

**Supplementary Figure 1. Individual reaction norms of foliar traits**. Individual reaction norms, pooling the individuals of the four studied populations (n = 36 individuals), of **A**) specific leaf area, in m<sup>2</sup> kg<sup>-1</sup>; **B**) leaf dry matter content, in mg g<sup>-1</sup>; **C**) Carbon to nitrogen relative content ratio; **D**) isotopic signature of C,  $\delta^{13}$ C, in %<sub>0</sub>.



**Supplementary Figure 2. Mating system of plastic flowers**. Female fertility of the spring and summer flowers hand-pollinated with pollen with the same flower (autogamy) or with pollen from a different individual (allogamy). *n* is the number of individual plants per treatment. There were differences between seasons (z = 6.7, p<0.0001), and between pollination treatments (z = 4.4, p<0.0001), but not interaction (z = 1.0, p = 0.321, binomial GLM).

![](_page_2_Figure_0.jpeg)

**Supplementary Figure 3. Slope comparison**. Mean population-level slopes (in absolute values)  $\pm 1$  s.e.m. for floral and foliar traits quantified in field (black dots) and experimental conditions (white dots). There was statistical differences between conditions (F = 9.0, p = 0.004) and type of traits (F = 29.1, p < 0.0001), but no their interaction (F = 0.1, p = 0.727, two-way ANOVA).

![](_page_3_Figure_0.jpeg)

**Supplementary Figure 4. Reversible individual reaction norms of floral traits in field and experimental conditions.** Individual reaction norms of the five floral traits for those plants flowering during spring, summer and autumn both in field and experimental conditions. Reaction norms were linearly modelled as changed between each season subsequently.

![](_page_4_Figure_0.jpeg)

Supplementary Figure 5. Simplified anthocyanin biosynthetic pathway for spring and summer flowers of Moricandia arvensis. Enzymatic activities (capital letters next to arrows), gene expression patterns (line graphs at the side of each step) and metabolic products are indicated. Enzyme with relative significant and non-significant differential gene expression is highlighted in red and grey, respectively; whereas in blue is showed two regulatory genes with significant differential gene expression. Colour lines represent reaction norms of the five plants used in the transcriptomic study. Main anthocyanins and flavonols detected by UPLC-ESI-TOF-MS are in lilac and grey boxes, respectively (see Supplementary Table 1). The lilac colour of *M. arvensis* spring petals is produced by the accumulation of cyanidin derivatives, whereas M. arvensis summer petals only accumulate flavonols. PAL, phenylalanil ammonia-lyase; C4H, cinnamate 4-hydroxylase; 4CL, coumarate CoA ligase; CHS: chalcone synthase; CHI, chalcone isomerase; F3H, flavanone-3-hydroxylase; F3'H, flavonoid 3'hydroxylase; FLS, flavonol synthase; DFR, dihydroflavonol 4-reductase; ANS, anthocyanidin synthase; 3GT, flavonoid-3-O-glucosyltransferase; 5GT, flavonoid-5-O-glucosyltransferase; anthocyanin acyltransferase; RT, anthocyanin rhamnosyl transferase; AAT. GTs. glucosyltransferases; OMT, methyltransferase.

![](_page_5_Figure_0.jpeg)

**Supplementary Figure 6**. Outcome of the modularity analysis performed on the bipartite weighted network built upon the visitation rate of the main 38 pollinator functional groups in 123 species belonging to the tribe Brassiceae. *Moricandia arvensis* was divided in those insects visiting spring flowers (represented by a spring-type flower) and those visiting summer flower (represented by a summer-type flower). We have highlighted the other *Moricandia* species and sketched those pollinator groups defining the two modules where *M. arvensis* is located. Insect silhouettes drawn by Divulgare (www.divulgare.net).

## SUPPLEMENTARY TABLES

|                      |             |            | # Plants marked/flowering |        | Average | Daily Tem | perature |          |
|----------------------|-------------|------------|---------------------------|--------|---------|-----------|----------|----------|
|                      | Latitude    | Longitude  | Spring                    | Summer | Autumn  | Spring    | Summer   | Autumn   |
| Natural Populations  |             |            |                           |        |         |           |          |          |
| Tabernas             | 37° 00.3' N | 2° 27.4' W | 50                        | 28     | -       | 16.06     | 26.48    |          |
| Olula                | 37° 23.3' N | 2° 17.9' W | 50                        | 27     | -       | 15.08     | 26.69    |          |
| Quesada              | 37° 48.3' N | 3° 03.4' W | 50                        | 22     | -       | 15.54     | 27.92    |          |
| Malaha               | 37° 08.4' N | 3° 43.9' W | 50                        | 40     | 36      | 15.09     | 26.82    | 17.07    |
| Experimental Conditi | ons         |            |                           |        |         | Period 1  | Period 2 | Period 3 |
| Treatment 1          |             |            | 30                        | 29     |         | 14.16     | 23.75    |          |
| Treatment 2          |             |            | 30                        | 29     |         | 14.16     | 28.75    |          |
| Treatment 3          |             |            | 15                        | 14     |         | 14.16     | 14.16    |          |
| Treatment 4          |             |            |                           | 15     | 13      | 14.16     | 23.75    | 14.16    |

