P(tr ((S — ZO)T) > 1/) < exp ( - n9||T||2 :_ 8VHTH> ,

for any v > 0. The other direction follows exactly the same argument, and thus is omitted.
Finally, (B.7) follows by letting {T},--- ,T}} = {(e]e; + ejTei)/Q}(ij)eB then applying
an inequality ||[VX%(e/ e; + e €;)VE0/2||% < Anax(E°) and a union bound. This completes

the proof.

Lemma 4 (The Kullback-Leibler divergence and Fisher-norm) For a positive definite matriz



Q the following connection holds:

1 K(Q0 Q
K@,9) > min| L VEED) 0 o0 (B.11)
16v/2 26
1 Q-—Qo
KQ°,Q) > min( i ”) 12— Q. (B.12)
16v2 24

Proof of Lemma 4: Let A = Q — Q" and Aj,--- , A\, be the eigenvalues of v0AV30.
Then A\; > —1; j =1,--- ,p, because Iy, + VECAVIEL = /30030 is positive definite.

Moreover, let By = 7 | MI()\; < 1/3), By MNI(N\; > 1/3), and By = Y7 NI(A; >

i=1""
1/3). Easily, |2 — Q% = v/B; + Bs. Using the inequality = — log(1 + z) > 6 '2?I(z <
1/3) + 87 'zl(z > 1/3) for x > —1, we have that

K(Q°.Q) = (VEIAVED) — logdet(Ipo—i-@A@))

5 (i
_ %2 ;1og(1+/\)

p
1270 CNI(A < 1/3) + 1671 ) CAI(N; > 1/3) = 127" By + 167" B .

i=1 i=1

v

Next we examine two cases. First, if B; < B,, then féf_’;ﬁ? > 1271\%::]2;133 > 16\/372 Z 16{/5
because B2 > Bs. If B; > By, then

K(Q° Q) N 127'B; + 167 B, < B, < B, + B, > VB + Bs HQ QOH
|2 — Q0| — VB + By ~ 12/By+ By — 24/B; + B, 24 24
Similarly,

K(Q° Q) \/12 'Bi+167'By \/24 (Bi+ Bs)  K(Q°,Q)
— > /K(Q°,Q > K = ’ .
192 — Q9 — VB + By - (& VBi + By 21/6

This leads to (B.12) and (B.11).



Lemma 5 (Rate of convergence of constrained MLE) Let A D A° be an index set. For ﬁjp
we have that

192, — Q° < 12|17 tll? vec(20 — )]s . (B.13)

on the event that {HI~1~/2 vec; (2% = S)|2 < g5} Moreover, if ‘A“# — 0, then

~ Allo
9 -2 =0, (/152 (B.14)

Proof of Lemma 5: By definition of the CMLE, Ln((AZA) — L,(02°) >0, or —log det SAIA +

~

logdet Q° < —tr((2; — QY)S). By the Cauchy-Schwarz inequality, this inequality becomes

~

2K(Q°,9;) < (R - Q)(E° - 8) < [VEAQ; — Q)WE 5[ T;7* vec (=0 = S)|»
= Q45— Q1T 1 vee; (30 = S)|l2 (B.15)
On the other hand, by (B.12) ”529—20”) > min <ﬁ§ Hﬁf‘;lﬂo“) which, together with (B.15),
implies that min (ﬁi’ ”QAI_QQ ”> <||I; ~1~/2 vec ;(2°—9)||z. If ”Q ﬂ I < Wi’ then it follows
immediately that ||€; — Q°|| < 12|;1~1~/2vecA( S)|l. fw > L=, then ;Lo <

115 ~1~/2 vec(X? — S|, which does not happen on the event {||I~1~/2 vec 1 (X0 = 9)|2 < Wi}'

Moreover, by property of exponential family [2], Var(vec;(3° — S)) = 4n~'I; ;. Thus,

Var(I~ Pyec; (20— 8)) = 4n='1, 5, z- This, combined with Lemma 3, implies that

- Allo
I veeq (80— S)ll <\ JANTLf vees(8 — 8)llo = 0, [ | A022) (B

on the event that {||I~1~/2 vec;(X° — 9)]2 < ﬁi} This event, on the other hand, happens

with probability tending to 1 by the assumption that l‘i“# — 0. This completes the proof.



Lemma 6 (Selection consistency) If K = |A°], 7 < "”"m‘“l(z'mg'l“" Ciin) , then

max (P (ﬁ(o) # ﬁAo> P (ﬁ(l) + ﬁA°uB)>

nCi -n
< 2 21 2560 <512 T 141!
exp ( w0 T ogp) + exp (2560 e T4 ng)
2
. mln( mm/512 73/32) 0
min <\/ 5 0 7)\maz(2 ))
+2 eXp n 48Amaz(‘A |+|B|) _.I_ 210gp — 0 (Bl?)

