
iScience, Volume 23
Supplemental Information
HASLR: Fast Hybrid Assembly of Long Reads

Ehsan Haghshenas, Hossein Asghari, Jens Stoye, Cedric Chauve, and Faraz Hach

S1 Supplemental Figures

Figure S1. An example showing a region of choromosome 4 of C. elegans. Related to Table 1.

Figure S2. An example showing a region of choromosome X of C. elegans. Related to Table 1.

Figure S3. An example showing a region of choromosome X of hg38. Related to Table 1.

‘

Figure S4. An example showing a region of choromosome 18 of hg38. Related to Table 1.

Figure S5. An example showing a region of choromosome 16 of hg38. Related to Table 1.

Figure S6. An example showing a region of choromosome 15 of hg38. Related to Table 1.

Figure S7. An example showing a region of choromosome 14 of hg38. Related to Table 1.

Figure S8. An example showing a region of choromosome 13 of hg38. Related to Table 1.

Figure S9. An example showing a region of choromosome 11 of hg38. Related to Table 1.

Figure S10. An example showing a region of choromosome 9 of hg38. Related to Table 1.

�1
�1 �2

�
+

1
�
+

2

�2
�3 �4

�3
�5 �6

�4
�7 �8

{ }�1

�
+

3
�
+

4

{ }�2

�
−

1
�

−

2

{ }�1

�
−

3
�

−

4

{ }�2
�
+

7
�
+

8

{ }�4

�
+

5
�
+

6

{ }�3

�
−

7
�

−

8

{ }�4

�
−

5
�

−

6{ }�3

Figure S11. Possible orientations of aligning two unique contigs to a long read. The direction of
contigs aligned to long reads shows the strand of their corresponding sequence. These directions
guide us to find the proper edge type. The set of long reads supporting each edge is shown as its
label. Related to Figure 1.

(a) example of a tip in the backbone graph (b) example of a bubble in the backbone graph

Figure S12. Examples of tip and bubbles in the backbone graph. Here the backbone graph is
visualized using Bandage (Wick et al., 2015). Related to Figure 1.

�
+

�
�

−

�+1

(, , 3)�
+

� �
−

�+1

�1

�2

�3

���� �+1

POA	consensus

[����]�+� [����]�+� [����]�
−

�+1
[����]�

−

�+1

Figure S13. Example of an edge in backbone graph and its corresponding long read alignments.
Partial Order Alignment (POA) is used in constructing the consensus sequence (see subsection
S3.5). Related to Figure 1.

S2 Supplemental Tables

Table S1: Details about utilized software. Related to Tables 1 and 3.

Tool Version Reference Repository

Minia 3.2.1 Chikhi and Rizk (2013) github.com/GATB/minia

minimap2 2.17 Li (2018) github.com/lh3/minimap2

SPOA 1.1.3 Vaser et al. (2017) github.com/rvaser/spoa

GNU Time 1.9 – ftp.gnu.org/gnu/time/

ART 2.5.8 Huang et al. (2011) niehs.nih.gov/research/resources/software/biostatistics/art/

PBSIM 7fdcefd Ono et al. (2012) github.com/yukiteruono/pbsim

Canu 1.8 Koren et al. (2017) github.com/marbl/canu

Flye 2.6 Kolmogorov et al. (2019) github.com/fenderglass/Flye

wtdbg2 2.5 Ruan and Li (2019) github.com/ruanjue/wtdbg2

miniasm 0.3 Li (2016) https://github.com/lh3/miniasm

SPAdes 3.13.1 Antipov et al. (2015) github.com/ablab/spades

Unicycler 0.4.8 Wick et al. (2017) github.com/rrwick/unicycler

DBG2OLC 0246e46 Ye et al. (2016) github.com/yechengxi/dbg2olc

MaSuRCA 3.3.1 Zimin et al. (2017) github.com/alekseyzimin/masurca

Wengan v0.1 Di Genova et al. (2019) github.com/adigenova/wengan

QUAST 5.0.2 Mikheenko et al. (2018) github.com/ablab/quast

BUSCO 4.0.1 Simão et al. (2015) busco.ezlab.org

Table S2: Comparison between assemblies obtained by different tools on HG002 dataset against
human reference GRCh38. Related to Table 3.