**Supplementary Table 1.** Average daily temperatures (°C) of each site, season and treatment included in this study. Natural population refers to the four populations studied in the SE Spain. Experimental Conditions refers to the different treatments carried on controlled conditions to test the effect of temperature and photoperiod on the triggering of floral plasticity (see methods for details). Autumn flowering was checked only in Malaha population

|                                                       |       | P values |        |        |       | AIC       |        |
|-------------------------------------------------------|-------|----------|--------|--------|-------|-----------|--------|
|                                                       | std   |          |        |        | Fixed | Random    | Random |
| Site                                                  | Slope | Е        | G      | GхЕ    | term  | Intercept | Slope  |
| Specific leaf area (m <sup>2</sup> kg <sup>-1</sup> ) |       |          |        |        |       |           |        |
| Tabernas                                              | -0.65 | 0.0001   | 0.4166 | 0.7534 | 174.2 | 175.6     | 179.0  |
| Olula                                                 | -0.53 | 0.0001   | 0.0178 | 0.7041 | 183.1 | 179.5     | 182.8  |
| Quesada                                               | -0.66 | 0.0029   | 0.0518 | 0.0001 | 90.3  | 88.5      | 72.5   |
| Malaha                                                | -0.76 | 0.0001   | 0.0105 | 0.3889 | 133.9 | 128.5     | 130.6  |
| Leaf dry matter content (mg g-1)                      |       |          |        |        |       |           |        |
| Tabernas                                              | 0.59  | 0.0018   | 0.0337 | 0.0001 | 162.1 | 159.6     | 142.1  |
| Olula                                                 | 0.48  | 0.0001   | 0.0015 | 0.9278 | 186.5 | 178.5     | 182.3  |
| Quesada                                               | 0.57  | 0.0127   | 0.2436 | 0.0001 | 94.0  | 94.7      | 79.0   |
| Malaha                                                | 0.60  | 0.0001   | 0.0001 | 0.0041 | 169.9 | 157.5     | 150.5  |
| Carbon-to-Nitrogen ratio                              |       |          |        |        |       |           |        |
| Tabernas                                              | -     | -        | -      | -      | -     | -         | -      |
| Olula                                                 | 0.27  | 0.2770   | 0.0001 | 0.0001 | 153.3 | 128.6     | -321.4 |
| Quesada                                               | 0.65  | 0.0046   | 0.0010 | 0.0001 | 91.6  | 82.8      | -255.0 |
| Malaha                                                | 0.54  | 0.0015   | 0.0001 | 0.0001 | 175.0 | 135.9     | -348.4 |
| δ <sup>13</sup> C (‰)                                 |       |          |        |        |       |           |        |
| Tabernas                                              | 0.51  | 0.0377   | 0.0001 | 0.0001 | 73.2  | 45.9      | -50.8  |
| Olula                                                 | 0.20  | 0.2027   | 0.0001 | 0.0001 | 154.1 | 98.6      | -179.1 |
| Quesada                                               | 0.55  | 0.0024   | 0.0001 | 0.0001 | 103.5 | 67.6      | -125.6 |
| Malaha                                                | 0.51  | 0.0006   | 0.0001 | 0.0001 | 177.0 | 125.8     | -213.2 |

**Supplementary Table 2.** Phenotypic plasticity in functional and physiological traits. Outcome of the random regressions testing the change in foliar traits from spring to summer in the four studied populations. *Std Slope* is the population-wide among-season standardized slope of the individual reaction norms. *P-values* is the significance of the population-wide reaction norm slope (E), the differences in trait values among individuals (G) and the among-individual differences in individual reaction-norm slopes. *AIC* is the increase in model fitting considering only the seasonal differences in plant trait (Fixed term), the differences among genotypes (Random intercept) and the interaction between season and genotype (Random slope).

| Species                      | #   | Species                    | #   | Species                     | #   |
|------------------------------|-----|----------------------------|-----|-----------------------------|-----|
| Brassica barrelieri          | 65  | Diplotaxis ilorcitana      | 39  | Moricandia moricandioides   | 132 |
| Brassica fruticulosa         | 60  | Diplotaxis pitardiana      | 25  | Moricandia nitens           | 125 |
| Brassica napus               | 61  | Diplotaxis siifolia        | 65  | Moricandia spinosa          | 81  |
| Brassica nigra               | 64  | Diplotaxis tenuisiliqua    | 65  | Moricandia suffruticosa     | 130 |
| Brassica oxyrrhina           | 179 | Diplotaxis viminea         | 70  | Psychine stylosa            | 140 |
| Brassica repanda             | 99  | Diplotaxis virgata         | 61  | Raffenaldia primuloides     | 29  |
| Brassica souliei             | 64  | Eremobium aegyptiacum      | 49  | Raphanus pugioniformis      | 43  |
| Brassica tournefortii        | 59  | Eremophyton chevallieri    | 72  | Raphanus raphanistrum       | 135 |
| Cakile maritima              | 73  | Eruca foleyi               | 125 | Raphanus sativus            | 68  |
| Ceratocnemum rapistroides    | 66  | Eruca pinnatifida          | 68  | Rapistrum rugosum           | 76  |
| Coincya longirostra          | 56  | Eruca vesicaria            | 153 | Rytidocarpus moricandioides | 164 |
| Coincya monensis cheiranthos | 159 | Erucaria crassifolia       | 50  | Savignya parviflora         | 62  |
| Coincya monensis nevadensis  | 39  | Erucaria erucarioides      | 108 | Sinapis alba                | 141 |
| Coincya monensis orophila    | 30  | Erucastrum gallicum        | 48  | Sinapis arvensis            | 6   |
| Coincya rupestris            | 57  | Erucastrum littoreum       | 66  | Sinapis flexuosa            | 60  |
| Coincya transtagana          | 72  | Erucastrum nasturtiifolium | 126 | Vella aspera                | 73  |
| Crambe filiformis            | 119 | Erucastrum varium          | 69  | Vella bourgeana             | 83  |
| Crambe hispanica             | 78  | Erucastrum virgatum        | 161 | Vella lucentina             | 67  |
| Crambe kralikii              | 42  | Fezia pterocarpa           | 54  | Vella pseudocytisus         | 67  |
| Diplotaxis berthautii        | 52  | Foleyola billotii          | 65  | Vella spinosa               | 53  |
| Diplotaxis catholica         | 89  | Guiraoa arvensis           | 70  | Zilla macroptera            | 58  |
| Diplotaxis erucoides         | 61  | Henophyton zygarrhenum     | 22  | Zilla spinosa               | 48  |
| Diplotaxis harra             | 147 | Hirschfeldia incana        | 68  |                             |     |
| Diplotaxis ibicensis         | 67  | Moricandia foetida         | 66  |                             |     |
| Diplotaxis ollivieri         | 70  | Moricandia rytidocarpoides | 166 |                             |     |