18X2(320)

max

as n — oo under Assumptions 1-2, where Q©, QW and Coi are as defined in (1)~(3).

Proof of Lemma 6: Let A = {(i, ) : ]w )| > 7,(i,j) ¢ B}. By definition, |A] < |A°),
ANB =0and Y, 0405 105 < (1A% — |A]). Hence, if A = A°, then QO = Q5.
Suppose A # A% On event {A = A}; with fixed A # A° |A] < |4°), and AN B = 0,
we bound the Fisher-norm between AUB and an approximating point of Q° QY , =
argming.q, , , .—o K (2%, ). Let %5 = (Q% 5) . By the Karush-Kuhn-Tucker condi-
tions, vecaup(X9,5) = vecaun(X°). Moreover, let Apax = MAX A:| A|< K, ANB=0 Amax (2% 5)

and Ay, = min 4 A< K, AnB=0 Amin (29 5). We also define

g= S — 3% < min — » Amax (2° ,
15> T \/48Aﬁmw g )
where
~ K(£°,Q0 K290, Q0
= min min max (K (2°, Q) p), K2(Q°, Q245)) 1) (B.18)
A:A£AC, | A|=|A0|, ANB=0 | A0\ Al

By definition of the CMLE, L,(QM) — L, (€% 5) > 0, or — log det QM +log det 9, <
—tr((Q® — Q% 5)8). Now let A = Q) . — Q0 , and & = QU — Q) . where ||®]|;, =

(i) AuB |A(1 | < (JA°| — | A|)7. By the Cauchy-Schwarz inequality, the forgoing inequality

10



becomes

—logdet(Ipxy + /Z%0p(A + ®)1 /2% 5) + tr(y/Z9 5 (A + @)1 /29 p)

< (A4 D) - 8)) = veea(B) veeu (S — S) + (@5 — S))
= (Lip.au0m vecaun(A) Il aup vecaus (B — S) + tr(@(S% 5 — 5))
< | VR BYER|| [T s vocnin(Zhs - 8)], + l14° - LADIES s - S
< |VEBYELS| A s VAT BTN - 51
(2 () + A (S ) K
< AmaV/[ATU B H\/EAUBA\/EAUB IS0 — S|lee + AL 7K (B.19)

on the event G, where I p aup = [EQUBAUB ®s 2%UB’AUB] On the other hand, by

AUB,AUB"
Lemma 4,

—logdet(Ipxp + 4 Soup(A+ ®)\/X0up) + tr(y/ Z00s( (A +®) )\ Zhus)
> Hv AUB A+(I) VEDAUBHF H\/E,OAAUB A+(I' \/E%UBHF
> H\/EAUBA\/Z UBHF ||\/ZAUBA\/2?4UBHF

(A = 1AD A (Bp)T (14°] — JAD N ()T

8v/2 ’ 12

>

IVELAVE L slr IVEYsAVEY 53 D (Bh0p) KT
8v/2 ’ 24 8

where the last two inequalities use that | My +M, |3 > 27| My ||| Ma| %, V29,52V E0 sl <

M (B20p) |21 < M (Bhup) 12117 < A (Bhup) (14°] = |A])?7?, and min(a — b, c —d) =

max max max

11



min(a, ¢) — max(b, d). Combining this with (B.19), we obtain

||ZO S||OO+4)\m1n K

Anaxt/TAT U B HV STRNYA

> min H\/EAUBA\/Z UBHF ”\/EAUBA\/E%UBH%’
- 8\/§ b 24 )

which implies that

Vs
F

on the event {A = A} NG. Next, note that

< Udnax v/ [AYU BJ[|S — X% + 41/ 605, 7K,

% (Ln QW) - QO)) 2 (L(Q2°) — L(Q),5))
= 2 (@) = (@) + 1 (9 — Dp)(S — )
= 2(LEO®) ~ L@u5)) + (S — £0p) (@0 — 2%0)) +r (9 ) (S — 2)

< (S = Z9,p)(QY — QY ) + tr((S — () — Qp))

+1tr ((Q° — Q%,5)(S — =) (B.20)

Amin mln( len Cmm 0 Chin
For the first two terms, using 7 < > T[] and || — X% </ g MrEy e

max

have that on the event G

(S — 2R, — Q%)) + (S — =% (QV - Q4 1)
VEA /S0

< 24min< 2 axlA%U B[S — =12,

AUB,AUB V€CAUB

maxﬁ/mo UB[||S — 20\|m>

< s (5 —5)|, + 7K Sl

16v/2

AL rK
+£ + 3)\ K

4 mll’l

< 2UK(Q0,Q0,,) + 27 K (0,95 5)) = LIQ7) - L(QY,,).

