# **Supplementary Online Content**

Franz AR, Engel C, Bassler D, et al; ETTNO Investigators. Effects of liberal vs restrictive transfusion thresholds on survival and neurocognitive outcomes in extremely low-birth-weight infants: the ETTNO randomized clinical trial. *JAMA*. Published August 11, 2020. doi:10.1001/jama.2020.10690

**eTable 1.** Red Blood Cell Transfusion Hemoglobin Trigger Thresholds (4 Centers, 36 Patients)

eTable 2. Number of Red Blood Cell Transfusions and Volumes Transfused

**eTable 3.** Study Population Versus Patients Enrolled in German Neonatal Network 2011-2014

eTable 4. Patient Recruitment by Study Site

eTable 5. Additional Patient Characteristics before Randomization

eTable 6. Weekly Mean Hematocrit Values [in %] by Treatment Group

**eTable 7.** Model Diagnostics for Primary and Secondary Outcome Analyses in the Main Publication

eTable 8. Timing and Causes of Death

eTable 9. Growth Data

eTable 10. Post Hoc Analysis of Cognitive Deficit by Mode of Classification in Survivors

eTable 11. Sensitivity Analysis of the Primary Outcome

eTable 12. Primary and Secondary Endpoints in the Per Protocol Population

**eTable 13.** Pre-Defined Subgroup Analysis 1: Rate of Primary Outcome and Key Secondary Outcomes by Birthweight Stratum and Transfusion Trigger Thresholds

**eTable 14.** Pre-Defined Subgroup Analysis 2: Rate of Primary Outcome and Key Secondary Outcomes by Gender and Transfusion Trigger Thresholds

**eTable 15.** Pre-Defined Subgroup Analysis 3: Rate of Primary Outcome and Key Secondary Outcomes by Institutional SpO<sub>2</sub>-Target Range and Transfusion Trigger Thresholds

eFigure 1. Standardized Residual Plots (Analysis of the Primary Outcome)

eFigure 2. Overall Survival

eFigure 3. Treatment Effect on Weekly Mean Hematocrit in the Per-Protocol Population

eAppendix. Additional Information on Sample Size Calculation

eReferences

This supplementary material has been provided by the authors to give readers additional information about their work.

eTable 1. Red Blood Cell Transfusion Hemoglobin Trigger Thresholds (4 Centers, 36

## Patients)

|                        | Libo<br>Red Blood Ce<br>Thres | eral<br>ell Transfusion<br>sholds | Restrictive<br>Red Blood Cell Transfusion<br>Thresholds |                |  |
|------------------------|-------------------------------|-----------------------------------|---------------------------------------------------------|----------------|--|
| Postnatal Age          | State o                       | f Health                          | State o                                                 | f Health       |  |
|                        | 'Critical' 'Non-Critical'     |                                   | 'Critical'                                              | 'Non-Critical' |  |
| Randomization - 7 days | <8.5mmol/l                    | <7.2mmol/l                        | <7.0mmol/l                                              | <5.8mmol/l     |  |
| 8 - 21days             | <7.6mmol/l                    | <6.4mmol/l                        | <6.2mmol/l                                              | <5.0mmol/l     |  |
| >21 days               | <7.0mmol/l                    | <5.8mmol/l                        | <5.6mmol/l                                              | <4.3mmol/l     |  |

Four centers (36 patients) used the above hemoglobin trigger thresholds, with hemoglobin concentrations also determined by co-oximetry/photometry from capillary blood samples. Centers had to choose either hematocrit or hemoglobin triggers before starting enrolment to preclude ambiguity.

### eTable 2. Number of Red Blood Cell Transfusions and Volumes Transfused After

## Randomization Until Postmenstrual Age 36 Weeks <sup>a</sup>

| Endpoint                                                                                                                                                                   |                                                             | Liberal<br>(n=492)                                                               | Restrictive<br>(n=521)                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Number of RBCT per Infant <sup>a</sup>                                                                                                                                     | Median (1 <sup>st</sup> Q-3 <sup>rd</sup> Q)<br>(n)         | 2 (1 - 4)<br>(492)                                                               | 1 (0 - 3)<br>(521)                                                              |
| Number of Infants with<br>0 RBCT<br>1 RBCT<br>2 RBCT<br>3 RBCT<br>4 RBCT<br>5 RBCT<br>5 RBCT<br>more than 5 RBCT <sup>a, b, c</sup>                                        | n (%)<br>n (%)<br>n (%)<br>n (%)<br>n (%)<br>n (%)<br>n (%) | 101 (21%)<br>95 (19%)<br>84 (17%)<br>70 (14%)<br>44 (9%)<br>50 (10%)<br>48 (10%) | 210 (40%)<br>101 (19%)<br>74 (14%)<br>59 (11%)<br>33 (6%)<br>10 (2%)<br>34 (7%) |
| Cumulative Volume Transfused per<br>Infant [ml] <sup>a</sup>                                                                                                               | Median (1 <sup>st</sup> Q-3 <sup>rd</sup> Q)<br>(n)         | 40 (16 - 73)<br>(486)                                                            | 19 (0 - 46)<br>(519)                                                            |
| Number of Infants who Received at<br>least 1 RBCT Not Given According<br>to Protocol                                                                                       | n/N (%)                                                     | 47 / 492 (10%)                                                                   | 97 / 521 (19%)                                                                  |
| Number of Infants who Received all<br>RBCT According to Protocol but at<br>least 1 RBCT Not According to the<br>Hct Trigger, but According to<br>'Exceptional Indications' | n/N (%)                                                     | 34 / 492 (7%)                                                                    | 66 / 521 (13%)                                                                  |
| Number of Infants who Received all<br>RBCT According to Hct Trigger<br>(Including Those Without any<br>Documented RBCT)                                                    | n/N (%)                                                     | 411 / 492 (84%)                                                                  | 358 / 521 (69%)                                                                 |
| Number of Infants who did Not<br>Receive an Indicated RBCT Despite<br>a Hct Value Below the Trigger<br>Threshold                                                           | n/N (%)                                                     | 65 / 492 (13%)                                                                   | 5 / 521 (1%)                                                                    |
| Number of RBCT Not Given<br>According to Protocol <sup>a</sup>                                                                                                             | n/N (%)                                                     | 60 / 1258 (5%)                                                                   | 137 / 904 (15%)                                                                 |
| Number of RBCT Not According to<br>Hct Trigger but According to<br>'Exceptional Indications' <sup>a</sup>                                                                  | n/N (%)                                                     | 72 / 1258 (6%)                                                                   | 193 / 904 (21%)                                                                 |
| No. of RBCT Not According to<br>Hct-Trigger with Indication<br>"Major Surgery" <sup>d</sup>                                                                                | n/N (%)                                                     | 37 /1258 (3%)                                                                    | 89 / 904 (10%)                                                                  |
| No. of RBCT Not According to<br>Hct-Trigger with Indication<br>"Other Emergency" <sup>d</sup>                                                                              | n/N (%)                                                     | 32 /1258 (3%)                                                                    | 88 / 904 (10%)                                                                  |

© 2020 American Medical Association. All rights reserved.