**Supplementary Table 3.** Brassiceae species included in the geometric analysis to explore the corolla shape. # refers to the number of specimens analysed per species

| Peak<br>number | Flavonoid name (putative identification) <sup>a</sup>                     |      | Observed<br>mass ( <i>m/z</i> )<br>[M+ H]+ | Molecular<br>formula<br>[M+ H]+ | Mass<br>accuracy<br>(PPM) | References<br>previously<br>reporting in | Flavonoid (%)⁰ |              |
|----------------|---------------------------------------------------------------------------|------|--------------------------------------------|---------------------------------|---------------------------|------------------------------------------|----------------|--------------|
|                |                                                                           |      |                                            |                                 | ( )                       | Brassicaceae                             | Liac<br>petals | White petals |
| Anthocyar      | ins                                                                       |      |                                            |                                 |                           |                                          |                |              |
| A1             | Cyanidin 3-xylosyl sinapoyl sophoroside-5-malonyl rutinoside <sup>b</sup> | 2.55 | 1343.3486                                  | C54H71O39                       | -6.4                      | 1 (gd)                                   | 1.16           | nd           |
| A2             | Cyanidin 3-caffeoyl feruloyl sophoroside-5-cinnamoyl rutinoside           | 2.61 | 1387.3762                                  | C56H75O40                       | -5.3                      |                                          | 0.75           | nd           |
| A3             | Cyanidin 3-xylosyl sinapoyl sophoroside-5-malonyl sophorosideb            | 2.66 | 1359.3442                                  | C57H67O38                       | -4.0                      | 1 (gd)                                   | 1.40           | nd           |
| A4             | Cyanidin 3-xylosyl sinapoyl glucoside-5-malonyl glucosideb                | 2.66 | 1035.2611                                  | C46H51O27                       | 8.5                       | 1                                        | 1.13           | nd           |
| A5             | Cyanidin 3-caffeoyl sinapoyl glucoside-5-malonyl rutinoside <sup>b</sup>  | 2.80 | 1197.2965                                  | C55H57O30                       | 11.3                      | 2                                        | 1.09           | nd           |
| A6             | Cyanidin 3-xylosyl sinapoyl glucoside-5-malonyl rhamnoside <sup>b</sup>   | 2.87 | 1019.2651                                  | C46H51O25                       | 0.0                       | 1 (gd)                                   | 4.19           | nd           |
| A7             | Cyanidin 3-caffeoyl feruloyl sophoroside-5-cinnamoyl rhamnoside           | 2.89 | 1241.3210                                  | C50H65O36                       | 8.6                       |                                          | 2.41           | nd           |
| A8             | Cyanidin 3-feruloyl sinapoyl xyloside-5-malonyl glucoside                 | 2.97 | 1049.2776                                  | C47H53O27                       | -0.2                      | 2 (gd)                                   | 3.59           | nd           |
| A9             | Cyanidin 3-ferulyl sinapoyl xyloxyl glucoside-5-malonyl glucoside         | 3.12 | 1211.3129                                  | C56H59O30                       | 2.9                       | 2                                        | 1.50           | nd           |
| A10            | Cyanidin 3-di-feruloyl sophoroside-5-cinnamoyl rhamnoside                 | 3.21 | 1255.3403                                  | C47H67O39                       | 6.8                       |                                          | 0.72           | nd           |
| Flavonols      |                                                                           |      |                                            |                                 |                           |                                          |                |              |
| F1             | Quercetin 3-galactoside-7-rhamnosideb                                     | 2.11 | 611.1583                                   | C27H31O16                       | 4.7                       | 3                                        | 9.74           | 6.63         |
| F2             | Kaempferol 3-glucoside-7-sophorosideb                                     | 2.11 | 773.2137                                   | C33H41O21                       | 6.5                       | 4 (gd)                                   | 10.59          | 1.15         |
| F3             | Kaempferol 3-rutinoside-7-glucoside <sup>b</sup>                          | 2.14 | 757.2170                                   | C33H41O20                       | -9.5                      | 3                                        | 6.44           | 1.37         |
| F4             | Kaempferol 3-glucoside-7-rhamnosideb                                      | 2.19 | 595.1663                                   | C27H31O15                       | -0.5                      | 3                                        | 30.78          | 51.02        |
| F5             | Kaempferol 3-(xylosyl-rhamnosyl)-glucosideb                               | 2.19 | 727.2088                                   | C32H39O19                       | -8.9                      | 3                                        | 2.04           | 4.15         |
| F6             | Isorhamnetin 3-rhamnoside-7-glucosideb                                    | 2.26 | 625.1559                                   | C28H33O16                       | 9.6                       | 5                                        | nd             | 2.19         |
| F7             | Kaempferol 3-p-coumaryl sophoroside-7-glucoside <sup>b</sup>              | 2.36 | 919.2493                                   | C42H47O23                       | -1.6                      |                                          | 1.08           | 2.73         |
| F8             | Kaempferol-3-glucosyl rutinoside-7-sophoroside                            | 2.36 | 1081.2993                                  | C48H57O28                       | -4.0                      |                                          | 0.70           | 1.59         |
| F9             | Kaempferol 3-glucoside <sup>b</sup>                                       | 2.45 | 449.1073                                   | C21H21O11                       | -2.4                      | 6                                        | 2.95           | 4.61         |
| F10            | Kaempferol 3-caffeoyl glucosyl-1->4-rhamnosideb                           | 2.50 | 757.1938                                   | C36H37O18                       | -5.5                      | 3                                        | 1.10           | 0.74         |