12



which, together with (B.20), implies that for any A # A% |A| < K, AN B = (), we have that

{2a(@0) = L,(0%) 2 0: A = 4,6} € {1 ((9° - D5,5)(S — =) > L(9°) — L(Q)}

Hence,
P <§(1> ] §A0U3> < 3 P (Ln(ﬁ(l)) — Lo(Q°) > 0; A = 4; g) +P(G°)
A:A£A0 | A|<K,ANB=0
<Y PR - hp)(S— 20) 2 L(Q) - L) + B,

A:A£A0 | A|<K,ANB=0

where the first probability can be further bounded by applying Lemmas 3 and 4.

S P (90— Q) (S - 2) > LQ°) - L(Qp))
A:A#£A0 |A|<K, ANB=0
_ -12(0Q0 OO
e e
AALAO (A< K ANB=0 1005 — QO + K(Q2°, Q0 p) 1255 —
—nmin (12871, K(92°,Q% 5))
= > exp ( 20
A:A£A0 |A|<K, ANB=0
—nK(QO’ Q%UB)
<
= 2 ) P < 2560
A:A#AO | A|<K,ANB=0,K (20,09 ,)<1
—Nn
+ 2 ] P (2560)
A:A#£AY | AI<K,ANB=0,K (20,09 5)>1
|A| |A%]—j
<

| A% /p — |A? —1jCrin -n 0
S — - min A%
o ( j i )P\ Taseo ) TP\ gagg T4 T Hes?

|4 ~
—nJ Clnin . -n 0
—Smin 9] — 4 A%
< s5c0 T2 ogp) + exp (2560 + A7 ng)

I

I\
(@}
Z

2560 2560

VAN
)
o
s
o]
N

- C"Ymin -
n +2logp> + exp (—n+|AO|10gp) —0

as n — oo, provided that Wl% < 30007 and Cipin > 300022,

13



To bound P(G°), we apply Lemma 3 with v = min ( 1 Crnin )\maX(EO)>

16v/2Amax/|A0 [+ B| 7V 48X fax|AOUB] 7
and get
0 v?
PG < P (||S — ¥ > I/) < 2exp (—n9>\2 ) () + 210gp)
1/2
< 20w (ngg gy +21oep) — 0

2

provided that Cryp > 2000 mas - (AUEBDIER g Anas - (AUHIBDI0ER < 18000, Combining,

A?xlin(no) n )\min(ﬂo)

we obtain

b (ﬁu) 4 ﬁAOUB> < oxp (—nC'min n 210gp> + exp (—_n + | A 10gp)

2560 2560
(o 2) 2
. min( Cpin ,3/32
- ( 4832, (AOT+1B) ’Amax<20)>
+exp | —n 1802 (50) + 2logp

For PP (ﬁ(o) £ Ao), we let B = () and a similar bound can be established. Moreover, by
Lemma 4, it is easy to see that max(K(£2°,Q), K?(Q° Q)) > HQ05+29”2 for any Q. Conse-

quently, Crnin > % Thus, the bound in (B.17) is established. This completes the proof.

Lemma 7 Let Ty = (Y1, Vem) € R, k= 1,---  n be iid random vectors with Var(vy,) =
L, wm. If m is fived, then

n

_ d
n Y Sl =5 X3, asn = oo (B.21)
k=1

Otherwise, if max (m, mom/n, ms/n, m3m3/2/n2) — 0, where m; = maxj<j<m Evij;j =23,

then
1> s Yl — nm

nv 2m

LN N(0,1), asn — oo. (B.22)

14



Proof of Lemma 7: If m is fixed, then (B.21) follows from the central limit theorem and
the continuous mapping theorem.
For (B.22), let T'y, = Zle v;; k =1,---,n be apartial sum of k iid m-dimensional vectors

~,’s. Next we apply Theorem 18.1 of [1] to show that ”i’:”ﬂ — N(0,1) for triangular

V2m
arrays of martingale differences {7, = HF;@H%—JI\I/“%H\%—m = ”Wll%_:j%’jrk‘l}. Towards this
end, we verify that
P
ZE(ni,k PERE 77k—1) — 1, ZElnn,ﬂ?’ — 0. (B.23)
k=1 k=1

For the first condition of (B.23), we compute E and Var of E(ngk |1, ,'yk_l). Note that
Y1, ,Ym are iid vectors with Var(v,,) = Inxm, EL,_1 = 0, and E||Ty_4]]32 = (k — 1)m.

