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SUMMARY
Damage-associated microglia (DAM) profiles observed in Alzheimer’s disease (AD)-related mouse models
reflect an activation state that could modulate AD risk or progression. To learn whether human AD microglia
(HAM) display a similar profile, we develop a method for purifying cell types from frozen cerebrocortical
tissues for RNA-seq analysis, allowing better transcriptome coverage than typical single-nucleus RNA-seq
approaches. The HAM profile we observe bears little resemblance to the DAM profile. Instead, HAM display
an enhanced human aging profile, in addition to other disease-related changes such as APOE upregulation.
Analyses of whole-tissue RNA-seq and single-cell/nucleus RNA-seq datasets corroborate our findings and
suggest that the lack of DAM response in human microglia occurs specifically in AD tissues, not other
neurodegenerative settings. These results, which can be browsed at http://research-pub.gene.com/
BrainMyeloidLandscape, provide a genome-wide picture of microglial activation in human AD and highlight
considerable differences between mouse models and human disease.
INTRODUCTION

Human genetic studies have identifiedmicroglia, the brain’s resi-

dent myeloid cells, as a key cell type governing the risk of Alz-

heimer’s disease (AD) (Bellenguez et al., 2020; Hansen et al.,

2018). Gene expression profiles in microglia frommouse models

of AD are highly characterized and reflect specific myeloid cell

activation states that could modulate AD risk or progression

(Deczkowska et al., 2018; Friedman et al., 2018; Holtman

et al., 2015; Keren-Shaul et al., 2017; Krasemann et al., 2017;

Orre et al., 2014; Srinivasan et al., 2016; Wang et al., 2015).

Although some groups have produced expression profiles for

microglia from human brain tissues (Del-Aguila et al., 2019; Gal-

atro et al., 2017; Gosselin et al., 2017; Jäkel et al., 2019; Masuda

et al., 2019; Mathys et al., 2019; Olah et al., 2018; Zhang et al.,

2016), the clarity with which we view microglial transcriptional

states in mouse models of AD has not yet been realized for hu-

man AD tissues because of limited availability of fresh tissue

samples and/or technological hurdles in recovering genome-
This is an open access article und
wide transcriptomic data with cell-type resolution from frozen

samples.

Here we employ a method for isolating multiple cell types from

frozen, post-mortem human brain tissues, with the goal of

profiling gene expression in microglia and other cell types from

AD versus control tissues using RNA sequencing (RNA-seq).

The method we developed allows the collection of desired cell

types by the tens (or hundreds) of thousands from each tissue

sample, provides rich gene expression profiles to enable

genome-wide analyses of differential expression (DE), and al-

lows the selection of sample cohorts that include a suitably large

number of AD and control subjects with desired histopatholog-

ical or clinical characteristics. A notable caveat of our method

is the low quality of the RNA after its purification from the

collected cell types because of unavoidable aspects of prepar-

ing fixed cell suspensions from frozen and thawed post-mortem

tissue samples. Despite this caveat, we succeeded in using

frozen specimens of human frontal cortex to characterize a hu-

man Alzheimer’s microglia (HAM) profile, which bore almost no
Cell Reports 31, 107843, June 30, 2020 ª 2020 The Author(s). 1
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resemblance to the damage-associated microglia (DAM) profile

defined in mouse AD models. We validated our overall findings

by qRT-PCR using separate preparations of microglia sorted

from temporal cortex and using whole-tissue RNA-seq datasets

from both frontal and temporal cortices. Extensive comparisons

with other microglial RNA-seq datasets revealed that a distinct

component of the HAM profile reflected an enhanced human ag-

ing phenotype. Finally, comparisons with recently published hu-

man microglia single-cell RNA sequencing (scRNA-seq) or sin-

gle-nucleus RNA sequencing (snRNA-seq) datasets suggested

that DAM gene induction was more evident in two other neuro-

degenerative settings. Thus, the relative lack of DAM gene in-

duction in human microglia was a peculiar feature of human

AD tissues and may be a specific feature of AD pathogenesis.

RESULTS

Defining the HAMGene Expression Profile Using Frozen
Tissues
Webeganwith frozen samples of frontal cortex, which is affected

by tau pathology in the later stages of disease (Braak stages V

and VI) that roughly coincide with onset and progression of de-

mentia. Tissue samples were excised from the superior frontal

gyrus (SFG), which has been linked with visuospatial cognition

both in AD and in lesion studies (du Boisgueheneuc et al.,

2006; Valdés Hernández et al., 2018). To maximize the likelihood

of observing differences between AD and control, we selected

only AD specimens with high scores for amyloid and tau neuro-

pathology in frontal cortex, and we selected only control speci-

mens with negligible amounts of these pathologies in this region

(see sample metadata in Data S2). AD and control groups had

roughly matching distributions of age, sex, and post-mortem in-

terval (PMI).