| F11        | Kaempferol 7-rhamnoside <sup>b</sup>                           | 2.51 | 433.1113  | C21H21O10 | 4.4  | 6      | 2.37 | 1.11 |
|------------|----------------------------------------------------------------|------|-----------|-----------|------|--------|------|------|
| F12        | Kaempferol 3-caffeoyl glucosyl-(1->2)-glucoside-7-cellobioside | 2.56 | 1097.2776 | C33H60O40 | 0.9  | 7      | 1.48 | nd   |
| F13        | Kaempferol 3-sinapoyl-caffeoyl-sophoroside 7-glucosideb        | 2.61 | 1141.3063 | C53H57O28 | -9.6 |        | 0.50 | nd   |
| F14        | Isorhamnetin 7-rhamnoside                                      | 2.65 | 463.1234  | C22H23O11 | -3.9 | 6      | 0.84 | 0.30 |
| F15        | Kaempferol 3-sinapoyl glucoside-7-glucosyl rhamnoside          | 2.85 | 963.2783  | C44H51O24 | 1.3  | 1 (gd) | nd   | 0.70 |
| F16        | Isorhamnetin 3-feruloyl rhamnosyl-1->6-galactosideb            | 2.92 | 801.2231  | C38H41O19 | 3.7  |        | 2.05 | 8.29 |
| F17        | 6-Methoxykaempferol 3,7-bis (3-acetyl rhamnoside) <sup>b</sup> | 2.95 | 963.2058  | C32H37O17 | -5.2 |        | 0.41 | 2.48 |
| F18        | 8-Prenylkaempferol 3,7-diglucosideb                            | 3.60 | 679.2247  | C32H39O16 | -5.6 |        | 5.40 | 6.68 |
| F19        | Sinocrassoside A9                                              | 3.60 | 841.2761  | C38H49O21 | -7.6 | 8      | 1.40 | 3.65 |
| Isoflavone | 95                                                             |      |           |           |      |        |      |      |
| 11         | Nigracin 4'-hydroxy-methylglutaryl-hexoside                    | 2.77 | 649.1731  | C30H33O16 | 7.5  |        | 1.50 | nd   |
| Hydroxyci  | innamic acids                                                  |      |           |           |      |        |      |      |
| H1         | 1-Caffeoyl-5-feruloylquinic acidb                              | 3.26 | 531.1522  | C26H27O12 | 2.1  |        | 0.67 | 0.63 |
|            |                                                                |      |           |           |      |        |      |      |

**Supplementary Table 4. Flavonoid identification of petals of** *Moricandia arvensis*. Results from the UPLC-ESI-TOF-MS biochemical analysis of purple and white petal extracts with flavonoid identifications. <sup>a</sup> Identification based on retention time, accurate mass and comparison with data from previously reported flavonoids for *Moricandia arvensis* and other Brassicaceae species. <sup>b</sup> Identification confirmed by molecular formula (see <u>http://metabolomics.jp</u>). <sup>c</sup> Relative peak intensities of each metabolite with respect to the sum of intensities of all flavonoids found in lilac and white petals. RT, retention time; gd, glucoside derivatives of flavonoids identified in these references.