A
ss

em
b
le

r

C
on

ti
gs

G
en

om
e

fr
ac

ti
on

N
G

A
50

M
is

as
se

m
b
li
es

ex
te

n
si

ve
+

lo
ca

l

M
is

m
at

ch
ra

te

In
d
el

ra
te

T
im

e

M
em

or
y

(G
B

)

Canu 6,227 96.203 1,832,773 6,145+7,285 136.16 79.05 533:25:31 34.31
Flye NA
wtdbg2 4,768 93.935 2,084,440 3,200+6,320 111.72 97.05 12:24:45 211.56
miniasm 5,762 95.537 1,463,623 3,222+10,145 162.20 575.98 94:12:20 444.65

Minia 575,982 84.428 4,694 1,374+1,518 83.65 16.99 9:22:10 8.66
SPAdes NA

hybridSPAdes NA
Unicycler NA
DBG2OLC NA
MaSuRCA NA
Wengan 2867 93.297 1,217,282 2,455+7,034 108.93 82.97 34:51:29 49.36
HASLR 11,557 92.487 424,477 2,397+8,908 113.94 209.92

Note: Mismatch and indel rates are reported per 100 kbp. Flye, SPAdes, hybridSPAdes, and Unicycler failed due to memory
limit. DBG2OLC failed due to exceeding the limit for the number of open files in the cluster (4000). MaSuRCA crashed after
running for 40 days.

github.com/GATB/minia
github.com/lh3/minimap2
github.com/rvaser/spoa
ftp.gnu.org/gnu/time/
niehs.nih.gov/research/resources/software/biostatistics/art/
github.com/yukiteruono/pbsim
github.com/marbl/canu
github.com/fenderglass/Flye
github.com/ruanjue/wtdbg2
https://github.com/lh3/miniasm
github.com/ablab/spades
github.com/rrwick/unicycler
github.com/yechengxi/dbg2olc
github.com/alekseyzimin/masurca
github.com/adigenova/wengan
github.com/ablab/quast
busco.ezlab.org

Table S3: Comparison between assemblies obtained by different tools on HG002 dataset against
Peregrine assembly of HiFi PacBio reads. Related to Table 3.

A
ss

em
b
le

r

C
on

ti
gs

G
en

om
e

fr
ac

ti
on

N
G

A
50

M
is

as
se

m
b
li
es

ex
te

n
si

ve
+

lo
ca

l

M
is

m
at

ch
ra

te

In
d
el

ra
te

T
im

e

M
em

or
y

(G
B

)

Canu 6,227 93.394 3,344,052 3,828+3,324 75.63 74.23 533:25:31 34.31
Flye NA
wtdbg2 4,768 91.377 4,050,425 2,578+2,510 54.90 93.36 12:24:45 211.56
miniasm 5,762 92.676 2,421,361 2,237+6,387 109.24 577.53 94:12:20 444.65

Minia 575,982 81.771 4,826 1,210+616 31.05 8.53 9:22:10 8.66
SPAdes NA

hybridSPAdes NA
Unicycler NA
DBG2OLC NA
MaSuRCA NA
Wengan 2867 90.458 1,727,800 1,227+3,428 55.16 76.26 34:51:29 49.36
HASLR 11,557 89.624 495,840 1,129+5,019 58.87 204.59

Note: Mismatch and indel rates are reported per 100 kbp. Flye, SPAdes, hybridSPAdes, and Unicycler failed due to memory
limit. DBG2OLC failed due to exceeding the limit for the number of open files in the cluster (4000). MaSuRCA crashed after
running for 40 days.