Then, for each k =1,--- ,n, EE(nik |y, ,'7k_1) becomes

_ 2 T
(2mn?) " (E(yll3 = m)° + 4B (w3 = m)7) "ETx o + 4BE (3] Tyo1) 171, 961))

— (2mn) "} (Var(||yl) + 4Bk [3) = (2mn2) " (Var(lyl3) + 4(k = 1)m),

which, after summing over k = 1,--- ,n, leads to

n

ZMSE<iE(U5,k|%,'“,’Yk—1)>Smm2+ M;

n? 2n n?
k=1 k=1 k=1

E(ZZ:HE(WZ,H%’”' 7’)’14:—1)) — 1‘ <

24 mn Let a = E((|n]|3 — m)y1). Similarly, using an inequality (a; + as + a3)* <

where Var(||vx|l2) < m?*mg; k= 1,--- ,n. Consequently,

15



3(a? + a3 + a%) for real numbers a;; 7 =1,---,3.

n 4 n
Var (Z]E(nrzz,k |717 e 77k—1)) = m Var < (a,T]:‘k_1 + ||I‘k—1||§>>

k=1 k=1

- o Var (Zm =) (a e Iml) +2 3" 0 — (V) W)

m2n4
k=1 <k’

Var (Z(n - k)aT'yk> + Var (Z(n - k)||fyk||§>

12

m2n4

k=1 k=1

+ Var (Z(n —(kV k’))v,jw)

12
k<k’

For Ty, note that a3 < S, EX (Il — m)vie) < Xy E((ll3 — m)?) Es2, < méme.
Then

n

Var (Z(n - k)aT'yk> = Z(n — k)’E (a,T'yk)2 = Z(n —k)? Z a?IEfy,gj
= ’%H (n—1Dn2n —1) < n*m*msy .

NN

For Ty, note that Var (37, (n — k)||7[3) < >op_i(n—k)*m*ms = ¢(n — 1)n(2n — 1)m?m.
To bound Tj, note that, for k # & and j # j', E(v v/ v5) =1({j,j'} = {k, K })E ('y,;r'yk/)Q =

I({7,7'} = {k,k'})m, yielding that

Var (Z(n —(kV k/))’j’]j"}’k/> = Z(n — (kVEK))’E ('y,}ykr)2 <n'm.

k<E k<E’

Combining (B.24) with the bounds of T} — T3, we obtain

n

12 (n3m3ma + n®m2msy + ntm)
Var <ZE<U721,I<:|717 77]6—1)) < m2nA .
k=1

Hence the first condition of (B.23) is implied by the assumption that mmsy/n — 0 and

16



m — 00.
For the second condition of (B.23), note that E|n,.|* = E (‘ lvell3 —m + 27,;FF;€,1‘3) is
bounded by

4E (\H%H% - m|3> + 16E (|7,jrk_1|3) <E (lnllf) + /E(( Tir)?)

< mims + \/(k —1)3m3ms + (k — 1)2m3mams + (k — 1)m3m3

< mims + k3/2m3/2m§/2 + km3/2m$/2m§/2 + EY2m3ms.

. St EUIvel3—m2y Tra?)
Summing over k, == ( S ) is upper bounded by

<nm3m3 + n5/2m3/2m§/2 + n2m3/2m§/2m?1)/2 + n3/2m3/2m3>

n3m3/2
1/2 1/21/2
m>®?ms N my/ N my*ms/ PRI
- n2 nl/2 n n3/2 )

provided that max (mom/n, ms/n, mgm®?/n*) — 0. Thus the second condition in (B.23) is
met. As a consequence of Theorem 18.1 of [1], the desired asymptotic normality is estab-

lished. This completes the proof.

Lemma 8 Let X ~ N(0,X°) and vy = tr(X X" —X°)T) with T a symmetric matriz. Then
E(v*™) < (2m —1)12"" (E(y*)™ for any integer m > 1. (B.25)

Proof of Lemma 8: As in (B.8) and (B.10), we expand the moment generating func-
tion of v: M,(\) = Eexp (V) = N2[|VEITVIO|Z + (1/2) 320, 17 N tr [(2T%°)'] for any
Al < |[VEOTV/X0||p/2. Direct computation of high-order derivatives of M, ()\) in A yields
that E(y*™) = (2m — 1)122" L ¢r <(T20)2m> for any integer m > 1. An application of
tr ((T20)2m> < |[VEITVE2" yields that E(y2™) < (2m — 1)1 22m=1||y/S0T/S0|| 2 =
(2m — 1)!12m~1 (E(4?))™. This completes the proof.
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Proof of Lemma 9: Let 3;1 = ﬁA — QO for any A D A°. Applying Lemma 5 to 34 and
A 40, we have that both HAAH and ||A 40| tend to zero in probability as n goes to infinity.
Hence, we could assume throughout the proof that max <||3 ills A 40 ||> < 1/2 holds with
probability tending to one. Note that ° = (297, and logdet(Q;) = logdet(I,y, +
3420) + log det(£2°). Then

log det(I,x, + 31420)

= logdet(Zyx, + [Z°] /2 A4[E]'%) = tr(log(Lx, + [Z°) /2 A4[E"]/%)

= tr (fj(—l)i+1 ([EO]I/QA.A[EO]W)l) :

- 2
=1

= tr <3AEO) - %tr (AAEOAAEO) + Rl(ﬁg) , (B26)

A (cyi

where Ry(A ;) = > 2, ——tr ((3A20>i> and the expansion is valid since ||£A|| <1/2<