|                  |           | P values |                       |        |       | AIC       |        |
|------------------|-----------|----------|-----------------------|--------|-------|-----------|--------|
| Populations      | std       |          |                       |        | Fixed | Random    | Random |
|                  | Slope     | E        | G                     | G x E  | term  | Intercept | Slope  |
| Corolla diamete  | er (mm)   |          |                       |        |       |           |        |
| Tabernas         | -0.85     | 0.0001   | 0.0012                | 0.0595 | 219.1 | 210.7     | 209.0  |
| Olula            | -0.84     | 0.0001   | 0.0001                | 0.0017 | 178.0 | 158.3     | 149.6  |
| Quesada          | -0.85     | 0.0001   | 0.0006                | 0.0063 | 96.8  | 87.2      | 73.0   |
| Malaha           | -0.91     | 0.0001   | 0.0010                | 0.0288 | 146.1 | 137.3     | 133.6  |
| Corolla tube len | igth (mr  | n)       |                       |        |       |           |        |
| Tabernas         | -0.65     | 0.0001   | 0.0317                | 0.0128 | 274.4 | 271.8     | 267.1  |
| Olula            | -0.75     | 0.0001   | 0.0001                | 0.0001 | 218.7 | 199.0     | 184.0  |
| Quesada          | -0.64     | 0.0001   | 0.0275                | 0.6857 | 196.4 | 193.5     | 196.8  |
| Malaha           | -0.89     | 0.0001   | 0.0001                | 0.0867 | 176.0 | 161.3     | 160.4  |
| Corolla shape (C | CV)       |          |                       |        |       |           |        |
| Tabernas         | -0.99     | 0.0001   | 0.0026                | 0.7299 | 134.1 | 127.1     | 139.1  |
| Olula            | -0.91     | 0.0001   | 0.9999                | 0.0589 | 105.0 | 107.0     | 105.4  |
| Quesada          | -0.90     | 0.0001   | 0.1593                | 0.9999 | 254.7 | 250.7     | 254.7  |
| Malaha           | -0.93     | 0.0001   | 0.0127                | 0.0001 | 90.2  | 86.0      | 56.2   |
| Petal anthocyar  | nins (cya | nidin mg | g g <sup>-1</sup> FW) |        |       |           |        |
| Tabernas         | -0.90     | 0.0001   | 0.0001                | 0.0161 | 200.4 | 168.8     | 171.8  |
| Olula            | -0.63     | 0.0001   | 0.0001                | 0.0001 | 254.0 | 229.5     | 206.3  |
| Quesada          | -0.77     | 0.0001   | 0.0016                | 0.0052 | 150.0 | 142.0     | 135.5  |
| Malaha           | -0.83     | 0.0001   | 0.0001                | 0.0001 | 260.2 | 246.5     | 46.5   |
| Petal flavonols  | (kaemp    | ferol mg | g <sup>-1</sup> FW)   |        |       |           |        |
| Tabernas         | 0.87      | 0.0001   | 0.2851                | 0.0001 | 215.6 | 216.5     | 196.0  |
| Olula            | 0.73      | 0.0001   | 0.0022                | 0.0001 | 226.4 | 219.0     | 149.7  |
| Quesada          | 0.59      | 0.0001   | 0.0377                | 0.0019 | 208.8 | 206.4     | 198.0  |
| Malaha           | 0.83      | 0.0001   | 0.0001                | 0.0001 | 258.6 | 242.9     | 116.1  |

**Supplementary Table 5. Phenotypic plasticity in floral traits in four populations from SE Spain.** Outcome of the random regressions testing the change in floral traits from spring to summer in all populations. *Std Slope* is the population-wide among-season standardized slope of the individual reaction norms. *P-values* showed the significance of the population-wide reaction-norm slope (E), the differences in trait values among individuals (G) and the among-individual differences in their individual reaction-norm slopes. *AIC* refers to the increase in fitting of the models considering only the differences between season in plant trait (Fixed term), including the differences among genotypes (Random intercept) and the interaction between season and genotype (Random slope).

|                     |    | Model<br>without site |    | Model with<br>site |       |         |
|---------------------|----|-----------------------|----|--------------------|-------|---------|
| Floral traits       | df | AIC                   | df | AIC                | LRT   | P-value |
| Corolla diameter    | 6  | 615.5                 | 9  | 515.9              | 105.6 | 0.0001  |
| Corolla tube length | 6  | 834.8                 | 9  | 786.8              | 54.0  | 0.0001  |
| Corolla shape       | 6  | 373.5                 | 9  | 275.6              | 103.9 | 0.0001  |
| Petal anthocyanins  | 6  | 701.4                 | 9  | 607.4              | 99.9  | 0.0001  |
| Petal flavonols     | 6  | 575.0                 | 9  | 538.1              | 42.9  | 0.0001  |

**Supplementary Table 6. Among-site comparison in floral plasticity.** It is shown the outcome of a Likelihood Ratio test comparing a model for each floral trait where site was included as random factor (N= 4 sites) against a model without this random factor.