Table S4: Effect of polishing assemblies on the small assembly errors of two real datasets. Related
to Table 3.

Mismtach rate Indel rate

Dataset Assembler draft polished draft polished

Yeast Canu 8.85 7.56 7.99 7.99
(PacBio) Flye 11.60 7.51 28.41 4.38

wtdbg2 10.65 7.19 27.17 2.61
miniasm 31.45 12.57 381.55 38.79

hybridSPAdes 44.77 9.88 3.71 3.93
Unicycler 15.13 6.84 4.22 2.44
DBG2OLC 28.37 14.42 58.43 5.51
MaSuRCA 11.83 8.49 5.85 9.69
Wengan 11.86 7.36 34.29 2.08
HASLR 8.13 4.33 100.64 2.05

C.elegans Canu 65.28 65.88 58.82 29.71
(PacBio) Flye 50.50 44.72 52.89 26.25

wtdbg2 26.82 25.9 79.72 27.11
miniasm 79.10 52.41 393.94 38.52

hybridSPAdes 108.04 27.88 15.96 45.43
Unicycler 58.36 36.97 45.47 32.08
DBG2OLC 44.75 46.50 80.61 43.52
MaSuRCA 49.20 30.9 23.50 31.97
Wengan 35.75 21.13 121.11 22.82
HASLR 26.08 19.61 140.40 22.92

Note: Here polished genomes are obtained after a single round of polishing using Arrow (github.com/PacificBiosciences/
GenomicConsensus)

github.com/PacificBiosciences/GenomicConsensus
github.com/PacificBiosciences/GenomicConsensus

S3 Transparent Methods

S3.1 Obtaining unique short read contigs

The input to HASLR is a set of long reads (LRs) and a set of short reads (SRs) from the same
sample, together with an estimation of the genome size. HASLR starts by assembling SRs into a set
of short read contigs, denoted by C. Assembly of SRs is a well-studied topic and many efficient tools
have been specifically designed for that purpose. These tools use either a de Bruijn graph (Simpson
et al., 2009; Chikhi and Rizk, 2013) or an OLC strategy (based on an overlap graph or a string
graph) (Simpson and Durbin, 2012; Molnar et al., 2017) to assemble the genome by finding “proper”
paths in these graphs.

Next, HASLR identifies a set U of unique contigs (UCs), those SR contigs that are likely to
appear in the genome only once. The motivation for this is that repetitive SR contigs would cause
branching in the backbone graph and in fact, building the backbone graph using all SR contigs
could result in a very tangled graph. In other words, using only unique SR contigs for building the
backbone graph resolves many of the complexities and ambiguities in the graph. In order to identify
unique contigs, for every SR contig, ci, the mean k-mer frequency, f(ci), is computed as the average
k-mer count of all k-mers present in ci. Note that the value of f(ci) is proportional to the depth
of coverage of ci. Assuming longer contigs are more likely to come from unique regions, their mean
k-mer frequency can be a good indicator for identifying UCs. Let LCq ⊆ C be the set of q longest
SR contigs in C, and favg, fstd be the average and standard deviation of {f(c) | c ∈ LCq}. Then,
the set of unique contigs is defined as U = {u | u ∈ C and f(u) ≤ favg + 3fstd}. Our empirical
results show that this approach can identify UCs with high precision and recall (see Section 2.2 for
more details).

S3.2 Construction of backbone graph

The backbone graph encodes potential adjacencies between unique contigs and thus presents a large-
scale map of the genome, albeit, with some level of ambiguity. Using the backbone graph, HASLR
finds paths of unique contigs representing their relative order and orientation in the sequenced
genome. These paths are later transformed into the assembly.