For dissociating and sorting cell types from frozen human

brain tissues, we adapted a method that we reported for fresh

mouse brains involving brief enzymatic treatment at 4�C, me-

chanical dissociation, fixation in 50% ethanol, immunolabeling,

and fluorescence-activated cell sorting (FACS) followed by

RNA purification and sequencing (Srinivasan et al., 2016).

Although the fixation adversely affects RNA integrity (RIN), it

also permeabilizes the cells and enables labeling of intracellular

markers for sorting. Labeling nuclei with DAPI helps ensure that

only singlet cell bodies are collected, because doublets with a

higher DAPI signal and cell fragments that lack nuclei are easily

excluded. Using this method, we established a FACS gating

strategy for collecting NeuN+ neurons, GFAP+ astrocytes,

CD31+ endothelial cells, and CD11b+ microglia/myeloid cells
Figure 1. Expression Profiling of Human Cell Populations Sorted from

(A) Experimental overview. See Figure S1 for the FACS gating scheme.

(B) Expression of known cell-type markers, derived from previously published hu

profiles indicates high cell-type purity. Each gene was Z score normalized acros

(C) Principal-component analysis using most variable genes reveals separation of

the modest detection of astrocyte markers in endothelial cell samples (see D), m

2017) remaining associated with endothelial cell bodies.

(D) Expression levels ± SEM of selected cell-type markers.

(E) Distributions of gene counts in various humanmicroglial gene expression datas

across all genes, of raw gene counts for each sample of bulk-sorted microglia o
(hereafter referred to simply as microglia) from thawed, dissoci-

ated SFG specimens (Figures 1A and S1). qRT-PCR for specific

cell-type markers validated the specificity of the collected pop-

ulations and was successful for nearly all RNA samples (data

not shown). However, the RIN of the collected populations

was poor, with Bioanalyzer RIN scores in the range of 1–3. At-

tempts to obtain better-quality RNA samples using alternative

conditions for tissue digestion and cell fixation (see STAR

Methods) were unsuccessful and usually counterproductive.

We presume that damage from the freeze-thaw process led

to cellular disintegration when cells remained unfixed for too

long or were incubated at 37�C. Only brief dissociation at 4�C
and fixation immediately thereafter permitted cell populations

to suitably endure the subsequent immunolabeling and FACS

procedures. We completed this process for 22 AD and 21 con-

trol SFG tissues.

We next prepared cDNA libraries using a kit with random

primers, because the RNA was highly fragmented. After prepar-

ing and sequencing the libraries, we examined the RNA-seq data

to determine whether our method had generated usable expres-

sion profiles. Although several unacceptable RNA profiles had to

be discarded (see Figure S2, Data S1, and STAR Methods), we

obtained 113 cell-type-specific expression profiles, including

microglia cell profiles from 15 control and 10 AD subjects (Fig-

ures 1B and 1C; Data S2). Cell-type-specific marker expression

suggested that the RNA-seq profiles we retained represented

the intended cell populations with reasonable fidelity (Figure 1D).

Comparisons with recently published datasets indicated that our

bulk-sorted microglia profiles from frozen tissues displayed

coverage of the transcriptome similar to that of bulk-sorted mi-

croglia from fresh post-mortem tissues (Galatro et al., 2017;

Gosselin et al., 2017) and better coverage than snRNA-seq pro-

files (combining all microglial nuclei from a given patient into a

pseudobulk profile) obtained from frozen tissues (Mathys et al.,

2019) (Figure 1E).

We examined the expression of twenty-five genes known or

postulated to be associated with AD risk or progression (Holling-

worth et al., 2011; Huang et al., 2017; Lambert et al., 2013; Naj

et al., 2011; Novikova et al., 2019; Ramanan et al., 2015; Rathore

et al., 2018; Sims et al., 2017). Similar to our analysis of a pub-

lished human RNA-seq dataset that profiled cell types purified

from freshly resected brain tissue (Hansen et al., 2018; Zhang

et al., 2016), most AD risk genes in our cell types purified from

frozen brain tissues showed preferential expression in microglia

compared with other brain cell types (Figure 2A). We also exam-

ined whether any of these genes displayed altered expression

levels in AD versus control cells, and we observed that APOE,
Frozen, Post-Mortem SFG

man cell data from fresh brains (Zhang et al., 2016), in QC-passing expression

s all profiles of all cell types. See Figure S2 for QC analyses.