| No. of RBCT Not According to<br>Hct-Trigger with Indication<br>"Lactic Acidosis" <sup>d</sup>     | n/N (%)               | 15 / 1258 (1%)       | 40 / 904 (4%)       |
|---------------------------------------------------------------------------------------------------|-----------------------|----------------------|---------------------|
| No. of RBCT Not According to Hct-Trigger with Indication "Major Bleeding" <sup>d</sup>            | n/N (%)               | 6 / 1258 (0.5%)      | 18 / 904 (2%)       |
| No. of RBCT Administered in Critical Condition <sup>a, e</sup>                                    | n/N (%)               | 1028 / 1258 (82%)    | 823 / 904 (91%)     |
|                                                                                                   | ≤d7 / n               | 206                  | 129                 |
| No. of RBCT Administered in<br>Critical Condition According to<br>Postnatal Age <sup>e</sup>      | d8-d21 / n            | 386                  | 284                 |
|                                                                                                   | >d21 / n              | 436                  | 410                 |
| No. of RBCT Administered in Non-<br>Critical Condition <sup>a, e</sup>                            | n/N (%)               | 230 / 1258 (18%)     | 80 / 904 (9%)       |
|                                                                                                   | ≤d7 / n               | 13                   | 2                   |
| No. of RBCT Administered in Non-<br>Critical Condition According to<br>Postnatal Age <sup>e</sup> | d8-d21 / n            | 45                   | 17                  |
| 5                                                                                                 | >d21 / n              | 172                  | 61                  |
| Storage Age of RBCs at Time of RBCT<br>[days]                                                     | Median (Q1-Q3)<br>(n) | 8 (4 – 13)<br>(1092) | 7 (4 – 13)<br>(790) |
| No. of RBCT with irradiated RBCs                                                                  | n/N (%)               | 786 / 1242 (63%)     | 608 / 898 (68%)     |
| Time between Irradiation of RBCs<br>and Administration<br>[days]                                  | Median (Q1-Q3)<br>(n) | 0 (0 – 1)<br>(711)   | 0 (0 – 1)<br>(506)  |

RBCT = red blood cell transfusion; RBCs = red blood cells

<sup>a</sup> This table summarizes the 2162 RBCT administered from randomization until 36 weeks

postmenstrual age (PMA).

<sup>b</sup> There were additional 13 infants who had their first RBCT(s) after randomization beyond 36

weeks PMA (9 in the liberal and 4 in the restrictive group), together 16 RBCTs. Furthermore,

another 201 RBCTs were administered after PMA 36 weeks in 132 infants (87 in the liberal

and 45 infants in the restrictive triggers group) who had already been transfused previously.

The total number of RBCT documented in ETTNO sums up to 2379.

<sup>c</sup> 24 infants (6 in liberal and 18 in the restrictive group) of the 311 infants listed herein without RBCT from randomization to 36 weeks PMA had received at least 1 RBCT before randomization (of these 3 (2 liberal, 1 restrictive) had additional RBCT after 36weeks PMA).
In total, 88 infants in the liberal group and 189 infants in the restrictive group had no RBCT at all.

<sup>d</sup> More than 1 exceptional indication possible. RBCTs according to exceptional indication did not result in exclusion from the per-protocol population.

<sup>e</sup> In 1 / 2062 RBCT from randomization to 36 weeks postmenstrual age, the clinical condition was not documented.

### eTable 3. Study Population Versus Patients Enrolled in German Neonatal Network

### 2011-2014

|                                     |              | ETTNO Study Population  | German Neonatal<br>Network  |
|-------------------------------------|--------------|-------------------------|-----------------------------|
| Inclusion period                    |              | 07-14-2011 - 11-14-2014 | 01-01-2011 - 12-31-<br>2014 |
| No. of inclusions                   | n            | 1013                    | 4412                        |
| Gestational Age at Birth<br>[weeks] | Mean<br>(SD) | 26.3 (1.7)              | 26.2 (1.8)                  |

The German Neonatal Network database was consulted searching infants born between 01-01-2011 and 12-31-2014 (the recruitment period of this trial), and filtered for infants meeting the inclusion criteria of this trial (birth weight <1000g, gestational age at birth <30 weeks and full medical support). Data kindly provided by Wolfgang Göpel, University of Lübeck, Germany, personal communication 07-10-2019.

## eTable 4. Patient Recruitment by Study Site

| Recruiting Hospital                                                         | Country Code | Number of<br>Patients<br>Recruited |
|-----------------------------------------------------------------------------|--------------|------------------------------------|
| University Hospital Ulm                                                     | DE           | 70                                 |
| Charité Universitätsmedizin Berlin                                          | DE           | 61                                 |
| University Hospital Münster                                                 | DE           | 58                                 |
| Klinikum Neukölln, Berlin                                                   | DE           | 49                                 |
| Helios Klinikum Erfurt                                                      | DE           | 48                                 |
| Vestische Kinder-und Jugendklinik Datteln<br>Universität Witten/Herdecke    | DE           | 47                                 |
| University Hospital Düsseldorf                                              | DE           | 43                                 |
| Department of General Pediatrics and Neonatology                            | DE           | 42                                 |
| University Children's Hospital Tübingen                                     | DE           | 42                                 |
| University Hospital Magdeburg                                               | DE           | 41                                 |
| University Hospital Schleswig-Holstein, Campus<br>Lübeck                    | DE           | 38                                 |
| Klinikum Links der Weser, Bremen                                            | DE           | 33                                 |
| Department of Pediatrics I, University Duisburg-<br>Essen                   | DE           | 32                                 |
| University Hospital Frankfurt                                               | DE           | 32                                 |
| University Hospital Marburg                                                 | DE           | 30                                 |
| Klinikum Stuttgart, Olgahospital                                            | DE           | 29                                 |
| University Hospital Leipzig                                                 | DE           | 29                                 |
| Universitätsklinik für Kinder- und Jugendmedizin,<br>Klinikum Oldenburg AöR | DE           | 24                                 |
| University Hospital Munich                                                  | DE           | 24                                 |
| Rigshospitalet Copenhagen                                                   | DK           | 23                                 |
| DRK-Kinderklinik Siegen                                                     | DE           | 23                                 |
| Medizinische Hochschule Hannover                                            | DE           | 23                                 |
| University Hospital Carl Gustav Carus, Dresden                              | DE           | 23                                 |

| Department of Neonatology, University Children's<br>Hospital Regensburg (KUNO), Regensburg | DE | 21 |
|--------------------------------------------------------------------------------------------|----|----|
| Universitätskinderklinik Bochum, StElisabeth-<br>Hospital                                  | DE | 22 |
| University Medical Center Hamburg-Eppendorf                                                | DE | 18 |
| University Hospital Aachen                                                                 | DE | 16 |
| Klinikum Augsburg                                                                          | DE | 16 |
| Universitätsmedizin Greifswald                                                             | DE | 14 |
| Klinikum Nürnberg Süd                                                                      | DE | 12 |
| University Hospital Erlangen                                                               | DE | 9  |
| Aarhus Universitetshospital                                                                | DK | 7  |
| The Medical University Ostrava                                                             | CZ | 5  |
| University Hospital Cologne                                                                | DE | 5  |
| Altonaer Kinderkrankenhaus Hamburg                                                         | DE | 3  |
| Tartu University Hospital                                                                  | EE | 1  |

Recruiting hospitals with number of patients contributed in the order of number of patients enrolled (Country codes are: EE = Estonia, CZ = Czech Republic, DK = Denmark, DE = Germany)