Formally, given a set of UCs, U = {u1, u2, . . . , u|U |}, and a set of LRs, L = {l1, l2, . . . , l|L|},
HASLR builds the backbone graph BBG as follows. First, UCs are aligned against LRs. Each
alignment can be encoded by a 7-tuple

(
rbeg, rend, uid, ustrand, ubeg, uend, nmatch

)
whose

elements respectively denote the start and end positions of the alignment on the LR, the index of
the UC in U , the strand of the alignment (+ or −), the start and end position of the alignment on
the UC, and the number of matched bases in the alignment. Let Ai =

(
ai1, a

i
2, . . . a

i
|Ai|
)

be the list
of alignments of UCs to li, sorted by rend.

Note that alignments in Ai may overlap due to relaxed alignment parameters in order to
account for the high sequencing error rate of LRs. Thus, in the next step we aim to select a
subset of non-overlapping alignments whose total identity score – defined as the sum of the number
of matched bases – is maximal. Let Si(j) be the best subset among the first j alignments, i.e.
the non-overlapping subset of these j alignments with maximal total identity score. Si(j) can be

calculated using the following dynamic programming formulation:

Si(j) =

{
0 if j = 0

max
{
Si

(
j − 1

)
, Si

(
prev(j)

)
+ aij [nmatch]

}
otherwise

(1)

where prev(j) is the largest index z < j such that aij and aiz are non-overlapping alignments. By

calculating Si(|Ai|) and backtracking, we obtain a sorted sub-list Ri = (ri1, r
i
2, . . . , r

i
|Ri|) of non-

overlapping alignments with maximal total identity score, which we call the compact representation
of read li. Note that since the input list is sorted, prev(.) can be calculated in logarithmic time
which makes the time complexity of this dynamic programming O(|Ai| log |Ai|).

The backbone graph is a directed graph BBG = (V,E). The set of nodes is defined as
V = {u+

j , u
−
j | 1 ≤ j ≤ |U |} where u+

j and u−j represent the forward and reverse strand of the
UC uj , respectively. The set of edges is defined as the oriented adjacencies between UCs implied by
the compact representations of LRs. Formally each edge is represented by a triplet (uh, ut, supp)
where uh, ut ∈ V and supp is the set of indices of LRs supporting the adjacency between uh and
ut; these triplets are obtained as follows:

E =
⋃

1≤i≤|L| , 1≤j<|Ri|

{(
uhsh , utst , {i}

)
,
(
u
REV (ts)
t , u

REV (hs)
h , {i}

)}

where h = rij [uid], hs = rij [ustrand], t = rij+1[uid], ts = rij+1[ustrand], REV (+) = −, and
REV (−) = +. Supplemental Figure S11 illustrates the construction of the backbone graph edges
for several combinations of UC alignments on LRs.

At the end of this stage, the resulting backbone graph is a multi-graph as there can be multiple
edges between two nodes with different supp. In order to make it easier to process the backbone
graph, we convert it into a simple graph by merging supp of all edges between every pair of nodes
into a set of supporting LRs.

S3.3 Graph cleaning and simplification

Ideally, with accurate identification of UCs and correct alignment of UCs onto LRs, the backbone
graph for a haploid genome will consist of a set of connected components, each of which is a simple
path of nodes. In practice, this ideal case does not happen – mainly due to sequencing errors, wrong
UC to LR alignments, and chimeric reads. As a result, some fake branches as well as artifactual
structures might be formed in the backbone graph.

We clean the backbone graph BBG in two stages. First, in order to reduce the effect of wrong
UC to LR alignments, we remove all edges e such that |e[supp]| < minSupp, for a given parameter
minSupp. Second, the graph is simplified to remove the artifactual structures. These structures are
known as tips and bubbles. Tips are dead-end simple paths whose length are small compared to
their parallel paths. Bubbles are formed when two disjoint simple paths occur between two nodes.
Supplemental Figure S12 shows examples of tips and bubbles in our backbone graph. There exist
well-known algorithms for removing tips and bubbles that are commonly used in assemblers (Zerbino
and Birney, 2008; Bankevich et al., 2012; Molnar et al., 2017). We adapt these algorithms for use
in HASLR. Note that our tip and bubble removal procedures require an estimation of the length of

simple paths. Such estimation can be obtained from the length of UCs corresponding to the nodes
contained in a simple path as well as the average length of all LR subsequences that are supporting
edges between consecutive nodes. In the following we provide more details about our tip and bubble
removal steps.