four cell types. The juxtaposition of astrocyte and endothelial cell profiles, and

ay have resulted from astrocytic endfeet (which contain mRNAs; Boulay et al.,

ets. Each boxplot shows the indicated (10th, 25th, 50th, 75th, and 90th) quantiles,

r, for syn18485175, for each sample’s pseudobulk microglia.
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Figure 2. Sorted Cells from Frozen Human SFG Specimens Exhibit Preferential Expression of Many AD Risk Genes in Microglia

(A) Heatmap of Z scores for each AD risk gene’s normalized reads per kilobase genemodel per million total reads (nRPKM) expression value in each sample, with

a sample’s Z score for a given gene representing its distance in standard deviations from the mean expression value across all samples for that gene. Gene

selection was informed by genome-wide association study (GWAS) reports (Hollingworth et al., 2011; Lambert et al., 2013; Naj et al., 2011; Ramanan et al., 2015;

Sims et al., 2017) and specific efforts to identify causal genes in GWAS-identified loci (Huang et al., 2017; Novikova et al., 2019; Rathore et al., 2018).

(B) Expression values are plotted for each AD risk gene in each cell type sorted from frozen SFG of controls (Ctl) or AD patients. Bars and lines represent mean

expression ± SEM, with asterisks marking DE in AD versus control cells based on unadjusted DESeq2 p values (*p < 0.05, **p < 0.01, ***p < 0.001).

Resource
ll

OPEN ACCESS
ABCA7, GPR141, PTK2B, SPI1, and ZYX appeared upregulated

in AD microglia, whereas MEF2C appeared downregulated (un-

adjusted p < 0.05) (Figure 2B). Using these criteria, we also

observed downregulation of CD2AP and SORL1 in AD neurons

and of CR1 in AD endothelial cells (Figure 2B).

Genome-wide analysis of DE using DESeq2 identified 45

genes increased and 21 genes decreased in AD microglia rela-

tive to controls (Figure 3A; for genome-wide expression values

and DE statistics, see Data S2 and S3 for individual samples

and group summaries, respectively). Of the changes in AD risk

genesmentioned earlier, only APOE upregulation in microglia re-

mained significant after correction for genome-wide testing (fold
4 Cell Reports 31, 107843, June 30, 2020
change = 4.1, adjusted p = 0.0004). We tested for contributions

of age, sex, PMI, and APOE genotype to the DE profile, but none

of these covariates accounted for the DE observed between AD

and control groups (although a small number of other genes un-

related to AD status showed DE with age, sex, PMI, or APOE ge-

notype) (see Data S4 and STARMethods).We refer to the pattern

of DE as the HAM profile.

Validation of the HAM Profile in Multiple Cortical
Regions and Datasets
Wenext testedwhether the HAMprofile detected in ADmicroglia

from frontal cortex could be validated in microglia from temporal
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Figure 3. Human Microglia Exhibit an AD-Associated DE Profile in Both Frontal and Temporal Cortices

(A) Heatmap of AD DE genes (rows; DESeq2 adjusted p % 0.05 and maximum Cook’s p R 0.01) in control and AD SFG-derived microglia expression profiles

(columns, sorted by AD-associated DE). ‘‘Panel B genes’’ indicates genes that were subsequently assayed by qPCR in microglia sorted from FuG tissues, with

colors from (B).

(B) 4-way comparison of AD-associated DE in SFG microglia measured by RNA-seq (x axis) with DE in FuG microglia measured by qPCR (y axis). Each point

represents one gene colored by whether the adjusted p value was%0.05 in one or both DE analyses (red for SFG RNA-seq, green for FuG qPCR, or blue for both).

Corresponding numbers of DE genes are shown near the borders of the plot. For example, the red 11 on the right reflects the number of genes that were

significantly up in SFG and trended up but did not meet significance in FuG, whereas the blue 3 at the top right indicates the number of genes significantly up in

both regions. Genes were selected manually for validation, consisting of about 1/3 of the DE genes from the RNA-seq study and several other cell-type markers

and genes of interest. Diagonal line: y = x. (See Figure S3A for subject-wise SFG-FuG microglia DE correlations, Figure S3B for selected qPCR data plots, and

Data S2 columns EK–GH for qPCR expression statistics for all 39 genes in the panel.)

(legend continued on next page)
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cortex, which is affected earlier in disease andmay contain more

downstream events by the time of death (Braak and Braak,

1991). Our temporal cortex samples were excised from the fusi-

form gyrus (FuG), which is important for object and face recog-

nition (Chang et al., 2016), using many of the same subjects as

the SFG tissues and totaling 25 AD and 21 control tissues. We

generated another set of sorted-cell RNA samples using the

method described earlier and performed qRT-PCR instead of

RNA-seq to quantify transcript abundance for genes of interest,

including a subset of DE genes from the SFG HAM profile

(marked in Figure 3A). Despite the different disease contexts of

FuG and SFG tissues, the direction of effect for AD versus control

across RNA samples fromCD11b+ cells was replicated for nearly

every DE gene tested (Figures 3B and S3B). Using these 22

genes to assign a DE score to each sample revealed a clear dif-

ference in FuGmicroglia between AD and control groups, repro-

ducing the signal observed in the SFGRNA-seq data (Figure 3C).