## eTable 5. Additional Patient Characteristics Before Randomization

|                                                                                                                                              |                                                          | Liberal<br>(n=492)                                                                  | Restrictive<br>(n=521)                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Courses of Antenatal Corticosteroids<br>0 (None)<br>1 (one incomplete)<br>2 (one complete)<br>3 (two complete)<br>4 (>2 complete)<br>unknown | n/N (%)<br>n/N (%)<br>n/N (%)<br>n/N (%)<br>n/N (%)<br>n | 52/484 (11%)<br>129/484 (27%)<br>248/484 (51%)<br>53/484 (11%)<br>2/484 (0.4%)<br>8 | 64/515 (12%)<br>121/515 (23%)<br>270/515 (52%)<br>58/515 (11%)<br>2/515 (0.4%)<br>6 |
| Any Surfactant<br>before Randomization                                                                                                       | n/N (%)                                                  | 402/492 (82%)                                                                       | 413/520 (79%)                                                                       |
| Any Caffeine<br>before Randomization                                                                                                         | n/N (%)                                                  | 443/492 (90%)                                                                       | 460/521 (88%)                                                                       |
| Any Catecholamines<br>before Randomization                                                                                                   | n/N (%)                                                  | 72/492 (15%)                                                                        | 88/521 (17%)                                                                        |
| Any Systemic Corticosteroids <sup>a</sup> before Randomization                                                                               | n/N (%)                                                  | 20/492 (4%)                                                                         | 20/521 (4%)                                                                         |
| Any Inhaled Corticosteroids<br>before Randomization                                                                                          | n/N (%)                                                  | 5/492 (1%)                                                                          | 6/521 (1%)                                                                          |
| Any Inhaled Nitric Oxide<br>before Randomization                                                                                             | n/N (%)                                                  | 18/492 (4%)                                                                         | 17/521 (3%)                                                                         |
| Any Prophylactic Indomethacine /<br>Ibuprofen<br>before Randomization                                                                        | n/N (%)                                                  | 62/492 (13%)                                                                        | 58/521 (11%)                                                                        |
| Any Therapeutic Indomethacine /<br>Ibuprofen<br>before Randomization                                                                         | n/N (%)                                                  | 41/492 (8%)                                                                         | 40/521 (8%)                                                                         |
| Any Erythropoietin<br>before Randomization                                                                                                   | n/N (%)                                                  | 0/492 (0%)                                                                          | 0/521 (0%)                                                                          |
| Focal Intestinal Perforation<br>before Randomization                                                                                         | n/N (%)                                                  | 4/492 (1%)                                                                          | 3/521 (1%)                                                                          |
| NEC > IIa<br>before Randomization                                                                                                            | n/N (%)                                                  | 0/492 (0%)                                                                          | 0/521 (0%)                                                                          |
| Pulmonary Hemorrhage Requiring<br>Transfusion<br>before Randomization                                                                        | n/N (%)                                                  | 6/492 (1%)                                                                          | 8/521 (2%)                                                                          |
| Any I/PVH <sup>b</sup> before Randomization                                                                                                  | n/N (%)                                                  | 57/483 (12%)                                                                        | 50/509 (10%)                                                                        |

| I/PVH 3°/4° <sup>b</sup><br>before Randomization                                                                                                                                              | n/N (%)                                                | 13/483 (3%)                                                       | 13/509 (3%)                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|
| Cystic Periventricular Leukomalacia<br>before Randomization <sup>b</sup>                                                                                                                      | n/N (%)                                                | 1/483 (0.2%)                                                      | 5/509 (1%)                                                        |
| FiO₂ at Randomization                                                                                                                                                                         | Median<br>(1 <sup>st</sup> Q-3 <sup>rd</sup> Q)<br>(n) | 0.22 (0.21-0.27)<br>(n=491)                                       | 0.21 (0.21-<br>0.28)<br>(n=519)                                   |
| Respiratory Support at<br>Randomization<br>None<br>CPAP<br>Noninvasive Ventilation<br>Invasive Ventilation                                                                                    | n/N (%)<br>n/N (%)<br>n/N (%)<br>n/N (%)               | 4/492 (1%)<br>236/492 (48%)<br>57/492 (12%)<br>195/492 (40%)      | 6/521 (1%)<br>235/521 (45%)<br>62/521 (12%)<br>218/521 (42%)      |
| Any Tocolytic Therapy                                                                                                                                                                         | n/N (%)                                                | 220/490 (45%)                                                     | 246/516 (48%)                                                     |
| Any Maternal Antibiotics                                                                                                                                                                      | n/N (%)                                                | 256/489 (52%)                                                     | 262/518 (51%)                                                     |
| Preterm Premature Rupture of<br>Membranes                                                                                                                                                     | n/N (%)                                                | 125/485 (26%)                                                     | 110/511 (22%)                                                     |
| Clinical Chorioamnionitis °                                                                                                                                                                   | n/N (%)                                                | 153/491 (31%)                                                     | 144/518 (28%)                                                     |
| Histological Chorioamnionitis<br>Chorioamnionitis with Funisitis<br>Chorioamnionitis without Funisitis<br>No Chorioamnionitis on histology<br>no histology<br>unknown                         | n/N (%)<br>n/N (%)<br>n/N (%)<br>n/N (%)<br>n          | 35/483 (7%)<br>34/483 (7%)<br>104/483 (22%)<br>310/483 (64%)<br>9 | 29/515 (6%)<br>34/515 (7%)<br>116/515 (23%)<br>336/515 (65%)<br>6 |
| Placental Abruption                                                                                                                                                                           | n/N (%)                                                | 52/458 (11%)                                                      | 48/492 (10%)                                                      |
| <b>Cause of Preterm Delivery</b><br>(multiple answers permitted):<br>Pre-eclampsia / HELLP / PIH <sup>d</sup><br>Abnormal CTG/pathological Doppler<br>Unsupressible Labor<br>Chorioamnionitis | n/N (%)<br>n/N (%)<br>n/N (%)<br>n/N (%)               | 107/491 (22%)<br>184/490 (38%)<br>166/491 (34%)<br>123/491 (25%)  | 123/520 (24%)<br>210/519 (40%)<br>193/520 (37%)<br>114/519 (22%)  |

<sup>a</sup> 18 infants in the liberal and 19 infants in the restrictive transfusion trigger group received systemic corticosteroids for treatment of arterial hypotension, all remaining for prevention of bronchopulmonary dysplasia.

<sup>b</sup> I/PVH = Intra-/ Periventricular Hemorrhage / Hemorrhagic Infarction. Data on I/PVH include

results of 250 head ultrasounds performed at the day of randomization (i.e., which may have

been done shortly after randomization).

<sup>c</sup> Clinical chorioamnionitis was defined as at least one of the following criteria: maternal rectal temperature > 38.0° C, maternal axillary temperature > 38.5° C, maternal leukocytosis > 15000/µl, maternal CRP > 3.0 mg/dl, fetal tachycardia > 170/min
 <sup>d</sup> HELLP = High Liver Enzymes, Low Platelets; PIH = Pregnancy-induced Hypertension

© 2020 American Medical Association. All rights reserved.

|                                | Liberal               | Restrictive           |                              |         |
|--------------------------------|-----------------------|-----------------------|------------------------------|---------|
|                                | Mean (SD)<br>(n)      | Mean (SD)<br>(n)      | Mean-Difference<br>(95%Cl) ª | p-Value |
| Week 1<br>Before Randomization | 46.8 (7.2)<br>(n=472) | 47.3 (7.1)<br>(n=494) | -0.6<br>(-1.5 – +0.4)        | 0.230   |
| Week 1<br>After Randomization  | 45.1 (5.7)<br>(n=463) | 43.6 (6.5)<br>(n=505) | +1.5<br>(+0.7 – +2.3)        | <0.0001 |
| Week 2                         | 41.9 (5.2)<br>(n=461) | 39.5 (5.5)<br>(n=489) | +2.4<br>(+1.7 – +3.1)        | <0.0001 |
| Week 3                         | 39.5 (4.8)<br>(n=443) | 36.2 (5.0)<br>(n=468) | +3.2<br>(+2.6 – +3.8)        | <0.0001 |
| Week 4                         | 37.6 (4.6)<br>(n=411) | 34.3 (4.8)<br>(n=445) | +3.3<br>(+2.7 – +4.0)        | <0.0001 |
| Week 5                         | 36.1 (4.7)<br>(n=407) | 33.4 (4.8)<br>(n=436) | +2.7<br>(+2.0 – +3.3)        | <0.0001 |
| Week 6                         | 35.8 (4.9)<br>(n=385) | 32.7 (4.9)<br>(n=399) | +3.1<br>(+2.4 – +3.8)        | <0.0001 |
| Week 7                         | 35.3 (4.6)<br>(n=350) | 32.0 (5.0)<br>(n=365) | +3.2<br>(+2.5 – +4.0)        | <0.0001 |
| Week 8                         | 35.0 (4.8)<br>(n=298) | 32.0 (5.0)<br>(n=325) | +3.0<br>(+2.3 – +3.8)        | <0.0001 |
| Week 9                         | 35.1 (5.2)<br>(n=240) | 31.7 (4.6)<br>(n=258) | +3.4<br>(+2.5 – +4.3)        | <0.0001 |
| Week 10                        | 34.9 (4.5)<br>(n=193) | 31.8 (4.4)<br>(n=189) | +3.1<br>(+2.2 – +4.0)        | <0.0001 |
| Week 11                        | 34.3 (5.0)<br>(n=124) | 32.2 (4.7)<br>(n=124) | +2.0<br>(+0.8 – +3.2)        | 0.0013  |
| Week 12                        | 34.8 (6.0)<br>(n=66)  | 33.9 (6.0)<br>(n=73)  | +0.9<br>(-1.1 – +2.9)        | 0.36    |
| Week 13                        | 36.6 (6.8)<br>(n=15)  | 33.0 (3.5)<br>(n=18)  | +3.6<br>(-0.2 – +7.3)        | 0.06    |