Estimation of length and coverage for simple paths. In order to perform tip and bubble
removal, HASLR requires an estimate for the length and coverage of each simple path. Here, we
explain how this estimation is calculated.

For each UC in a simple path, we can calculate the coordinates of region that is aligned to all long
reads (we refer to this region as shared region). Since the length of shared regions corresponding
to all UCs are known, we only need to find an estimation for the middle regions (between two
consecutive shared regions). To do this, for each long read supporting the edge connecting two
UCs, we calculate the length of the LR subsequence that falls between shared regions (using the
alignment’s CIGAR string). See Supplemental Figure S13 for a toy example. We use the average of
length of all these subsequences as the estimation for the region between shared regions. Finally,
the length of the simple path can be estimated as the sum of length of all shared regions plus the
estimated length of all middle regions.

In addition, the coverage of each simple path can be calculated based on the number of long
reads supporting each edge as well as the estimated length of the middle regions between two
consecutive shared regions.

Bubble removal. On a haploid genome, our identification of unique short read contigs is accurate,
bubbles are caused only by incorrect alignment of UCs in the middle of LRs. In this case, the bubble
is usually formed by two simple paths with same length while one of them has a significantly lower
coverage.

In contrast, in diploid genomes, it is possible to have natural bubbles corresponding to
heterozygous regions of the genome. The main characteristic of such bubbles is having similar
coverage on two paths forming the bubble. If the region contains a heterozygous insertion or
deletion, the length of two simple paths forming the bubble are different. On the other hand,
if the region contains an inversion, two paths have the same length. Therefore, looking at length of
the two paths forming the bubble is not a good criteria for identification of artificial bubbles. This
means, decision making should be solely based on the coverage of two paths.

Tip removal. Tips are mainly caused by incorrect alignment of UCs at the extremities of LRs.
As a result, the simple path causing the tip is expected to have a small length. In addition, the
coverage of such simple path is usually much lower than other simple paths. In our implementation,
a simple path is considered as tip if (i) it is a dead-end (only one end is connected to other nodes)
and (ii) contains less than 3 UCs. Based on our observations, most of the tips are dead-end simple
paths that contain only a single UC.

S3.4 Generating the assembly

Let G be the cleaned and simplified backbone graph. The principle behind the construction of the
assembly is that each simple path in the cleaned backbone graph G is used to define a contig of
this assembly. Suppose P = (v1, e12, v2, e23, v3, . . . , vn) is a simple path of G. Although we already
have the DNA sequence for each UC corresponding to each node vi, the DNA sequence of the
resulting contig cannot be obtained immediately. This is due to the fact that at this stage the
subsequence between vi and vi+1 is unknown for each 1 ≤ i < n. Here, we explain how these
missing subsequences are reconstructed.

For simplicity, suppose we would like to obtain the subsequence between the pair v1 and v2

in P . Note that by construction, e12[supp] contains all LRs supporting e12. We can extract the
subsequence between v1 and v2 from each LR in e12[supp]. To do this, we find the region of
UCs corresponding to v1 and v2 that are aligned to all LRs in e12[supp]. Using the alignment
transcript (i.e. CIGAR string) the unaligned coordinate of each long read is calculated (see
Supplemental Figure S13 for a toy example). By computing the consensus sequence of the extracted
subsequences, we obtain cns12. Therefore, the DNA sequence corresponding to P can be obtained
via CONCAT (u1, cns12, u2, cns23, u3, . . . , un) where CONCAT (.) returns the concatenated DNA
sequence of all its arguments.