|                                                     |              | Credible | Credible | Bulk      | Tail      |
|-----------------------------------------------------|--------------|----------|----------|-----------|-----------|
|                                                     |              | interval | interval | Effective | Effective |
|                                                     | Estimate ±   | lower    | upper    | Sample    | Sample    |
| Group-Level Effects                                 | s.d.         | bound    | bound    | Size      | Size      |
| Overall slopes of each trait pooling the four sites |              |          |          |           |           |
| Corolla diameter $[R^2 = 0.91 \pm 0.01]$            | -0.82 ± 0.02 | -0.87    | -0.77    | 2357      | 2542      |
| Corolla tube length $[R^2 = 0.82 \pm 0.01]$         | -0.74 ± 0.03 | -0.80    | -0.68    | 2101      | 3212      |
| Corolla shape $[R^2 = 0.92 \pm 0.01]$               | -0.91 ± 0.02 | -0.96    | -0.87    | 2659      | 2976      |
| Petal anthocyanins $[R^2 = 0.91 \pm 0.01]$          | -0.73 ± 0.04 | -0.81    | -0.66    | 3404      | 2972      |
| Petal flavonols $[R^2 = 0.91 \pm 0.01]$             | 0.72 ± 0.04  | 0.64     | 0.81     | 1235      | 1838      |
| Among – individual differences in slopes            |              |          |          |           |           |
| Corolla diameter                                    | 0.21 ± 0.02  | 0.17     | 0.26     | 2220      | 3354      |
| Corolla tube length                                 | 0.28 ± 0.03  | 0.22     | 0.34     | 1191      | 23335     |
| Corolla shape                                       | 0.22 ± 0.03  | 0.18     | 0.26     | 2133      | 2939      |
| Petal anthocyanins                                  | 0.37 ± 0.03  | 0.32     | 0.43     | 2211      | 2800      |
| Petal flavonols                                     | 0.42 ± 0.03  | 0.37     | 0.37     | 2058      | 3288      |
| Between-trait correlation in individual slopes      |              |          |          |           |           |
| Corolla diameter x Corolla tube length              | 0.42 ± 0.11  | 0.19     | 0.63     | 1730      | 2618      |
| Corolla diameter x Corolla shape                    | 0.55 ± 0.10  | 0.33     | 0.73     | 1321      | 2353      |
| Corolla tube length x Corolla shape                 | 0.05 ± 0.13  | -0.20    | 0.31     | 2116      | 3012      |
| Corolla diameter x Petal anthocyanins               | -0.02 ± 0.11 | -0.24    | 0.21     | 1756      | 2274      |
| Corolla tube length x Petal anthocyanins            | -0.04 ± 0.12 | -0.27    | 0.19     | 1342      | 2319      |
| Corolla shape x Petal anthocyanins                  | -0.12 ± 0.12 | -0.35    | 0.10     | 1404      | 2210      |
| Corolla diameter x Petal flavonols                  | -0.37 ± 0.09 | -0.54    | -0.17    | 2231      | 3102      |
| Corolla tube length x Petal flavonols               | -0.54 ± 0.09 | -0.71    | -0.34    | 1063      | 1840      |
| Corolla shape x Petal flavonols                     | 0.05 ± 0.10  | -0.16    | 0.24     | 2820      | 3385      |
| Petal anthocyanins x Petal flavonols                | -0.01 ± 0.10 | -0.21    | 0.17     | 3139      | 3482      |

**Supplementary Table 7. Outcome of the Bayesian generalized multivariate multilevel models.** It tests the effect of weighted temperature on the combined change in the five floral traits across the entire set of data (117 Individuals, 4 Sites). Significant differences occur when the credibility interval does not contain zero. It is shown the mean (estimate) and the standard deviation of the posterior distribution and its 95% Credible interval. The Effective Sample Size is an estimation of the number of independent samples from the posterior distribution that would be expected to yield the same standard error of the posterior mean as is obtained from the dependent samples returned by the MCMC algorithm. Among-groups differences are tested by comparing the standard deviations of the slopes of each trait between group levels. It is shown the proportion of the variance explained by the whole model for each individual trait as a Bayesian R<sup>2</sup>.

|             |       | P values |        |        |        | AIC       |        |
|-------------|-------|----------|--------|--------|--------|-----------|--------|
| Populations | std   |          |        |        | Fixed  | Random    | Random |
|             | Slope | E        | G      | G x E  | term   | Intercept | Slope  |
| Ovules      |       |          |        |        |        |           |        |
| Tabernas    | -0.42 | 0.0001   | 0.0001 | 0.0021 | 662.1  | 647.3     | 638.9  |
| Olula       | -0.55 | 0.0001   | 0.0001 | 0.0001 | 537.3  | 522.2     | 501.4  |
| Quesada     | -0.27 | 0.0001   | 0.0001 | 0.0001 | 1083.8 | 1025.3    | 993.8  |
| Malaha      | -0.43 | 0.0001   | 0.0001 | 0.0042 | 2109.6 | 1859.6    | 1852.6 |
| Seeds       |       |          |        |        |        |           |        |
| Tabernas    | -0.15 | 0.1061   | 0.0002 | 0.2209 | 687.1  | 675.4     | 676.4  |
| Olula       | 0.12  | 0.1384   | 0.0001 | 0.1831 | 613.0  | 597.9     | 598.5  |
| Quesada     | -0.33 | 0.0002   | 0.0001 | 0.0001 | 1069.3 | 985.2     | 943.7  |
| Malaha      | -0.32 | 0.0001   | 0.0001 | 0.0001 | 2183.9 | 2072.9    | 2029.8 |

**Supplementary Table 8. Phenotypic plasticity in seed set in four populations from SE Spain.** See Extended Data Table 1 for legend.