1. As a result,
! (La(@2) — La(2"))
1 ~ 0 1 S~ 0R w0 1~ 1 ~
= §t1" (AAZ ) — Z_Ltr (AAE AAE ) — §tr(AAS) —|— ERl(AA)
1 1

= S (Bi0 - 8) — AP+ 5Ri(A) (B.27)

A
Moreover, using the property of the CMLE, A ; satisfies a score equation: [—(3 A+ Q9+
S] i = 0. This, in turn, yields that
[EOAAEO]A — [Ra(B ) + 30 - SL, (B.28)
where (AA—i—QO)_l = EO_EOAAEO—i_RQ(&A) is used, and RQ(AA) =30 ZiQ(—l)i(AAEO)i.

By the definition of ® and (B.2), (B.28) can be rewritten in a vector form as

215 4 VGCA(AA) = vec (RQ(AA) + 30— S> . (B.29)
Moreover, after taking the inner product with A 4 for both sides of (B.28), we obtain
tr (342031520) = tr <AAR2(AA)> + tr (34(1‘)) s (B30)

where A = X — S. Hence, combining (B.29) and (B.30) with (B.27) yields that
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o~ (LN(QA) L (Q°)> = St (B A) = 5t (BsRx(A ) + Ru(By)

1 A \T ~
=3 (VGCA(A)) vec (A Ry(A )) + Ri(A ;)

1 N T -1 -~ -~
= Vvecs <A+R2(AA)) I; ;5 veey (A—Rg(A;Q) + Ri(Aj)

1 1 ~ ~ ~
= Z VeCA(A)TIEjA VGCA(A) — L_l vec 4 (RQ(AA))TIE}A VecC 4 (RQ(A )) + R1<AA)

Similarly,

on! (Ln@Ao) - Ln(QO))

1 1 ~ -~ ~
= Z_l Vec 40 (A>TI201,A0 Vec 4o (A) — Z_l Vvec 4o (RQ(AAO))IEO{AO Vec 4o (RQ(AAO)) + Rl(AAO).
Combining, we obtain that
. ~ n
2 (Ln(ﬂj) - Ln(QAo)) = Tvecy (A) Tl vees (A)

—gvecAo (A) I 40,40 VEC A0 (A) + R(A;, Ay) (B.31)

~ ~ —~ n ~
R(A 4, Ax) = nRi(A;) — 7 veea (RQ(AA))T ;;VGCA (RQ(AA))

~ n ~ ~
_TLR1<AA0) + Z VEC 4o (RQ(AAO))TIIZO{AO vec 4o (RQ(AAO)) (B32)
is the remainder to be bounded subsequently. For now, we focus on the leading term in the

likelihood ratio expansion. Let A = \/nvec; (£° — S). Now write I;A as

JO 0 JO
L= | T (B.33)

Jpao Jpp
Note that Lo a0 = [J a0 a0 = (Jao_40 — Jao pJ 55T a0) . Thus,

Svees (&) I3 vee (A) = 5 veew (A) I3 4o veen (A)
1

= ZA}I;&AA A Iy oA
1

= ALIA; - 4)\A0 (0,20 = Tao 5T515T5.40 ) Ao

1
= —(JBAO)\AO + ']A\AO,B\Ao)‘B) JA\le B(JA\AO,A‘))‘AO -+ JB\AO,BAB)
2

1__

4 A
This, together with (B.31)7 1mphes that

~ ~ 1 -
2 <Ln(ﬂ,4) — Ln(QAo)) = HEJB,IJB/2JB,A nVGCA(A)

2
2 ~ ~
+R(A;, A), (B.35)

2
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Recall from (B.47) that Var( JBlB/QJBA nvecA(A)> = Ip|x|p|, thus by Lemma 7 and
Lemma 8, if |B| is a fixed constant, 2<Ln(ﬁg) — Ln(ﬁAo)> ELN W, i\ 40, provided that
RB 4. Bow) = 0,(1): i |4\ A - o0, (2JAN A 2(2( L, (605) — Lo (@) — | A1 A7) T
N(0,1) provided that R(& i A 10)/+/IB] = 0,(1). Next it remains to prove that the remain-
der term R(& s A 40) satisfies the aforementioned conditions. Toward this end, we bound
Ri(A 3)—Ri(Ay0) and vee (Ro(A 7)) I vees (Ra(A 5)) —vecan (Ra(B o)) T30 40 vecn (Ra(A o))
respectively.