Moreover, for subjects with both SFG RNA-seq and FuG PCR

data available, the microglia DE scores were correlated between

the two regions (Figure S3A). These findings alleviated potential

concern about expression artifacts being introduced during

RNA-seq library preparation.

A second way to validate the HAM profile was to examine

whole-tissue RNA datasets from AD and control patients.

Despite their limitations (Srinivasan et al., 2016), such datasets

allow the evaluation of larger cohorts. We examined three

studies: our previously published cohort of FuG samples

(GEO: GSE95587), a newly generated FuG cohort (GEO:

GSE125583) (see Figure S4A for reproducibility of whole-tissue

DE profiles between FuG cohorts), and the Religious Orders

Study and Rush Memory and Aging Project (ROSMAP) cohort

(De Jager et al., 2018) from the dorsolateral prefrontal cortex.

We used myeloid balancing (Friedman et al., 2018) to control

for differences in myeloid cell abundance between control and

AD tissues (Figure S4B), and exclusion of neuronal-enriched

genes to mitigate the confounding effects of neuronal loss,

before calculating gene set scores. In all three whole-tissue da-

tasets, the HAM-Up gene set was significantly increased (Fig-

ure 3D); this was most apparent in later Braak stages, which

also showed decreased expression of our HAM-Down gene

set (Figure S4C). (The Braak stage analyses did not include

the corrective measures for altered cellular makeup of AD tis-

sues, because it was impractical to reduce the sample size.)

These analyses provide additional evidence that our DE findings

in AD microglia sorted from SFG and FuG tissues are not simply

a peculiar feature of the small number of subjects (10 AD and 15

control) analyzed in our SFG RNA-seq dataset and that they do

not result from biases in sampling of microglial subpopulations

following tissue dissociation and FACS; they are instead real
(C) SFG microglia DE is reproduced in FuG microglia. DE scores (see STAR Meth

genes that were included in the qPCRpanel. For FuGmicroglia samples, open circ

from that subject. p value, t test.

(D) Detection of upregulated HAM profile genes is recapitulated in myeloid-balan

robust than DAM changes predicted by mouse microglia profiles. Each study was

similar myeloid gene set scores, and neuronal genes were removed from each gen

included.) Each panel shows gene set scores for the indicated gene sets for each

value, t test.
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gene expression changes seen in both temporal and frontal

cortical tissue.

Having detected the elevated HAM signature in AD whole-tis-

sue RNA, we next wanted to see how its detection compared

with that of known microglial expression modules recently iden-

tified in mouse models. We reported that expression signals for

some of these modules, including the neurodegeneration-

related (DAM) module and a lipopolysaccharide (LPS)-specific

gene set, were slightly elevated in whole-tissue RNA profiles

from AD brains (Friedman et al., 2018). We observed that the

HAM-Up gene set was more robustly elevated in AD whole-tis-

sue RNA than either of the mouse-derived gene sets (Figures

3D and S4C), underscoring the relevance of the DE results we

observed in our sorted SFG microglia.

The HAM Profile Is Unlike Known Mouse Microglial
Activation States
We next used gene set score analysis to look for overlap in DE

patterns between our AD versus control human microglia pro-

files and DE patterns observed in mouse microglia. First, we

tested whether modulation of the mouse-derived gene modules

we defined in a previous meta-analysis (Friedman et al., 2018)

might be more apparent in our sorted microglia profiles than in

the whole-tissue profiles described earlier, but any such AD-

related changes were again subtle if present—especially

compared with the HAM-Up and HAM-Down gene sets (Fig-

ure 4A). For example, expression of the mouse neurodegener-

ation-related/DAM module was slightly increased in AD micro-

glia, just reaching significance (p = 0.045). However, of more

than 100 genes in the module, only APOE was significantly

increased in SFG microglia from AD patients (fold change =

4.1, p = 0.0004), and most other genes showed no clear trends

in either direction (Figure S5A; Table S1). Similarly, although we

observed a subtle increase in expression for the monocyte/

neutrophil module in AD microglia (Figure 4A), no individual

genes in the module showed DE with genome-wide signifi-

cance (Table S1). The microglia and brain myeloid gene mod-

ules that define resting or homeostatic microglia and are down-

regulated in response to virtually any perturbation in mice

(Friedman et al., 2018) showed no hint of downregulation in

AD microglia (Figure 4A). Of more than 150 genes in these

modules, only SERPINF1 (fold change = 0.35, p = 0.0062)

showed the significant reduction predicted by mouse data (Fig-

ures S5B and S5C; Table S1).