## eTable 6. Weekly Mean Hematocrit Values [in %] by Treatment Group

<sup>a</sup> Slight deviations to numerical difference between mean values due to rounding

<sup>b</sup> By two-sided t-test

eTable 7. Model Diagnostics for Primary and Secondary Outcome Analyses in the Main Publication

|                                                                        | Type of<br>Analysis    | Factors                                          | Hosmer-<br>Lemeshow<br>'Goodness<br>of Fit' <sup>a</sup> | Contingency<br>Coefficient C | Residual<br>Histogram | Residual by<br>Predicted Plot | QQ-Plot | R-Square |
|------------------------------------------------------------------------|------------------------|--------------------------------------------------|----------------------------------------------------------|------------------------------|-----------------------|-------------------------------|---------|----------|
| Primary Endpoint                                                       |                        |                                                  |                                                          |                              |                       |                               |         |          |
| Death or<br>Neurodevelopmental<br>Impairment by 24 Months <sup>b</sup> | Logistic<br>Regression | treatment,<br>center and birth<br>weight stratum | p=0.89                                                   | 0.691                        |                       | -                             | -       | -        |
| Secondary Endpoints                                                    |                        |                                                  |                                                          |                              |                       |                               |         |          |
| Death by 24 Months                                                     | Logistic<br>Regression | treatment                                        | -                                                        | 0.511                        | -                     | -                             | -       | -        |
| Cognitive Deficit                                                      | Logistic<br>Regression | treatment,<br>center and birth<br>weight stratum | p=0.96                                                   | 0.688                        | -                     | -                             | -       | -        |
| Cognitive Deficit<br>defined as Mental<br>Developmental Index <85      | Logistic<br>Regression | treatment                                        | -                                                        | 0.510                        | -                     | -                             | -       | -        |
| Cognitive Deficit<br>defined as Mental<br>Developmental Index <70      | Logistic<br>Regression | treatment                                        | -                                                        | 0.524                        | -                     | -                             | -       | -        |

| Mental Developmental Index<br>–Score                              | ANOVA                  | treatment,<br>center and birth<br>weight stratum) | - |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Perdenk by Predict for ead, stratig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0 First direction for educing        | 0.09 |
|-------------------------------------------------------------------|------------------------|---------------------------------------------------|---|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------|
| Cerebral Palsy                                                    | Logistic<br>Regression | treatment                                         | - | 0.536 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                      | -    |
| Psychomotor Developmental<br>Index –Score                         | ANOVA                  | treatment,<br>center and birth<br>weight stratum  | - |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $= \underbrace{ \begin{array}{c} Reduce by Produced by Produc$ | 0 4 Prior of heridation for PSQ, using | 0.26 |
| Gross Motor Function<br>Classification System-Score<br>I-V        | Logistic<br>Regression | treatment                                         | - | 0.521 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                      | -    |
| Severe Visual Impairment                                          | Logistic<br>Regression | treatment                                         | - | 0.516 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                      | -    |
| Severe Hearing Impairment                                         | Logistic<br>Regression | treatment                                         | - | 0.543 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                      | -    |
| Length of Hospital Stay<br>[days]                                 | ANOVA                  | treatment,<br>center and birth<br>weight stratum  | - |       | Behavior of build of the "page.eff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DO Plut of Houskas for Tapa, and       | 0.14 |
| Postnatal Age at End of<br>Invasive Ventilatory Support<br>[days] | ANOVA                  | treatment,<br>center and birth<br>weight stratum  | - | -     | Derivative of Proclamb to Tage (That and the Tage ( |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GC/Per effective Int Type, Char        | 0.14 |

| Postnatal Age at Last<br>Positive Pressure<br>Respiratory Support<br>[days] | ANOVA | treatment,<br>center and birth<br>weight stratum | - | - | Production for Production for Fundamental for Fundamenta for Fundamenta for Fundamental for Fundamental for Fu                                                                                                                                                 | 20/htt of blockshold for Tup, CHP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.32 |
|-----------------------------------------------------------------------------|-------|--------------------------------------------------|---|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Postnatal Age at Last<br>Supplemental Oxygen<br>[days]                      | ANOVA | treatment,<br>center and birth<br>weight stratum | - | - | Particular to Postdander for Page region<br>Postdander for P | C.3.Pier of Revelocities for Traps, regree<br>0.3.Pier of Revelociti | 0.28 |
| Postnatal Age at Last<br>Caffeine Administration<br>[days]                  | ANOVA | treatment,<br>center and birth<br>weight stratum | - | - |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OdPart Readous for Tage, antipartition<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.28 |
| Postnatal Age at End of<br>Gavage Feeding<br>[days]                         | ANOVA | treatment,<br>center and birth<br>weight stratum | - | - |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.29 |

<sup>a</sup> higher p-values in the Hosmer-Lemeshow test indicate better 'fit' of the underlying model. The test was only applied to logistic regressions with more

than one factor.

<sup>b</sup> Please refer to eFigure 1 for standardized residual plots for the analysis of the primary outcome.

#### eTable 8. Timing and Causes of Death

| Timing                                    |                                                                   | Liberal<br>(n=492)       | Restrictive<br>(n=521)    |
|-------------------------------------------|-------------------------------------------------------------------|--------------------------|---------------------------|
| Before Discharge <sup>a</sup>             | n / N(%)                                                          | 36 / 488 (7.4%)          | 38 / 515 (7.4%)           |
| After Discharge to 24 months <sup>b</sup> | n / N (%)                                                         | 2 / 460 (0.4%)           | 6 / 491 (1.2%)            |
| Postnatal Age at<br>Death<br>[days]       | Median (1 <sup>st</sup> Q-<br>3 <sup>rd</sup> Q)<br>(Min. – Max.) | 19 (9 – 72)<br>(3 – 360) | 19 (8 – 125)<br>(3 – 346) |
| Cause                                     |                                                                   |                          |                           |
| Pulmonary                                 | n (%)                                                             | 10 (2.0%)                | 16 (3.1%)                 |
| Cardiac                                   | n (%)                                                             | 2 (0.4%)                 | 3 (0.6%)                  |
| Gastrointestinal                          | n (%)                                                             | 14 (2.8%)                | 11 (2.1%)                 |
| Infectious                                | n (%)                                                             | 6 (1.2%)                 | 9 (1.7%)                  |
| IVH/PVL                                   | n (%)                                                             | 1 (0.2%)                 | 2 (0.4%)                  |
| Multiorgan Failure                        | n (%)                                                             | 5 (1.0%)                 | 3 (0.6%)                  |
| Total                                     | n (%)                                                             | 38 (7.7%)                | 44 (8.4%)                 |