In order to generate the assembly, HASLR extracts all the simple paths in the cleaned backbone
graph G and constructs the corresponding contig for each of them as explained above. It is important
to note that each simple path P has a twin path P ′ which corresponds to the reverse complement
of the contig generated from P . Therefore, during our simple path extraction procedure, we ensure
to not use twin paths to avoid redundancy.

S3.5 Implementation details.

(i) HASLR utilizes a SR assembler to build its initial SR contigs. However, a higher quality assembly
that has fewer misassemblies is preferred. For this purpose, HASLR utilizes Minia (Chikhi and Rizk,
2013) to assemble SRs into SR contigs. Based on our experiments, Minia can generate a high quality
assembly quickly using a small memory footprint. (ii) For finding UCs, HASLR calculates mean
k-mer frequencies with a small value of k (default k = 49). This information can be easily obtained
by performing a k-mer counting on the SR dataset (for example using KMC (Kokot et al., 2017))
and calculating the average k-mer count of all k-mers present in each SR contig. Nevertheless,
usually assemblers automatically provide such information (e.g Minia and SPAdes). HASLR takes
k-mer frequencies reported by Minia for this task. (iii) HASLR uses only longest 25× coverage
of long reads for building the backbone graph which are extracted based on the given expected
genome size. (iv) In order to align UCs to LRs, HASLR employs minimap2 (Li, 2018). (v) Graph
cleaning is done with minSupp = 3 meaning that any edge that is supported with less than 3 LRs
is discarded. (vi) Finally, consensus sequences are obtained using the Partial Order Alignment (Lee
et al., 2002; Lee, 2003) (POA) algorithm implemented in the SPOA package (Vaser et al., 2017).
We have provided the versions of the tools and the parameters that are used to execute them in
Supplemental Table S1 and Supplemental Section S5, respectively.

S4 Simulated data

We used PBSIM to generate the simulated datasets. PBSIM has an option to infer the mean and
standard deviation of read length and the error rate from a real dataset. So first, we prepare that
real dataset. We use the first 10 runs of CHM1 (P6C4) dataset:

$ for acc in SRR2183739 SRR2183740 SRR2183741 SRR2183742 SRR2183743 SRR2183744 SRR2183745

SRR2183746 SRR2183747 SRR2183748; do wget http://sra-download.ncbi.nlm.nih.gov/srapub_files/${
acc}_${acc}_hdf5.tgz; done

$ for acc in SRR2183739 SRR2183740 SRR2183741 SRR2183742 SRR2183743 SRR2183744 SRR2183745

SRR2183746 SRR2183747 SRR2183748; do tar -zxvf ${acc}_${acc}_hdf5.tgz; done

$ for bax in m15051*.bax.h5; do bash5tools.py ${bax} --outFilePrefix ${bax} --outType fastq --

readType subreads --minLength 50 --minReadScore 0.75; done

$ for seq in m15051*.fastq; do cat ${seq}; done > chm1_p6c4_first_10.fastq

For simulation of the long reads:

$ pbsim --seed 0 --data-type CLR --depth 50 --length-min 1 --length-max 500000 --sample-fastq

chm1_p6c4_first_10.fastq --prefix long <reference_fasta>

For simulation of the short reads:

$ art_illumina --paired --in <reference_fasta> --len 150 --mflen 500 --sdev 50 --fcov 50 --rndSeed

0 --noALN --out short

S5 Command details

• Running HASLR

$ python3 haslr.py --threads <cores> --type <pacbio|nanopore> --cov-lr 25 --minia-kmer 55 --

minia-solid 3 --aln-block 500 --out <output_directory> --genome <genome_size> --long <

lr_file> --short <sr_file_1> <sr_file_2>

• Running Canu

$ canu -p <assembly_prefix> -d <output_directory> genomeSize=<genome_size> -pacbio-raw <

lr_file> useGrid=false

• Running Flye

$ flye -t <cores> -o <output_directory> -g <genome_size> --pacbio-raw <lr_file>

• Running wtdbg2

$ perl wtdbg2.pl -t <cores> -x <rs|ont> -g <genome_size> -o <assembly_prefix> <lr_file>