We also cross-checked specific mouse studies for potential

relationships between our HAM profiles and DE genes associ-

ated with PS2APP or 5xFAD b-amyloid model microglia, Tau-

P301S frontotemporal dementia (FTD) model microglia, micro-

glia following LPS or lymphocytic choriomeningitis virus
ods) are shown for each SFG and FuG microglia sample, using the 22 SFG DE

les indicate that aQC-passing SFGRNA-seqmicroglia profile was not available

ced whole AD tissues from frontal and temporal cortical regions and is more

separately myeloid balanced to create a subset of whole-tissue samples with

e set. (See Figure S4C for division by Braak stagewith all samples and all genes

of the myeloid-balanced AD or control samples. D, mean log2 fold change; p
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(LCMV) injection, old versus young mouse microglia, cerebellar

versus cortical microglia, perivascular macrophages (PVMs)

relative to parenchymal microglia, or infiltrating macrophages

versus brain-resident microglia. We tested each study’s set of

DE genes for AD-enriched microglial expression in our SFG

RNA-seq profiles. The mouse microglia aging profile, the

PS2APP profile, and the PVM profile each showed statistically

significant enrichment in AD versus control microglia (Figure 4B).

However, as with the modular gene sets described earlier, such

correlations were extremely subtle when viewed at the level of in-

dividual genes (Figure S5D).

Conversely, we looked at whether the DE genes identified in

HAM (besides APOE, a well-known DAM gene) showed consis-

tent trends in mouse models of neurodegeneration (Friedman

et al., 2018; Orre et al., 2014; Wang et al., 2015), infection

(Erny et al., 2015; Srinivasan et al., 2016), and aging (Grabert
et al., 2016). Of the HAM-Up genes, only PLXNC1, CD44,

SMIM3, and ADAM8were frequently thoughmodestly increased

in neurodegenerative mouse models (Figure S6). Of the HAM-

Down genes, only SERPINF1 showed consistent reduction in

these models.

Altogether, the comparisons of AD microglia profiles with

diverse mouse microglia profiles indicated that the HAM profile

bore little resemblance to the DAM profile observed in mouse

models of neurodegeneration or to other mouse microglia acti-

vation profiles. We next turned our attention to comparisons

with published human microglia expression profiles.

AD Microglia Display an Enhanced Human Aging
Phenotype
Galatro et al. (2017) determined age-related changes in human

microglial gene expression by sequencing RNA of microglia
Cell Reports 31, 107843, June 30, 2020 7
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Figure 5. AD-Associated HAM Profile Over-

laps Substantially with Age-Related DE Pat-

terns in Human Microglia

(A) 4-way DE plot (analogous to Figure 3B) shows

age-related DE from Galatro et al. (2017) on the x

axis and AD-related DE on the y axis. Color in-

dicates p % 0.05 significance with aging only

(red), with AD only (green), or with both (blue).

Most red genes, DE with age, trended in a

consistent direction with AD versus control mi-

croglia (bottom-left and top-right quadrants),

indicating that AD microglia exhibit enhanced

aging. The green genes, including APOE, indicate

an AD-related signature that is distinct from DE of

normal aging.

(B) Distribution of subject ages in both studies.

(C) Previously reported DE pattern in normal,

aged human microglia is recapitulated in control

subjects of this study. The 4-way plot shows

age-related DE from Galatro et al. (2017)’s da-

taset on the x axis, as in (A), and age-related DE

from this study’s control SFG microglia profiles

on the y axis. Genes in red met an adjusted p %

0.05 cutoff in Galatro et al. (2017); other genes

are shown as a smoothed density in shades of

gray. No DE genes from Galatro et al. (2017) met

the p % 0.05 cutoff for age-related DE in our

dataset, but most trended in a consistent di-

rection (bottom-left and top-right quadrants).

The lack of statistical significance and muted fold changes in our study may result from far fewer samples and our samples coming mainly from older

subjects.

(D) Aging DE score was calculated for each SFG microglia sample in our study—a signed average of the age-related DE genes from Galatro et al. (2017).

Regression lines show the increasing trend of this score in both diagnosis groups with age, as well as the elevated score in the AD group relative to controls of

similar ages.

(E) Aging DE score is elevated in AD microglia relative to controls. y coordinates as in (D); p value, t test.
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freshly sorted from post-mortem subjects spanning an age

range of over six decades. In contrast to the preceding compar-

isons with mouse microglial datasets, the relationship between

the HAM profile and the age-related DE in human microglia

was striking. Most genes with higher expression in microglia

from older subjects, including IL15 and the candidate AD risk

genesMS4A6A,MS4A4A, NME8, and GPR141, trended toward

elevated expression in AD relative to control microglia;

conversely, genes with lower expression in microglia from older

subjects, likeCECR2, tended to be reduced in ADmicroglia (Fig-

ures 5A and 6A). This did not result from differences in age be-

tween our AD and control subjects (Figure 5B).