For vec; (Ro(A;)) I vec; (Ro(A)), recursively applying [|CiCsllr < [|Cal|r[|Call
and using the fact that HC’lCQHF < Anax(C2)[|Ch || and [|C1Ca]|p < Amax(C1)||Ca||F, we

obtain
vecs (zo (&;EOY) < Hx/zo (VEOA,;VED) Vs
2 F
< Nl 2) [VEA V| = M (S0 1A ] (B36)

Summing over ¢ yields that

Jvees (R )], = 2

vec (EO <3A20>i)

2

=2
< Amax(E7) ZHAAH < 2max(Z)[| A 4. (B.37)
=2
Consequently,
- - 2
vecp (RQ(A ))IBBveCA (RQ(A )) < ||IBlBH . |[vecs (RQ(AA"))Hz
2 "
< NL(E) ||vees (BB ) || < 4ndlIA 4" (B.38)
Similarly, vec 4o (RQ(A 0)) L 3o 4o vecao (Ra (3A0)) < 42| A 4o||*. Hence,
1 - _ 1 ) _
7 Veea (RQ(AA))IAZ vec (RQ(AA)) 7 veea (RQ(AAO))IAQI’AO Vec 40 (RQ(AAO))
< ml A+ R A ! (B.39)

For RI(AA) - Rl(BAo), by Cauchy-Schwartz inequality, we have that tr((&AEO)i) <

|VEIA VS 0||FH (VEPR VD) < A0 =2 Hence
> (&) < YA s %sln&sn‘*. (B.40)
o 41— A ~ 2
Similarly, ‘ZZ 4¢ tr((Ax°)" | < 2HAA0||4. Combining, we have that
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R R r (A2)") =t (Ba=))| AL+ A

Let fi(vec;(A)) = tr <(AZO)3> with vecse(A) = 0. A Taylor expansion of f;(vec ;(A))

at vec0(A)) yields that

Zltr <(3A20)3> —tr ((3A020)3)‘ = % (VeCA(ﬁA) — VecA(3A0)>TVf(VecA(3*))

- (Vec (A — AAO))T vec g (20(3*20)2) = tr (20(& - AAO)@OA*)?)
"(B; - BV max(H\/_AAo\/_HF,H\/_A VEI|3) (BA2)

where A* is some convex combination of A ; i and A 4o and the last equality uses (B.36).

< v

Lastly, we bound H\/ A~ - AAo W H = HIl/2 veCA(AA—AAo) By (B.29), we

2
have that

~

I;/i veCA(BA - 3,4 ) = I;/j (VeCA(QA — Q% — VeCA(ﬁAo _ QO))

—1 N
| ~ 1 19 IAO’AOVeCAO(A—FRQ(AAO))
— grfm/ VecA(A—i—Rg(Ag))—éIA{A .

B . vec0(A + Ra(A )
- 2IA1/<2 vec (A + Ra(Az)) — ! o
IB’AOI 0 A0 VeCAO(A+R2(AA0))

o %IAZQ VeCAO(RQ(A ) RQ(AAO>) | <B43)

VeCB(A + RQ(AA)) — IB,AOI 0,40 VEC A0 (A + RQ(AAO))

where A = 30— S. Let J = I;A. An application of an inequality ]|I~1~/2w\|§ =z Jzx <

23:10 J 40 40 g0 + 2:1:2.1373:103 yields that

vec 0 (Ra(A ;) — Ro(A o))

2

VeCB(A—FRQ(BA)) —IB’AOI 0,40 VeCAo(A+R2(AAo)) -

~

2
s 2 HJE@ (VeCB\AO(A + Ro(A ) = Ip a0 Ly yo vecao(A + Ro(Ay ))> Hz

+2 H A0 AO VeCAO(R2(3A) - R2<3A0)>H2 : (B.44)

Moreover, Jg’lBJBAo + IB,AoIAO a0 = = 0. Using this, we have that
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2

|15, (veen(A) = T a0 I3t 4o veen(A))

2
_ ~1/2 || g-1/2 2
= JB,B (JB,BVGCB(A) +JB,A0 VeCAO(A)) ) = JB,B JB,AVQCA(A) ) . (B45)
This, together with (B.43) and (B.44), implies that
~ ~ 2
H\/EU(AA - AAO)\/EOH
F

L1y ~ PN TEAR TR 2
< 5HJAvoVeCAO(Rz(AA)—Rz(AAO))Hz—i-§HJRB JB7BvecB(A)H2. (B.46)

By (B.3), the covariance matrix of J;B/QJRB vec ;(A) is

Var (5T veen(A) ) = n™ ' 20 Var (Vi vee  (A) T T
I () T = T 0 = an T (BT
1y 2 172 > _ |B1og|B| ~
)JBB JB,AVeCA(A)H < |B] HJBB Jg iveca(N)|| =0, (T) Using

’ 2 ’ ’ )

2 Bllog|B
o, (1Bkel8)
F n

i) Lo, (\Bllzng!)
< st (&1 13017) +0, (1RELED).
Let A = max (||AA||, HAAOH) Then combining the above bound with (B.42), we obtain
sl (A7) = ((Ba2)’)
< 2| VEUA; - Auo)VE| max (B2 [184)

< 4A®max (3;@0A2,Op (\/ —‘B’ log |B‘)> )
n

This together with (B.39) and (B.41) implies that the remainder term R(A ;, A 40) defined
in (B.32) is bounded by nA% max (H%AZ , O, (\ / BlngB)) up to some positive constants.