<sup>a</sup> Denominator: all infants followed through discharge (i.e., all infants enrolled except those in whom consent was withdrawn before discharge)

<sup>b</sup> Denominator: all infants followed through 24 months corrected age (i.e., all infants enrolled except those lost to follow-up and in whom consent was withdrawn before 24 months)

### eTable 9. Growth Data <sup>a</sup>

|                                 |                  | Liberal<br>(n=492)      | Restrictive<br>(n=521)  | Difference in<br>LS Means<br>(95% Cl) <sup>b</sup> | p-Value <sup>b</sup> |
|---------------------------------|------------------|-------------------------|-------------------------|----------------------------------------------------|----------------------|
| Birth Weight [g]                | Mean (SD)<br>(n) | 753 ± 164<br>(n=492)    | 750 ± 163<br>(n=521)    | _c                                                 |                      |
| SDS(Birth Weight)               | Mean (SD)<br>(n) | -0.52 ± 0.93<br>(n=492) | -0.57 ± 0.84<br>(n=521) | _c                                                 |                      |
| Weight <sub>(PMA36)</sub> [g]   | Mean (SD)<br>(n) | 2113 ± 356<br>(n=459)   | 2068 ± 361<br>(n=483)   | +44<br>(+3 - +85)                                  | 0.04                 |
| SDS(Weight PMA36)               | Mean (SD)<br>(n) | -1.33 ± 0.88<br>(n=459) | -1.44 ± 0.92<br>(n=483) | +0.11<br>(+0.01 -<br>+0.21)                        | 0.04                 |
| Weight <sub>(24M FU)</sub> [kg] | Mean (SD)<br>(n) | 10.93 ± 1.50<br>(n=417) | 10.93 ± 1.59<br>(n=442) | +0.0<br>(-0.2 - +0.2)                              | 0.98                 |
| SDS(Weight 24M FU)              | Mean (SD)<br>(n) | -0.71 ± 1.13<br>(n=417) | -0.78 ± 1.22<br>(n=442) | +0.06<br>(-0.09 - +0.21)                           | 0.45                 |
| Birth HCU [cm]                  | Mean (SD)<br>(n) | 23.2 ± 1.8<br>(n=486)   | 23.2 ± 1.8<br>(n=514)   | <b>_</b> c                                         |                      |
| SDS <sub>(Birth HCU)</sub>      | Mean (SD)<br>(n) | -0.48 ± 1.29<br>(n=480) | -0.51 ± 1.30<br>(n=510) | _c                                                 |                      |
| HCU <sub>(PMA36)</sub> [cm]     | Mean (SD)<br>(n) | 30.6 ± 1.8<br>(n=452)   | 30.5 ± 1.8<br>(n=476)   | +0.1<br>(-0.1 - +0.3)                              | 0.59                 |
| SDS(HCU PMA36)                  | Mean (SD)<br>(n) | -1.27 ± 1.17<br>(n=452) | -1.29 ± 1.21<br>(n=476) | +0.04<br>(-0.10 - +0.17)                           | 0.62                 |
| HCU <sub>(24M FU)</sub> [cm]    | Mean (SD)<br>(n) | 47.1 ± 1.9<br>(n=415)   | 47.2 ± 1.9<br>(n=441)   | -0.0<br>(-0.3 - +0.2)                              | 0.74                 |
| SDS(HCU 24M FU)                 | Mean (SD)<br>(n) | -1.50 ± 1.54<br>(n=415) | -1.49 ± 1.64<br>(n=441) | +0.01<br>(-0.19 - +0.22)                           | 0.91                 |
| Birth Length [cm]               | Mean (SD)<br>(n) | 32.8 ± 2.7<br>(n=489)   | 32.8 ± 2.7<br>(n=511)   | -c                                                 |                      |
| SDS(Birth length)               | Mean (SD)<br>(n) | -0.48 ± 1.34<br>(n=483) | -0.50 ± 1.39<br>(n=507) | -c                                                 |                      |
| Length <sub>(PMA36)</sub> [cm]  | Mean (SD)<br>(n) | 42.8 ± 2.7<br>(n=450)   | 42.5 ± 2.7<br>(n=475)   | +0.2<br>(-0.1 - +0.6)                              | 0.13                 |
| SDS <sub>(Length PMA36)</sub>   | Mean (SD)<br>(n) | -1.62 ± 1.07<br>(n=450) | -1.70 ± 1.10<br>(n=475) | +0.10<br>(-0.03 - +0.22)                           | 0.13                 |
| Length <sub>(24M FU)</sub> [cm] | Mean (SD)<br>(n) | 84.7 ± 4.2<br>(n=417)   | 84.7 ± 4.2<br>(n=442)   | +0.1<br>(-0.4 - +0.7)                              | 0.67                 |
| SDS(Length 24M FU)              | Mean (SD)<br>(n) | -0.58 ± 1.25<br>(n=417) | -0.66 ± 1.27<br>(n=442) | +0.09<br>(-0.07 - +0.26)                           | 0.27                 |

<sup>a</sup> Anthropometric measures were recorded at birth, at 36 weeks postmenstrual age (PMA 36) and at the 24 months follow-up (24M FU). Standard deviation scores were computed based on the growth charts adapted by Fenton and Kim<sup>2</sup>.

<sup>b</sup> by ANOVA with factors treatment, birth weight stratum and center

<sup>c</sup> Differences in Least Square Means were not calculated for baseline variables.

## eTable 10. Post Hoc Analysis of Cognitive Deficit by Mode of Classification in

#### Survivors

| Mode of Classification                                                                                      |            | Liberal<br>(n=454<br>Presumed Survivors) ª | <b>Restrictive</b><br>(n=477<br>Presumed Survivors) ª |
|-------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------|-------------------------------------------------------|
| No Follow-up<br>(Lost / Withdrawn)                                                                          | n/N<br>(%) | 32/454<br>(7%)                             | 30/477<br>(6%)                                        |
| Incomplete Follow-up,<br>Unable to Assess<br>Cognitive Deficit                                              | n/N<br>(%) | 12/454<br>(3%)                             | 17/477<br>(4%)                                        |
| Cognitive Deficit<br>Classified <sup><i>b</i></sup>                                                         | n/N<br>(%) | 410/454<br>(90%)                           | 430/477<br>(90%)                                      |
| Cognitive Deficit<br>(Bayley II MDI<br>≥70 and <85)                                                         | n/N<br>(%) | 72/410<br>(18%)                            | 77/430<br>(18%)                                       |
| Cognitive Deficit<br>(Bayley II MDI<br>≥50 and <70)                                                         | n/N<br>(%) | 29/410<br>(7%)                             | 35/430<br>(8%)                                        |
| Cognitive Deficit<br>(Bayley II raw score<br>resulted in MDI<50)                                            | n/N<br>(%) | 34/410<br>(8%)                             | 16/430<br>(4%)                                        |
| Cognitive Deficit<br>(Bayley II Attempted but<br>Severe Impairment of<br>the Child Precluded<br>Completion) | n/N<br>(%) | 8/410<br>(2%)                              | 11/430<br>(3%)                                        |
| Cognitive Deficit<br>(Bayley III <sup>c</sup><br>Cognitive <u>or</u> Language<br>Composite <85)             | n/N<br>(%) | 2/410<br>(0.5%)                            | 4/430<br>(1%)                                         |
| Cognitive Deficit<br>(other Cognitive Test or<br>Rating of Family<br>Pediatrician =<br>Abnormal)            | n/N<br>(%) | 9/410<br>(2%)                              | 5/430<br>(0.9%)                                       |
| Normal Cognitive<br>Development<br>(Bayley II MDI ≥85)                                                      | n/N<br>(%) | 235/410<br>(57%)                           | 248/430<br>(56%)                                      |
| Normal Cognitive<br>Development<br>(Bayley III °                                                            | n/N<br>(%) | 0/410<br>(0%)                              | 4/430<br>(1%)                                         |

| Cognitive <u>and</u> Language<br>composite ≥85)                                                                   |            |                |                |
|-------------------------------------------------------------------------------------------------------------------|------------|----------------|----------------|
| <i>Normal Cognitive<br/>Development</i><br>(other Cognitive Test or<br>Rating of Family<br>Pediatrician = Normal) | n/N<br>(%) | 21/410<br>(5%) | 30/430<br>(7%) |

<sup>a</sup> "Presumed Survivors" refers to the number of infants in whom death was not reported – including those lost to follow-up and withdrawn.