We examined whether the age-related DE genes from Galatro

et al. (2017) also showed a relationship with age in our dataset.

Despite our dataset only including 15 control profiles, mostly

from older subjects, we observed a clear tendency for genes

whose expression changed with age in Galatro et al. (2017)’s da-

taset to show the same direction of age-related change among

our control microglia samples (Figure 5C), validating our SFG

RNA-seq profiles.

We used the age-related changes from Galatro et al.

(2017)’s dataset to assign age-related DE scores to each of

our SFG microglia profiles. When these scores were plotted

against the subjects’ ages, we observed a positive correlation

within both control and AD subject groups (Figure 5D), and the

age-related DE scores for AD microglia as a group were signif-
8 Cell Reports 31, 107843, June 30, 2020
icantly higher than the scores for the control group (Figure 5E).

However, most AD-related DE genes from our dataset,

including APOE and LSR, showed no relationship with age in

microglia (Figures 5A and 6A). These data indicated that the

HAM profile in AD microglia reflected a mixture of an

enhanced aging process and an age-independent, disease-

related activation process.

We analyzed another human dataset, from Gosselin et al.

(2017), of microglia expression profiles obtained from fresh sur-

gical tissue (all from subjects < 20 years old) and blood mono-

cytes from the same subjects. DE genes between monocytes

and microglia correlated reasonably well between human and

mouse (Lavin et al., 2014) datasets (Figure 6B). Comparing the

two human datasets, we saw some correlation between age-

associated andmicroglia/monocyte DE: many genes with higher

expression in younger subjects in Galatro et al. (2017)’s dataset,

like CECR2, were microglia enriched in Gosselin et al. (2017)’s

dataset; conversely, many genes with elevated expression in

older subjects, like IL15, were monocyte enriched (Figures 6A

and 6C). Viewing a heatmap of DE genes from the HAM profile

across the three datasets, we saw that most HAM genes exhib-

iting age-related DE in the Galatro et al. (2017) study showed

corresponding expression changes in monocytes relative to mi-

croglia (Figure 6D). These comparisons may suggest that some

age-related changes in microglial gene expression could result

from an increased presence of brain-infiltrating peripheral
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Figure 6. Monocyte-Enriched Genes May Contribute to Both Late Aging and AD Microglial Signatures

(A) Example gene expression plots. Each point shows the expression of the indicated gene in a single sample in one of the three studies. In the middle column

(Galatro et al., 2017), the dashed line indicates the best linear fit.

(B) Monocyte DE profiles relative tomicroglia are similar in human andmouse studies. The 4-way plot is similar to Figure 3B but with DE genes betweenmonocyte

and microglia profiles shown with human and mouse studies on the x and y axes, respectively.

(C) Many DE changes elevated or depleted in aged humanmicroglia (x axis) are also elevated or depleted, respectively, in bloodmonocytes relative tomicroglia (y

axis). The 4-way plot shows DE genes with p % 0.05 in the aging study colored red, DE genes with p % 0.05 and fold change R 8 between monocytes and

microglia colored green, and DE genes that meet both criteria colored blue.

(D) Heatmap of DE genes from the HAM profile in three datasets. Gene ordering was based on the direction of change in this study and then by effect size (fold

change per decade) in aging. The subset of HAM-Down genes that show reduced expression in aged microglia generally shows higher expression in microglia

than in monocytes. The subset of HAM-Up genes that show increased expression in aged microglia generally shows higher expression in monocytes than in

microglia.
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monocytes/macrophages in aged subjects and that infiltration

by these cells is enhanced in AD. Alternatively, these changes

could simply reflect microglial transcriptional modulation toward

a state that bears some resemblance to monocyte profiles as

subjects age, with that aspect more pronounced in AD subjects.

HAM, DAM, and Aging Comparisons in Human AD,
Xenograft AD, and Human MS Tissues
Finally, we analyzed four recent datasets for evidence of HAM,

DAM, or age-related activation states in human microglia

scRNA-seq or snRNA-seq profiles obtained from AD tissues

(syn18485175 at synapse.org) (Mathys et al., 2019), multiple

sclerosis (MS) lesions (GEO:GSE124335 andGSE118257) (Jäkel

et al., 2019;Masuda et al., 2019), and cells xenotransplanted into

the mouse 5xFADmodel (GEO: GSE133433) (Hasselmann et al.,

2019). (See Data S4, panels 2 and 3, for t-distributed stochastic

neighbor embedding [tSNE] plots, definition of myeloid cell clus-

ters, and coloring by gene set scores.) For each subject, we

aggregated cells from themicroglial cluster into a single pseudo-

bulk expression profile (see STARMethods) and then scored the

pseudobulk profiles for expression of the mouse DAM (neurode-

generation-related module; Friedman et al., 2018) gene set, our

HAM-Up and HAM-Down gene sets, the human Aging-Up and

Aging-Down gene sets (Galatro et al., 2017), and the mouse

resting or homeostatic microglia module (Friedman et al., 2018)

(Figure 7). We excluded APOE from the HAM-Up and DAM

gene sets for these analyses so that the signal strengths for

each gene set could be compared using only distinct features.