By Lemma 5, we have that A? = O, <M“%>. This together with (B.39) and (B.41) yields

AL A 5l A log’(p +1) | 5 Bllog|B
R(A4, Ayp) =0, (max (KO‘ | OS v ),|A|10g(p+1) | ’(;Lg| |)>

Hence, if | B is fixed, R(&A, Ap) = 0p(1), provided that %}ogzp — 0; and if | A\ A°| — oo,

By Lemma 3,

this and (B.37), we bound (B.46) as follows:
~ ~ 2 ~ ~
H\/EO(AA - AAO)\/EOHF <271\-2 (x0) HRQ(AA) ~ Ro(A0)

min

< oN72 Ro(A o)

min

2
’
F

(%) max (HR2(3 A)

that
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R(A 1, A 40)/+/|B| = 0,(1), provided that K(%'A‘Qlogzplog('B') — 0. This completes the proof.

C Proofs of Theorem 3 and 4

Proof of Theorem 3. Let A, (B) be the likelihood ratio test statistic defined in Theorem

1. A measure change from Pg» to Pgo yields that for any u > 0,

Po (An(B) > u) = EguI(An(B) > u)

.
= Ego (H(An(B) > u) exp(v/nvecp(8,) Z, — nvecs(0n) Ip.p vecs(dn)

2

+Rn<90,5n>>) |

where Pg» is the probability measure under H,, Z, = n

-1/ 2%(:0), I is the Fisher information

matrix, and Rn(e(J,(;n)) _ Ln<9") _ Ln(e()) _ \/ﬁVeCB((Sn)TZn + nveCB(én)TIQ'B,BVeCB(Csn)‘ We

will verify later that

Pyo

Ra(6°,5,)) ~5 0 (C.1)

in the Gaussian graphical model and linear regression model.
For the Gaussian graphical model, we first verify (C.1). Now let h,, = y/nvecp(d,) with

IAnll2 = h. Then Z, = n~/22l8 = /nvecy((2°)~! — §) = y/nvec(A). It follows from

the Taylor expansion of log det(-) that

L,(0") — L,(0°) = n (log det(Q2") — tr(Q"S) — log det(Q°) + tr(Q2°S9))
= h Vnvecp((2°) = 8) — /nh vecp((2°)7!) + n(log det(2") — log det(22%))

1
h!Z, - §thB,Bhn +7(Q"),
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where we have used (B.26) and

[T ey
)= -1 C.2
@) =n3 o : ©2)
By similar calculations as in (B.40), we have that
. Ly ¢
5 S (R Tsha) ™ (22) i |B] = oc
) < T (%) (C.3)

23 (k) Ipgh,)"? (\%)l if |B| is fixed.
Hence, when | B| is fixed and n is large enough, we have that [r(Q")| < (k] I h,)**n=2 —
0. When |B] - oo but [B[¥2/n - 0, we have that [r(€7)] < (k] I sh, )25 0,

nl/z

Therefore,
1
R,(6°6,) = L,(0") — L,(68°) —h'Z, + ih;IB,Bhn =r(Q") = 0. (C.4)

By (B.35), we have that, with probability tending to 1 under Pyo,

2
+ R(A 4, A o). (C.5)

1 __
Mn(B) = 37520, ivees )
2

Note that Var(vec;(A)) = 4I. Hence, by Lemmas 7 and 8,

1__ 1 T g2
(_JB,lB/QJB,A nVeCA(A),E\/ﬁveCB(A)) N (Z1,Z5) ~ N | 0, |B|x|B| BB 7

’ R
(C.6)
where J = I!. Therefore,
—-1/2 -1
Zi~ N(O, Iippaip) and Zy | Zy = 21 ~ N (I P20 I aoDid jodaos)  (C7)
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where the fact that Jg g = (Ipp — Ip a0l ;5 AOIAo p) ! is used. Hence, for any 6;; j € B,

1
Py, (A(B) >u) - E (]I(||Zl||§ > u)exp(h, Zy — §hIIBBhn)>
i Tah, ) Bz, (112118 2 0Bz (exo(h] 2)

i Tha ) B (12113 = w)esp (27 7,14°h,)

= a2+ TRl = w) = P (12 + T3 a5 > )

where we have used the fact that J;B = Ipp — IB,Aoon AOIAQB. Hence, we must have
An(B) % || Zy + b J 5 5 R |3 with Z; ~ N(0, Ijpjxp)) when |B| is fixed. When |B| — oo,
for any vector v with ||v||y = ¢|/B|'/* for some constant ¢, we have that

7 2_|B 7|2 - |B W'z 2
1Z +vll5— | |: 1Z]3 — | |Jr |v]]2 ( v __ 4 ||U|1|24> gN(C_,l) . (C.8)
V2|B]| V2[B] V2Bt \ vl B4 |BJY V2

because the first term converges to N(0,1) by CLT, and the second term converges ¢?/+/2
to since W — 0 in probability.