• Running miniasm

$ minimap2 -t <cores> -x ava-pb <lr_file> <lr_file> > asm.ava.paf

$ miniasm -f <lr_file> asm.ava.paf > asm.graph.gfa

$ awk '/^S/{print ">"$2"\n"$3}' asm.graph.gfa > asm.draft.fa

$ minimap2 -t <cores> -x map-pb asm.draft.fa <lr_file> > asm.map.paf

$ racon -t <cores> <lr_file> asm.map.paf asm.draft.fa > asm.polish.fa

• Running SPAdes

$ spades.py -t <cores> -m <max_memory> -1 <sr_file_1> -2 <sr_file_2> -o <output_directory>

• Running hybridSPAdes

$ spades.py -t <cores> -m <max_memory> -1 <sr_file_1> -2 <sr_file_2> --pacbio <lr_file> -o <

output_directory>

• Running Unicycler

$ unicycler -t <cores> --no_rotate --no_miniasm --no_pilon -o <assembly_prefix> -1 <

sr_file_1> -2 <sr_file_2> -l <lr_file>

• Running DBG2OLC (based on suggestions on the github repository)

$ fastutils interleave -q -1 <sr_file_1> -2 <sr_file_2> | fastutils subsample -q -d 50 -g <

genome_size> > short.50x.fastq

$ fastutils subsample -l -d 30 -g <genome_size> -i <lr_file> > long.30x.fasta

$ SparseAssembler LD 0 k 51 g 15 NodeCovTh 1 EdgeCovTh 0 GS <genome_size> f short.50x.fastq

$ DBG2OLC k 17 AdaptiveTh 0.01 KmerCovTh 2 MinOverlap 20 RemoveChimera 1 Contigs Contigs.txt

f long.30x.fasta

$ cat Contigs.txt long.30x.fasta > ctg_pb.fasta

$ ulimit -n 4000

$ split_and_run_sparc.sh backbone_raw.fasta DBG2OLC_Consensus_info.txt ctg_pb.fasta ./

consensus_dir

• Running MaSuRCA
Content of config.txt

DATA

PE= pe <insert_mean> <insert_std> <sr_file_1> <sr_file_1>

PACBIO=<lr_file>

NANOPORE=<lr_file>

END

PARAMETERS

GRAPH_KMER_SIZE = auto

LHE_COVERAGE=25

CA_PARAMETERS = cgwErrorRate=0.15

KMER_COUNT_THRESHOLD = 1

CLOSE_GAPS=0

NUM_THREADS = <cores>

JF_SIZE = 200000000

END

Command

bash assemble.sh

• Running Wengan

perl wengan.pl -t <cores> -a M -p <assembly_prefix> -x <pacraw|ontraw> -g <genome_size> -s <

sr_file_1>,<sr_file_1> -l <lr_file>

Supplemental References

D. Antipov, A. Korobeynikov, J. S. McLean, and P. A. Pevzner. hybridspades: an algorithm for
hybrid assembly of short and long reads. Bioinformatics, 32(7):1009–1015, 2015.

A. Bankevich, S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin, A. S. Kulikov, V. M. Lesin, S. I.
Nikolenko, S. Pham, A. D. Prjibelski, et al. Spades: a new genome assembly algorithm and its
applications to single-cell sequencing. Journal of computational biology, 19(5):455–477, 2012.

R. Chikhi and G. Rizk. Space-efficient and exact de bruijn graph representation based on a bloom
filter. Algorithms for Molecular Biology, 8(1):22, 2013.

A. Di Genova, E. Buena-Atienza, S. Ossowski, and M.-F. Sagot. Wengan: Efficient and high quality
hybrid de novo assembly of human genomes. bioRxiv, page 840447, 2019.

W. Huang, L. Li, J. R. Myers, and G. T. Marth. Art: a next-generation sequencing read simulator.
Bioinformatics, 28(4):593–594, 2011.