We detected increased expression of the HAM-Up gene set in

microglial nuclei from tissues with high AD pathology (Figure 7).

This increase was more substantial than the increased expres-

sion of the DAM gene set, which was marginal, thus corrobo-

rating our analyses in whole-tissue RNA profiles (Figure 3D)

and SFG-sortedmicroglia profiles (Figure 4A). As a point of refer-

ence, sorted mouse microglia from the PS2APP and Tau-P301S

models showed strong DAM induction and no changes in the

HAM-Up gene set. The microglial nuclei from high AD pathology

tissues also showed increased expression of the Aging-Up gene

set. We did not detect reduced expression of the HAM-Down or

Aging-Down gene sets in AD microglial nuclei, perhaps because

most of these genes already have low expression and thus are

poorly represented in the snRNA-seq data due to extensive

gene dropout (Figure S7A), making their further downregulation

in AD difficult to detect using this approach. Overall, our analysis

of the snRNA-seq dataset confirmed that the DE we observed in

our sorted CD11b+ cell population from AD tissues occurred

within the microglial compartment, not in minor populations of

co-purifying CD11b+ cells.

Interestingly, induction of DAM genes was stronger in human

xenotransplanted microglia (xMG) in 5xFAD mouse brains, and

in microglia from MS lesions, than it was in AD microglia (Fig-

ure 7). Thus, human microglia are capable of responding in a

DAM-like manner, but for some reason this response is blunted

in AD patients (at least in the disease stages we examined). For

instance,GPNMB upregulation was robust in xMG andMS cells,

but in AD microglia, it was meager or absent (Figure S7B). All

components of the HAM profile—elevated HAM-Up and Aging-

Up scores and reduced HAM-Down and Aging-Down scores—
10 Cell Reports 31, 107843, June 30, 2020
were clearly represented in microglia from MS lesions, usually

with larger effect sizes and lower p values than the DAM scores

in the same cells (Figure 7). In contrast, human xMG from 5xFAD

mouse brains displayed similar extents of induction for HAM-Up

and DAM gene sets, although no changes were observed in the

Aging-Up and Aging-Down gene sets (Figure 7). This suggests

that the enhanced aging profiles we observed in AD microglia

are not a direct response to amyloid pathology.

Surprisingly, expression of the resting microglia module

defined in mouse microglia was not reduced in microglia from

AD tissues (it increased in the snRNA-seq dataset) or even in hu-

man xMG from 5xFAD mouse brains. In contrast, it was strongly

reduced in microglia fromMS lesions, being reduced to a similar

or even greater extent than in mouse microglia from the Tau-

P301S or PS2APP models, respectively (Figure 7). Considering

the perforations in blood-brain-barrier integrity known to occur

in MS, the apparent reduction in homeostatic gene expression

observed in microglia from MS lesions may reflect infiltration of

peripheral myeloid cells in which expression of this module is

already low.

To further understand these consistent trends in gene set

scores, we examined gene-by-gene concordance between the

AD datasets. Differences in fold-change profiles in xMG and

HAM were perhaps not surprising given the differences in

context (top and bottom panels of Figure S7A). However, many

genes detected as DE in our study did not replicate in the

snRNA-seq profiles (middle panel), perhaps because of low

detection in that study (gray) but also demonstrating that more

studies are needed to elucidate the microglial response in

HAM. Despite this, we identified several genes consistently up-

regulated acrossmultiple datasets (see examples in Figure S7B).

DISCUSSION

Here we have addressed the question of whether expression

profiles from mouse AD models reflect activation states

observed in HAM by employing a method for prospective isola-

tion of defined cell types from frozen brain tissues that allowed us

to survey �100,000 microglial cells per tissue sample by RNA-

seq. Unlike recent efforts to profile bulk-sorted microglia from

freshly obtained AD tissue samples (Olah et al., 2018) or to profile

microglia and other cell types from frozen tissue samples using

snRNA-seq (Mathys et al., 2019), our approach allowed us to

sample a suitably large number of tissues with known histopath-

ological characteristics while obtaining broad coverage of the

transcriptome. Though not affording single-cell resolution, this

enabled more identification of DE genes and facilitated more

substantive cross-comparisons with other datasets than the

other methods.