Consequently, the local limiting power functions for the proposed CMLR test is

P <||Z+ J];}B/,thﬂg > Xi,lﬂ) when |B] is fixed,
Trr(h, Ope) =

P (Z 4 hiTpphn when |B| — oo
/_Q\B\ Z “a )

where o > 0 is the level of significance, Z ~ N (0, Ip|«|p|) is a multivariate normal random
variable, and Jp p is the asymptotic variance of vecy(Q2®).
To make a comparison between the debiased lasso test proposed in [3], we consider the

case when |B| = 1. Assume that B = {(¢,7)}. In this case, the local limiting power functions
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for the proposed method is

hl\? h
mr(h,0p) =P ((Z+ u) > Xg) =P (‘Z+ 2]
JOLR g

where o is the asymptotic variance of d)f]l ). In contrast, The local limiting power functions

> za/g) (C.9)

for the debiased lasso test proposed in [3] is

h
71-debias(hy QBC) =P Z + # > za/2 (ClO)

2
A /(J.Jij + WiiWjj

where Z ~ N(0,1) is a standard normal random variable. By applying Corollary 1, we have
that o < wfj + wj;w;;j, which implies that our 7y g(h, Ope) > Taepias(h, Ope). This completes
the proof.

Proof of Theorem 4. The proof is similar to that of Theorem 3. Again, we first verify
that (C.1) is satisfied for linear regression. Toward that end, let h, = y/nvecp(d,) with
|, l2 = h. Notice that L, () = L,(8,0) = nlog(1/v2r0) — (202) |y — X B||2.

_ L 120Ln(B%) _ _ipp s T A0 — o, —1/2 —2 T
Zn=mn o n 20 vecy (X' (y — XB°) =n""?0 2 vecpg(X "€), (C.11)
B

where € ~ N(0,0%I,,x,,). Moreover, we have that

L (0") — Ln(6°) = (20%) " (ly = XB°115 = lly — X (B8° + 8,)|3)
= Vnvecp(6,) n 20 2 veep(X T (y — XB°) — (202) " veey(8,) (X T X) p.p vec(5,)

1
= h'Z,— ihZIBBhn

where I = (no?)"!X " X. Hence (C.1) is satisfied with the remaining term to be exactly 0.

P
By similar arguments used in Theorem 2 and the fact that ||€||3/n —% 0, we have that
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the likelihood ratio test statistic is

An(B) = €' (Pjoup — Pyo)e + R(e)

(C.12)

P
where R(€) —% 0. Moreover, since the matrix P — Po is idempotent and has rank | B|,

there must exist ay, ..., a|p| such that Pjoyp — Py = Zlszll ara;, and
|B|
An(B) =) (afe)* + R(e)
k=1

Note that, under Pgo, we have that

Lipjxjp  AXp
((a/e,... a‘;‘e),vecB(XTe)) = (Z1,Z5) ~ N |0, g

XJAT X[ X;

where A = (ay,...,ayp)" € RIB*"

Therefore,

Zy ~ N(0,Iipjxp)) and Zy | Zy = 21 ~ N (XL A 21, X[ (Lnwn — ATA) X 5)
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Hence, for any 3;; j € B¢ and any u > 0,

PHa<An(B) > u)

1
- E (H(||Z1||§ > u)exp(h, Z, — §hIX;XBhn)

= oxp (= 3hIX] Xah) ) Bz (112118 > 0z (exp(h] 2)

1

2

1 1
= exp <—§h;XgXBhn) Eg, [H(HZng > u) exp (ZlTAXBhn + 5hp(g([m - ATA)XBhnﬂ
( 1
= exp|—=

Qh; XgATAXBhn) Ez [I(||Z1]3 > w) exp (2 AXph,)]

Hence, we must have A, (B) = ||Z + AXph,||2 with Z ~ N(0, I|/x|5) when |B]| is fixed.
When |B| — o0, a similar argument used in Theorem 3 can be applied.

Consequently, the local limiting power functions for the proposed CMLR test is

i (||Z + AXph, |2 > X;‘B‘) if | B is fixed,

mrr(h, Bpe) = (C.16)

P (Z1 + 1AXphally za) if |B| — oo

Ve

where o > 0 is the level of significance, Z ~ N(0, I||x|p|) is a multivariate normal random
variable, and Z; ~ N(0, 1) is a standard normal random variable.

Since AXp has full rank |B|, it is easy to see that when ||h,|s — oo and |B| is finite,
then mpg(h, Bp:) — 1; and when ||h,||3/y/|B] = oo and |B| — oo, then 7wyg(h, ) — 1.

This completes the proof.
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