|                           |                      | P values            |        |        |       | AIC       |        |
|---------------------------|----------------------|---------------------|--------|--------|-------|-----------|--------|
|                           | std                  |                     |        |        | Fixed | Random    | Random |
| Floral trait              | Slope                | E                   | G      | GxE    | term  | Intercept | Slope  |
| Corolla diameter (mm)     |                      |                     |        |        |       |           |        |
| Treatment 1               | -0.74                | 0.0001              | 0.0011 | 0.2695 | 118.8 | 110.2     | 111.6  |
| Treatment 2               | -0.85                | 0.0001              | 0.0090 | 0.0254 | 93.8  | 89.0      | 85.7   |
| Treatment 3               | -0.53                | 0.0708              | 0.0021 | 0.0484 | 159.8 | 152.3     | 150.3  |
| Corolla tube length (mm)  |                      |                     |        |        |       |           |        |
| Treatment 1               | -0.37                | 0.0088              | 0.0001 | 0.0001 | 106.1 | 104.1     | 100.8  |
| Treatment 2               | -0.80                | 0.0001              | 0.0461 | 0.0256 | 166.3 | 149.7     | 134.1  |
| Treatment 3               | -0.39                | 0.0761              | 0.0001 | 0.1001 | 161.7 | 136.8     | 136.2  |
| Corolla shape (CV)        |                      |                     |        |        |       |           |        |
| Treatment 1               | -0.74                | 0.0001              | 0.9999 | 0.6129 | 127.2 | 129.2     | 132.3  |
| Treatment 2               | -0.85                | 0.0001              | 0.5852 | 0.2940 | 93.3  | 95.0      | 96.6   |
| Treatment 3               | -0.14                | 0.5907              | 0.0326 | 0.5501 | 163.6 | 161.0     | 163.8  |
| Petal anthocyanins (cyani | din mg g             | g <sup>-1</sup> FW) |        |        |       |           |        |
| Treatment 1               | -0.88                | 0.0001              | 0.0025 | 0.0499 | 82.6  | 75.5      | 73.5   |
| Treatment 2               | -0.91                | 0.0001              | 0.0063 | 0.0001 | 64.7  | 59.2      | -12.3  |
| Treatment 3               | 0.57                 | 0.0451              | 0.0001 | 0.0001 | 159.0 | 140.6     | 122.6  |
| Petal flavonols (kaempfer | ol mg g <sup>-</sup> | <sup>1</sup> FW)    |        |        |       |           |        |
| Treatment 1               | 0.09                 | 0.6317              | 0.0004 | 0.2772 | 333.9 | 323.5     | 328.8  |
| Treatment 2               | 0.21                 | 0.3960              | 0.0178 | 0.0001 | 332.9 | 329.3     | 312.2  |
| Treatment 3               | -1.06                | 0.0003              | 0.0001 | 0.0041 | 144.9 | 127.3     | 123.1  |

**Supplementary Table 9. Phenotypic plasticity in floral traits in experimental conditions.** Treatment 1 refers to the pass from spring to mild summer conditions, Treatment 2 refers to the pass from spring to hot summer conditions. Treatment 3 refers to the pass from spring to spring conditions (Control). See Extended Table 1 for description of variables.

|                     |             |                        | P values |        |       | AIC       |        |
|---------------------|-------------|------------------------|----------|--------|-------|-----------|--------|
| Populations         | std         |                        |          |        | Fixed | Random    | Random |
|                     | Slope       | Е                      | G        | GxE    | term  | Intercept | Slope  |
| Corolla diameter (r | nm)         |                        |          |        |       |           |        |
| Field               | 0.77        | 0.0001                 | 0.0001   | 0.0001 | 109.4 | 82.5      | 37.8   |
| Experimental        | 0.62        | 0.0001                 | 0.0001   | 0.0706 | 126.7 | 107.0     | 0.62   |
| Corolla tube length | n (mm)      |                        |          |        |       |           |        |
| Field               | 0.74        | 0.0001                 | 0.0017   | 0.0033 | 172.7 | 164.9     | 157.4  |
| Experimental        | 0.16        | 0.1758                 | 0.0001   | 0.0267 | 151.1 | 131.6     | 128.3  |
| Corolla shape (CV)  |             |                        |          |        |       |           |        |
| Field               | 0.79        | 0.0001                 | 0.0001   | 0.0698 | 414.3 | 375.0     | 373.6  |
| Experimental        | 0.74        | 0.0001                 | 0.9999   | 0.9727 | 112.1 | 114.1     | 118.0  |
| Petal anthocyanidi  | n (cyanidin | n mg g <sup>-1</sup> F | W)       |        |       |           |        |
| Field               | 0.78        | 0.0001                 | 0.0021   | 0.0001 | 93.3  | 85.8      | -25.8  |
| Experimental        | 0.81        | 0.0001                 | 0.2151   | 0.0001 | 95.6  | 96.1      | 79.9   |
| Petal flavonol (kae | mpferol m   | g g <sup>-1</sup> FW)  |          |        |       |           |        |
| Field               | -0.67       | 0.0001                 | 0.0001   | 0.0001 | 252.9 | 239.0     | 136.4  |
| Experimental        | -0.78       | 0.0001                 | 0.0182   | 0.0565 | 104.4 | 100.8     | 104.3  |

**Supplementary Table 10. Reversible phenotypic plasticity in floral traits.** Outcome of the random regressions testing the change in floral traits from summer to autumn in Malaha population (Field) and in Treatment 4 (Experimental). Legend as Table S4.

|                                                   | Trait values |           |           |  |  |  |
|---------------------------------------------------|--------------|-----------|-----------|--|--|--|
| Site                                              | Spring       | Summer    | Autumn    |  |  |  |
| Field Conditions                                  |              |           |           |  |  |  |
| Corolla diameter (mm)                             | 24.4±0.04    | 12.8±0.03 | 26.3±0.04 |  |  |  |
| Corolla tube length (mm)                          | 12.8±0.01    | 8.7±0.01  | 12.3±0.01 |  |  |  |
| Corolla shape (CV)                                | 0.01±0.01    | -4.2±0.01 | 2.9±0.01  |  |  |  |
| Petal anthocyanidin (cyanidin mg g⁻¹ FW)          | 4.1±0.03     | 0.1±0.00  | 7.5±0.02  |  |  |  |
| Petal flavonol (kaempferol mg g <sup>-1</sup> FW) | 24.2±0.13    | 123.1±0.6 | 33.6±0.14 |  |  |  |
| Experimental Conditions                           |              |           |           |  |  |  |
| Corolla diameter (mm)                             | 26.7±0.11    | 20.8±0.10 | 25.2±0.11 |  |  |  |
| Corolla tube length (mm)                          | 12.9±0.04    | 11.7±0.04 | 12.2±0.03 |  |  |  |
| Corolla shape (CV)                                | 1.2±0.04     | -0.7±0.01 | 0.8±0.03  |  |  |  |
| Petal anthocyanidin (cyanidin mg g⁻¹ FW)          | 5.2±0.04     | 1.3±0.05  | 5.0±0.06  |  |  |  |
| Petal flavonol (kaempferol mg g <sup>-1</sup> FW) | 55.3±0.4     | 60.8±0.5  | 31.1±0.4  |  |  |  |