M. Kokot, M. D lugosz, and S. Deorowicz. Kmc 3: counting and manipulating k-mer statistics.
Bioinformatics, 33(17):2759–2761, 2017.

M. Kolmogorov, J. Yuan, Y. Lin, and P. A. Pevzner. Assembly of long, error-prone reads using
repeat graphs. Nature biotechnology, 37(5):540–546, 2019.

S. Koren, B. P. Walenz, K. Berlin, J. R. Miller, N. H. Bergman, and A. M. Phillippy. Canu: scalable
and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome
research, 27(5):722–736, 2017.

C. Lee. Generating consensus sequences from partial order multiple sequence alignment graphs.
Bioinformatics, 19(8):999–1008, 2003.

C. Lee, C. Grasso, and M. F. Sharlow. Multiple sequence alignment using partial order graphs.
Bioinformatics, 18(3):452–464, 2002.

H. Li. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences.
Bioinformatics, 32(14):2103–2110, 2016.

H. Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34(18):3094–3100,
2018.

A. Mikheenko, A. Prjibelski, V. Saveliev, D. Antipov, and A. Gurevich. Versatile genome assembly
evaluation with quast-lg. Bioinformatics, 34(13):i142–i150, 2018.

M. Molnar, E. Haghshenas, and L. Ilie. Sage2: parallel human genome assembly. Bioinformatics,
34(4):678–680, 2017.

Y. Ono, K. Asai, and M. Hamada. Pbsim: Pacbio reads simulatortoward accurate genome assembly.
Bioinformatics, 29(1):119–121, 2012.

J. Ruan and H. Li. Fast and accurate long-read assembly with wtdbg2. BioRxiv, page 530972,
2019.

F. A. Simão, R. M. Waterhouse, P. Ioannidis, E. V. Kriventseva, and E. M. Zdobnov.
Busco: assessing genome assembly and annotation completeness with single-copy orthologs.
Bioinformatics, 31(19):3210–3212, 2015.

J. T. Simpson and R. Durbin. Efficient de novo assembly of large genomes using compressed data
structures. Genome research, 22(3):549–556, 2012.

J. T. Simpson, K. Wong, S. D. Jackman, J. E. Schein, S. J. Jones, and I. Birol. Abyss: a parallel
assembler for short read sequence data. Genome research, 19(6):1117–1123, 2009.

R. Vaser, I. Sović, N. Nagarajan, and M. Šikić. Fast and accurate de novo genome assembly from
long uncorrected reads. Genome research, 27(5):737–746, 2017.

R. R. Wick, M. B. Schultz, J. Zobel, and K. E. Holt. Bandage: interactive visualization of de novo
genome assemblies. Bioinformatics, 31(20):3350–3352, 2015.

R. R. Wick, L. M. Judd, C. L. Gorrie, and K. E. Holt. Unicycler: resolving bacterial genome
assemblies from short and long sequencing reads. PLoS computational biology, 13(6):e1005595,
2017.

C. Ye, C. M. Hill, S. Wu, J. Ruan, and Z. S. Ma. Dbg2olc: efficient assembly of large genomes using
long erroneous reads of the third generation sequencing technologies. Scientific reports, 6:31900,
2016.

D. R. Zerbino and E. Birney. Velvet: algorithms for de novo short read assembly using de bruijn
graphs. Genome research, 18(5):821–829, 2008.

A. V. Zimin, D. Puiu, M.-C. Luo, T. Zhu, S. Koren, G. Marçais, J. A. Yorke, J. Dvořák, and
S. L. Salzberg. Hybrid assembly of the large and highly repetitive genome of aegilops tauschii,
a progenitor of bread wheat, with the masurca mega-reads algorithm. Genome research, 27(5):
787–792, 2017.

	isci_101389_mmc1.pdf
	HASLR: Fast Hybrid Assembly of Long Reads