<sup>b</sup> In infants not tested by Bayley II, in whom a different neurodevelopmental test result (e.g., Bayley III) or an assessment by the family pediatrician during scheduled well-babyassessments according to the German Preventive Medical Check-up Program was available<sup>1</sup>, cognitive deficit was deemed to be <u>present</u> if cognitive *or* language composite scores were <(Mean-1SD) or the pediatrician's rating was "definitely abnormal" (n=20)), absent, if cognitive *and* language scores were ≥(Mean-1SD) or (in the absence of an abnormal cognitive or language test) the pediatrician's rating was "normal" (n=55)), and <u>missing</u> if results could not be allocated (n=11) based on a review of these data by a team consisting of an independent psychologist, the coordinating investigator and a monitor, all blinded to treatment group assignment.

<sup>c</sup> The German reference data was applied for the conversion of raw scores to scaled scores in Bayley III <sup>3</sup>.

#### eTable 11. Sensitivity Analysis of the Primary Outcome<sup>a</sup>

| Primary Endpoint                             |                                              | Liberal               | Restrictive          | p-<br>Value |
|----------------------------------------------|----------------------------------------------|-----------------------|----------------------|-------------|
| Death or<br>Neurodevelopmental<br>Impairment | n / N<br>(%)                                 | 242 / 492<br>(49.2%)  | 248 / 521<br>(47.6%) |             |
|                                              | Adj. OR (95%CI) <sup>b,c</sup>               | 1.04 (0.8             | 30 - 1.35)           | 0.78        |
|                                              | Absolute Difference<br>(95% CI) <sup>d</sup> | +1.6% (-4.6% - +7.7%) |                      |             |

<sup>a</sup> As described in the study protocol, a pre-defined analysis of a worst case scenario was performed, for which all infants with unknown 2 year outcome were counted as if they had an adverse outcome (i.e. as if the primary outcome of death or neurodevelopmental impairment had been present):

In the restrictive threshold group 43 additional infants were counted and in the liberal

threshold group 42 additional infants were counted as having reached the primary outcome.

<sup>b</sup> Logistic Regression with factors treatment, center and birth weight stratum (400-749g / 750-999g).

<sup>c</sup> Model quality: p=0.99 according to Hosmer-Lemeshow 'goodness of fit', where higher p-values indicate better fit of the model.

<sup>d</sup> Absolute differences were calculated post hoc for binary outcomes, without adjustment for center and birth weight stratum

## eTable 12. Primary and Secondary Endpoints in the Per Protocol Population

| Primary Endpoint                                          |                               | Liberal                      | Restrictive          | p-<br>Value |
|-----------------------------------------------------------|-------------------------------|------------------------------|----------------------|-------------|
| Death or<br>Neurodevelopmental<br>Impairment by 24 months | n / N<br>(%)                  | 156 / 343<br>(45.5%)         | 144 / 374<br>(38.5%) |             |
|                                                           | OR<br>(95%CI)ª                | 1.25 (0.9                    | 00 - 1.72)           | 0.18        |
|                                                           | Risk<br>Difference<br>(95%CI) | +7.0% (-0.2                  | % - +14.2%)          |             |
| Secondary<br>Endpoints                                    |                               | Liberal Restrictive          |                      | p-<br>Value |
| Death by24 Months                                         | n / N<br>(%)                  | 33 / 350<br>(9.4%)           | 30 / 385<br>(7.8%)   |             |
|                                                           | OR<br>(95%CI)⁵                | 1.25 (0.74 – 2.08)           |                      | 0.43        |
|                                                           | Risk<br>Difference<br>(95%CI) | +1.6% (-2.4% - +5.7%)        |                      |             |
| Cognitive Deficit <sup>d</sup>                            | n / N<br>(%)                  | 118 / 308<br>(38.3%)         | 106 / 341<br>(31.1%) |             |
|                                                           | OR<br>(95%CI)ª                | 1.27 (0.8                    | 39 - 1.79)           | 0.19        |
|                                                           | Risk<br>Difference<br>(95%CI) | +7.2% (-0.1% - +14.5%)       |                      |             |
| Cognitive Deficit<br>Defined as MDI<85 <sup>d</sup>       | n / N<br>(%)                  | 110 / 285<br>(38.6%) (32.1%) |                      |             |
|                                                           | OR<br>(95%CI)⁵                | 1.33 (0.9                    | 5 – 1.85)            | 0.10        |

|                                                     | Risk<br>Difference<br>(95%CI)            | +6.5% (-1.1% - +14.2%)                    |                      |      |
|-----------------------------------------------------|------------------------------------------|-------------------------------------------|----------------------|------|
| Cognitive Deficit<br>Defined as MDI<70 <sup>d</sup> | n / N<br>(%)                             | 52 / 285<br>(18.2%)                       | 40 / 312<br>(12.8%)  |      |
|                                                     | OR<br>(95%CI)⁵                           | 1.52 (0.9                                 | 7 – 2.38)            | 0.07 |
|                                                     | Risk<br>Difference<br>(95%CI)            | +5.4% (-0.4% - +11.2%)                    |                      |      |
| MDI-Score <sup>d</sup>                              | Mean<br>(SD)<br>(n)                      | 92.4 (16.8)<br>(256) 93.4 (17.1)<br>(297) |                      |      |
|                                                     | Difference<br>in LS<br>Means<br>(95%CI)° | +0.3 (-3.1 - +2.5)                        |                      | 0.83 |
| Cerebral Palsy                                      | n / N<br>(%)                             | 14 / 314<br>(4.5%)                        | 14 / 352<br>(3.9%)   |      |
|                                                     | OR<br>(95%CI)⁵                           | 1.14 (0.53 – 2.38)                        |                      | 0.76 |
|                                                     | Risk<br>Difference<br>(95%CI)            | +0.5% (-2.6                               | \$% - +3.5%)         |      |
| PDI-Score <sup>d</sup>                              | Mean<br>(SD)<br>(n)                      | 90.3 (14.5)<br>(236)                      | 91.0 (14.6)<br>(254) |      |
|                                                     | Difference<br>in LS<br>Means<br>(95%CI)° | +0.4 (-2.9 - +2.0)                        |                      | 0.71 |
| GMFCS-Score I-V <sup>e</sup>                        | n / N<br>(%)                             | 24 / 313<br>(7.7%) 23 / 349<br>(6.6%)     |                      |      |
|                                                     | OR<br>(95%CI)⁵                           | 1.18 (0.6                                 | 5 – 2.13)            | 0.59 |