**Supplementary Table 11. Reversible phenotypic plasticity in floral traits**. Field conditions refers to plants from Malaha population. Experimental conditions refer to plants from treatment 4.

|            | spring           |            | summer        |             |  |
|------------|------------------|------------|---------------|-------------|--|
|            | Total read bases | Total      | Total read    | Total reads |  |
| Individual | (bp)             | reads      | bases (bp)    |             |  |
| 70         | 7,192,526,828    | 47,632,628 | 7,183,531,456 | 47,573,056  |  |
| 81         | 7,624,189,320    | 50,491,320 | 6,574,315,010 | 43,538,510  |  |
| 83         | 7,438,282,348    | 49,260,148 | 6,352,743,952 | 42,071,152  |  |
| 98         | 7,713,896,004    | 51,085,404 | 7,808,254,696 | 51,710,296  |  |
| 120        | 6,576,313,344    | 43,551,744 | 7,103,341,698 | 47,041,998  |  |

**Supplementary Table 12.** Total read bases and total number of reads for the sequenced samples of each of the five individuals, one sample taken in experimental spring conditions and the other take in experimental mild summer conditions.

| Site     | LTLB | STLB | STMB | STSB | Beetle | Fly | Hoverfly | Beefly | Butterfly | Moth | Thrip |
|----------|------|------|------|------|--------|-----|----------|--------|-----------|------|-------|
| SPRING   |      |      |      |      |        |     |          |        |           |      |       |
| Malaha   | 175  | 0    | 0    | 4    | 0      | 0   | 2        | 0      | 2         | 0    | 0     |
| Quesada  | 190  | 0    | 0    | 0    | 0      | 0   | 4        | 0      | 0         | 0    | 0     |
| Tabernas | 160  | 6    | 0    | 20   | 0      | 2   | 2        | 50     | 0         | 0    | 0     |
| SUMMER   |      |      |      |      |        |     |          |        |           |      |       |
| Malaha   | 5    | 3    | 0    | 127  | 10     | 0   | 44       | 22     | 66        | 7    | 4     |
| Quesada  | 0    | 0    | 0    | 80   | 10     | 0   | 0        | 40     | 0         | 0    | 10    |
| Tabernas | 0    | 0    | 0    | 0    | 40     | 0   | 0        | 10     | 0         | 0    | 10    |

**Supplementary Table 13.** Frequency of occurrence of each pollination functional group in each plant population during spring and summer. LTLB: Long-tongued large bees, STLB: short-tongued large bees, STMB: Short-tongued medium-sized bees, STSB: short-tongued small bees.

## SUPPLEMENTARY REFERENCES

- 1. Tatsuzawa, F., Aiba, Y., Morino, T., Saito, N., Shinoda, K., Kato, K., & Honda, T. Copigmentation with acylated anthocyanin and kaempferol glycosides in violet and purple flower cultivars of *Aubrieta×cultorum* (Brassicaceae). J. Jap. Soc. Hort. Sci. **81**, 275–284 (2012).
- 2. Saito, N., Tatsuzawa, F., Nishiyama, A., Yokoi, M., Shigihara, A., & Honda, T. Acylated cyanidin 3sambubioside-5-glucosides in *Matthiola incana*. Phytochemistry **38**, 1027–1032 (1995).
- Marrelli, M., Morrone, F., Argentieri, M., Gambacorta, L., Conforti, F., & Avato, P. Phytochemical and biological profile of *Moricandia arvensis* (L.) DC.: an inhibitor of pancreatic lipase. Molecules 23, 2829 (2018).
- 4. Berreghioua, A.; Cheriti, A. Phytochemical investigation of the medicinal plant *Moricandia arvensis* L. from Algerian Sahara. Asian J. Pharm. Clin. Res. **5**, 450–453 (2018).
- Saito, K., Yonekura-Sakakibara, K., Nakabayashi, R., Higashi, Y., Yamazaki, M., Tohge, T., & Fernie, A. R. The flavonoid biosynthetic pathway in *Arabidopsis*: structural and genetic diversity. Plant Physiol. Biochem. **72**, 21–34 (2013).
- Yonekura-Sakakibara, K., Tohge, T., Matsuda, F., Nakabayashi, R., Takayama, H., Niida, R., Watanabe-Takahashi, A., Inoue, E., & Saito, K. Comprehensive flavonol profiling and transcriptome coexpression analysis leading to decoding gene–metabolite correlations in *Arabidopsis*. Plant Cell **20**, 2160–2176 (2008).
- 7. Nielsen, J. K., Nørbæk, R., & Olsen, C. E. Kaempferol tetraglucosides from cabbage leaves. Phytochemistry **49**, 2171–2176 (1998).
- 8. Buckingham, J. & Munasinghe, V. R. N. Dictionary of Flavonoids, CRC Press, Florida, USA (2015).