|                                                                                          | Risk<br>Difference<br>(95%CI)            | +1.1% (-2.9% - +5.0%) |                   |      |
|------------------------------------------------------------------------------------------|------------------------------------------|-----------------------|-------------------|------|
| Severe Visual Impairment                                                                 | n / N<br>(%)                             | 6 / 313<br>(1.9%)     | 8 / 352<br>(2.3%) |      |
|                                                                                          | OR<br>(95%CI) <sup>♭</sup>               | 0.84 (0.2             | 8 – 2.44)         | 0.75 |
|                                                                                          | Risk<br>Difference<br>(95%CI)            | -0.4% (-2.5           | % - +1.8%)        |      |
| Severe Hearing<br>Impairment                                                             | n / N<br>(%)                             | 1 / 313<br>(0.3%)     | 3 / 352<br>(0.9%) |      |
|                                                                                          | OR<br>(95%CI) ⁵                          | - not analyzed -      |                   | -    |
|                                                                                          | Risk<br>Difference<br>(95%CI)            | -0.5% (-1.7% - +0.6%) |                   |      |
| Length of Hospital Stay<br>[days]                                                        | Mean<br>(SD)<br>(n)                      | 91 (40)<br>(368)      | 87 (34)<br>(400)  |      |
|                                                                                          | Difference<br>in LS<br>Means<br>(95%CI)° | +1.6 (-3.             | 4 – +6.5)         | 0.54 |
| Postnatal Age at End of<br>Invasive Ventilatory<br>Support <sup>f</sup><br>[days]        | Mean<br>(SD)<br>(n)                      | 21 (27)<br>(224)      | 20 (24)<br>(236)  |      |
|                                                                                          | Difference<br>in LS<br>Means<br>(95%CI)° | -0.4 (-4.9 - +4.0)    |                   | 0.86 |
| Postnatal Age at Last<br>Positive Pressure<br>Respiratory Support <sup>f</sup><br>[days] | Mean<br>(SD)<br>(n)                      | 53 (31)<br>(337)      | 50 (28)<br>(374)  |      |

|                                                                         | Difference<br>in LS<br>Means<br>(95%CI)° | +1.1 (-2.6 – +4.8)                   |                  | 0.56 |
|-------------------------------------------------------------------------|------------------------------------------|--------------------------------------|------------------|------|
| Postnatal Age at Last<br>Supplemental Oxygen <sup>f</sup><br>[days]     | Mean<br>(SD)<br>(n)                      | 52 (33)<br>(273)<br>44 (31)<br>(298) |                  |      |
|                                                                         | Difference<br>in LS<br>Means<br>(95%CI)° | +5.0 (-0.3 – -9.7)                   |                  | 0.04 |
| Postnatal Age at Last<br>Caffeine Administration <sup>f</sup><br>[days] | Mean<br>(SD)<br>(n)                      | 69 (27)<br>(313)                     | 68 (25)<br>(340) |      |
|                                                                         | Difference<br>in LS<br>Means<br>(95%CI)° | -1.3 (-4.7 – +2.2)                   |                  | 0.48 |
| Postnatal Age at End of<br>Gavage Feeding <sup>f</sup><br>[days]        | Mean<br>(SD)<br>(n)                      | 75 (25)<br>(314)<br>72 (24)<br>(351) |                  |      |
|                                                                         | Difference<br>in LS<br>Means<br>(95%CI)° | -0.2 (-3.4 – +3.1)                   |                  | 0.91 |

OR = odds ratio, LS = least square, CI = confidence interval

<sup>a</sup> Logistic Regression with factors treatment, center and birth weight stratum (400-749g / 750-999g).

<sup>b</sup> Logistic regression with factor treatment only (a reduced model was fitted because

iterations did not converge).

<sup>c</sup> ANOVA with factors treatment, center and birth weight stratum (400-749g / 750-999g).

<sup>d</sup> Whereas for the cognitive deficit as component of the primary outcome other cognitive

assessments were taken into account in case no Bayley test was available as described in

'methods', the rates of MDI<85 / <70 and PDI<85 are based on infants with attempted Bayley

II only (still including infants whose raw scores were so low that MDI/PDI was <50). Analyses

of the MDI/PDI as continuous variable are based on complete Bayley II data, only.

<sup>e</sup> GMFCS had been defined as further endpoint, not as secondary endpoint in the study protocol. The presentation of the GMFCS data herein deviates from the statistical analysis plan, which foresaw presentation as median (Q1-Q3), due to the low rate of GMFCS>0.
<sup>f</sup> Analyses of duration of various forms of support are limited to those infants who a) received this therapeutic intervention (e.g., 158 infants in the liberal group and 155 infants in the restrictive group never received invasive respiratory support through an endotracheal tube) and b) discontinued the intervention before the day of discharge home.

This table shows numerical differences in favor of the restrictive group, which were all not statistically significant but more pronounced than in the analysis of the population of all randomized patients. It must be noted that 'non-protocol-justified' transfusion predominantly occurred in the restrictive group and there preferentially in the low birth weight stratum, and, by contrast, missed transfusions predominantly occurred in the liberal group and there in the high birth weight stratum, the proportions of low birth weight versus high birth weight were skewed in the per-protocol population, i.e., the proportions for low and high birth weight stratum were 190 / 370 (51%) and 180 / 370 (49%) in the liberal group versus 177 / 411 (43%) and 234 / 411 (57%) in the restrictive group in the per-protocol population.

eTable 13. Pre-Defined Subgroup Analysis 1: Primary Outcome and Key Secondary Outcomes by Birth Weight Stratum and Transfusion

### Thresholds

|                        |                                                   | Birth We                        | eight <750g        | Birth Weight 750-999g        |                    |
|------------------------|---------------------------------------------------|---------------------------------|--------------------|------------------------------|--------------------|
|                        |                                                   | Liberal                         | Restrictive        | Liberal                      | Restrictive        |
| Primary<br>Outcome     | n/N (%)                                           | 125 / 230 (54.3%)               | 131 / 243 (53.9%)  | 75 / 220 (34.0%)             | 74 / 235 (31.4%)   |
|                        | OR (95%Cl)<br>p-Valueª                            | 1.02 (0.71 – 1.54)<br>p=0.82    |                    | 1.06 (0.70 – 1.61)<br>p=0.78 |                    |
| Cerebral<br>Palsy      | n/N (%)                                           | 7 / 203 (3.4%)                  | 15 / 209 (7.1%)    | 11 / 216 (5.1%)              | 10 / 234 (4.3%)    |
|                        | OR (95%Cl)<br>p-Value <sup>b</sup>                | 0.46 (0.18 – 1.16)<br>p=0.10    |                    | 1.20 (0.50 – 2.85)<br>p=0.68 |                    |
| MDI Score <sup>d</sup> | Mean (SD)<br>(n)                                  | 91 (18)<br>(n=158)              | 90 (18)<br>(n=163) | 94 (15)<br>(n=178)           | 95 (17)<br>(n=197) |
|                        | Difference in<br>LS Means<br>(95%Cl)<br>p-Value ° | +0.46 (-3.44 – +4.37)<br>p=0.82 |                    | -0.06 (-3.3<br>p=(           | 0 – +3.18)<br>).97 |

<sup>a</sup> Logistic Regression with factors treatment and center; <sup>b</sup> Logistic Regression with factor treatment; <sup>c</sup> ANOVA with factors treatment and center; <sup>d</sup> MDI

= mental developmental index score of the Bayley Scales of Infant and Toddler Development (2<sup>nd</sup> edition)

There was no significant interaction, i.e., difference in treatment effect between subgroups, as assessed by Breslow-Day test (p=0.71).

|                        |                                                   | N                               | lale               | Female                       |                     |
|------------------------|---------------------------------------------------|---------------------------------|--------------------|------------------------------|---------------------|
|                        |                                                   | Liberal                         | Restrictive        | Liberal                      | Restrictive         |
| Primary<br>Outcome     | n/N (%)                                           | 116 / 224 (51.8%)               | 119 / 238 (50.0%)  | 84 / 226 (37.2%)             | 86 / 240 (35.8%)    |
|                        | OR (95%CI)<br>p-Value ª                           | 1.19 (0.80 – 1.78)<br>p=0.38    |                    | 1.00 (0.66 – 1.52)<br>p=0.99 |                     |
| Cerebral<br>Palsy      | n/N (%)                                           | 11 / 199 (5.5%)                 | 15 / 215 (6.9%)    | 7 / 220 (3.2%)               | 10 / 228 (4.4%)     |
|                        | OR (95%Cl)<br>p-Value <sup>♭</sup>                | 0.78 (0.42 – 1.75)<br>p=0.54    |                    | 0.71 (0.2<br>p=0             | 7 – 1.92)<br>).51   |
| MDI Score <sup>d</sup> | Mean (SD)<br>(n)                                  | 90 (16)<br>(n=155)              | 89 (18)<br>(n=170) | 95 (17)<br>(n=181)           | 95 (17)<br>(n=190)  |
|                        | Difference in<br>LS Means<br>(95%Cl)<br>p-Value ° | +0.20 (-3.58 – +3.98)<br>p=0.92 |                    | -0.11 (-3.5<br>p=(           | 52 – +3.30)<br>).95 |

eTable 14. Pre-Defined Subgroup Analysis 2: Primary Outcome and Key Secondary Outcomes by Gender and Transfusion Thresholds

<sup>a</sup> Logistic Regression with factors treatment, center and birth weight stratum (400-749g / 750-999g); <sup>b</sup> Logistic Regression with factor treatment; <sup>c</sup>

ANOVA with factors treatment, center and birth weight stratum (400-749g / 750-999g); d MDI = mental developmental index score of the Bayley Scales

of Infant and Toddler Development (2<sup>nd</sup> edition)

There was no significant interaction, i.e., difference in treatment effect between subgroups, as assessed by Breslow-Day test (p=0.96).

eTable 15. Pre-Defined Subgroup Analysis 3: Primary Outcome and Key Secondary Outcomes by Institutional SpO<sub>2</sub>-Target Range and Transfusion Thresholds

|                        |                                                   | Lower SpO <sub>2</sub>              | -Target Range      | Higher SpO <sub>2</sub> -Target Range |                     |
|------------------------|---------------------------------------------------|-------------------------------------|--------------------|---------------------------------------|---------------------|
|                        |                                                   | Liberal                             | Restrictive        | Liberal                               | Restrictive         |
| Primary<br>Outcome     | n/N (%)                                           | 80 / 198 (40.4%)                    | 90 / 209 (43.6%)   | 119 / 251 (47.4%)                     | 111 / 265 (41.9%)   |
|                        | OR (95%CI)<br>p-Value ª                           | 0.88 (0.59 – 1.33)<br>p=0.55        |                    | 1.25 (0.88 – 1.79)<br>p=0.21          |                     |
| Cerebral<br>Palsy      | n/N (%)                                           | 9 / 189 (4.8%)                      | 10 / 191 (5.2%)    | 9 / 229 (3.9%)                        | 13 / 248 (5.2%)     |
|                        | OR (95%Cl)<br>p-Value <sup>♭</sup>                | 0.90 (0.36 - 2.27)<br>p=0.83        |                    | 0.74 (0.31 – 1.75)<br>p=0.50          |                     |
| MDI Score <sup>d</sup> | Mean (SD)<br>(n)                                  | 93 (16)<br>(n=150)                  | 92 (17)<br>(n=150) | 92 (17)<br>(n=186)                    | 93 (18)<br>(n=209)  |
|                        | Difference in<br>LS Means<br>(95%Cl)<br>p-Value ° | +0.88 (-2.864.62 – +4.62)<br>p=0.64 |                    | -0.34 (-3.7<br>p=0                    | 75 – +3.06)<br>).84 |

<sup>a</sup> Logistic Regression with factors treatment and birth weight stratum (400-749g / 750-999g); <sup>b</sup> Logistic Regression with factor treatment; <sup>c</sup> ANOVA with factors treatment and birth weight stratum (400-749g / 750-999g); <sup>d</sup> MDI = mental developmental index score of the Bayley Scales of Infant and Toddler Development (2<sup>nd</sup> edition)

For this table,  $SpO_2$ -target ranges reported by each center were dichotomized and classified as 'lower' if the center-value of the institutional  $SpO_2$  target range was <91% and classified as 'higher' if the center-value was ≥91%. In one center, recruiting 5 patients,  $SpO_2$ -target ranges could not be allocated, and hence 4 infants from restrictive and 1 from liberal were not taken into account in this analysis.

There was no significant interaction, i.e., difference in treatment effect between subgroups, as assessed by Breslow-Day test (p=0.21).

© 2020 American Medical Association. All rights reserved.



eFigure 1. Standardized Residual Plots (Analysis of the Primary Outcome)



Standardized residual plots are provided for visual analysis of the assumption of 'no outliers in standardized residuals' underlying the analysis of the primary outcome.

eFigure 2. Overall Survival



Survival data were analyzed by the method of Kaplan and Meier.

This is the Kaplan-Meier plot indicating the proportion of surviving infants according to treatment group. The table underneath the graph reports the numbers of infants in the study in the respective week of postnatal age by treatment group. No child died beyond 52 weeks postnatal age.

The median (IQR) lengths of observation were 119 (115 - 121) weeks and 119 (115-122) weeks in the liberal and the restrictive threshold group, respectively.



eFigure 3. Treatment Effect on Weekly Mean Hematocrit in the Per-Protocol Population

The *weekly mean hematocrit* values of all hematocrit values documented for each infant in the per-protocol population in that week are depicted by treatment group. (Limited to hematocrit values documented until 36 weeks postmenstrual age and truncated when less than 20% of the population remained, i.e., at 11 weeks postnatal age.).

Boxes denote median, first and third quartile, the asterisk within the box indicates the mean, and whiskers indicate highest and lowest values within 1.5 x the interquartile range and dots outside the box outlying data.

The table underneath reports the number of transfusions (number of infants transfused) in the per-protocol population in each week of postnatal age by treatment group in the upper rows (limited to RBC-transfusions administered until 36 weeks postmenstrual age) as well as the numbers of infants in the per-protocol population with at least one documented hematocrit value in that week of postnatal age in the lower rows.

1a refers to the days of the first week of postnatal age before/until randomization and 1b refers to the days of the first week of postnatal age after randomization.

#### eAppendix. Additional Information on Sample Size Calculations

The sample size calculation were based on the results of the PINT trial's 18 months follow-up report (Whyte RK et al. Pediatrics 2009)<sup>4</sup>. Unfortunately, the rate of the primary outcome selected for the ETTNO trial was not reported by Whyte et al. (they reported death or NDI, where cognitive deficit was defined by MDI<70 (94/208 (45.2%) vs 82/213 (38.5%)), and they reported separately the rates for MDI<70 (38/156 (24.4%) vs. 29/165 (17.6%)) and MDI<85 (70/156 (44.9%) vs. 56/165 (33.9%)). The rates for a composite outcome according to the ETTNO definitions (with cognitive deficit defined as MDI<85) were "estimated" from the available data by adding the difference (number of infants with MDI<85 – the number of infants with MDI<70) to the number of infants with death or NDI in each group: (94+32)/208 (61%) versus (82+27)/213 (51%). These estimates may not exactly reflect the true rates of a composite outcome because some of the infants with mild cognitive deficit could additionally have had cerebral palsy or visual or hearing impairments.

#### eReferences

1. Maschke C, Ellenrieder B, Hecher K, Bartmann P. National screening program vs. standardized neurodevelopmental follow-up. J Perinat Med 2009;37:87-90.

2. Fenton TR, Kim JH. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatrics 2013;13:59

3. Reuner G, Rosenkranz J. Bayley Scales of Infant Development Third Edition – Deutsche Fassung. Manual zur Durchführung und Auswertung der Bayley III Skalen. Pearsson Assessment & Information GmbH. Frankfurt/Main, Germany, 2014

4. Whyte RK, Kirpalani H, Asztalos EV, et al. Neurodevelopmental outcome of extremely low birth weight infants randomly assigned to restrictive or liberal hemoglobin thresholds for blood transfusion. Pediatrics 2009;123:207-13