The DE profile we observed in HAM (the HAM profile) was

almost entirely distinct from the DAM profile defined in mouse

models. Initially, we could not exclude that our experimental

methods for tissue dissociation, labeling, and sorting precluded

the detection of human microglia with DAM-like activation, but

further analyses alleviated this concern. First, the HAM signal

was clearly stronger than the DAM signal in AD whole-tissue

RNA profiles. Second, the HAM signal was stronger than the

DAM signal in snRNA-seq profiles from both AD tissues and

http://synapse.org
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Figure 7. HAM Signature Is Elevated in Multiple Neurodegenerative Settings, whereas DAM Response Is Weaker in AD Microglia

Control-centered scores (log2 scale) for the indicated gene sets were calculated for each sample in the indicated datasets. For snRNA-seq datasets (Mathys

et al., 2019, frozen AD tissues, syn18485175; Jäkel et al., 2019, frozen MS tissues, GEO: GSE118257) and scRNA-seq datasets (Masuda et al., 2019, freshly

resected MS lesions, GEO: GSE124335; Hasselmann et al., 2019, human induced pluripotent stem cell [iPSC]-derived xMG into 5xFAD mouse brains, GEO:

GSE133433), each datapoint represents a pseudobulk microglia profile from pooling individual nuclei/cells from a given subject. (See Data S4, panels 2 and 3, for

definitions of microglia clusters used to generate pseudobulk profiles from sn/scRNA-seq datasets.) Other datasets are bulk-sorted brain myeloid cells from

frozen AD tissues (this study, GEO: GSE125050) or fresh mouse model tissues (PS2APP b-amyloid and PS19 Tau-P301S models, GEO: GSE89482 and

GSE93180). D, log2 fold change of group means; p values from t test. For syn18485175, t test and Dwere between low- and high-pathology groups. The p value

was omitted for GEO: GSE118257, because only one control sample was available (see STARMethods). See STARMethods (Gene Set Analysis section) for gene

lists and Figure S7 for depictions of individual DE genes across studies.
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MS lesions. Third, we did not observe instances of DAM+ nuclei

clustering separately from HAM+ nuclei in the snRNA-seq data-

sets; instead, these datasets revealed that to whatever extent

the DAM signal was induced, it occurred in the same nuclei in

which the HAM signal was detected (see Data S4, panel 2).

That the DAM activation state—generally considered protective

in mouse neurodegeneration models—was more readily

observed in microglia from MS lesions and in xMG from 5xFAD

mouse brains suggests that its relative lack of induction in ADmi-

croglia may be a unique aspect of late-onset AD.

Despite the dissimilarity between DAM and HAM signatures,

one qualitative similarity emerges. Just as DAM genes induced

in neurodegenerative mouse models overlap with those induced

by natural aging (Friedman et al., 2018; Holtman et al., 2015), so

do many HAM genes induced in human AD tissues (Figure 5A),

though the genes involved are distinct between species (Galatro

et al., 2017). Another emerging theme inmousemodel literature is

the involvement of some DAM genes (such as Apoe, Ch25h, Lpl,

Ctsb, andAtp6v0d2) in lipid and lysosomal biology and the induc-

tion of DAM gene expression by lipid pathologies such as demy-

elination (Nugent et al., 2020; Poliani et al., 2015) and atheroscle-

rosis (Cochain et al., 2018; Kim et al., 2018). In our data, in

addition to APOE, we found that the lipoprotein receptor LSR

and the lysosomal enzyme ARSA—a gene in which homozygous

mutations cause metachromatic leukodystrophy (Cesani et al.,

2016)—were elevated in HAM. Therefore, another possible simi-

larity betweenDAMandHAMprofiles couldbe the involvement of

lipid/lysosomal biology-associated genes. Several genes associ-

ated with AD incidence (APOE, CLU, ABCA7, SORL1, INPP5D,

and PLCG2) (Jansen et al., 2019; Kunkle et al., 2019; Marioni

et al., 2018) also function in lipid transport or signaling.

Why are the HAM and DAM gene signatures so different? One

explanation could be intrinsic differences in human versus

mouse innate immune responses, but the activation of many

DAM genes in MS lesions and in xMG from 5xFAD mouse brains

suggests this is not the only reason. Another explanation could

be the different stages of disease being analyzed, with mouse

b-amyloidmodels perhaps representing early-stage ADwith am-

yloid deposits present but preceding neurodegeneration. How-

ever, if this were the main reason, wemight expect to see mouse

DAM genes elevated in tissues in early Braak stages and

decreased in tissues in later Braak stages, but we have not

observed such trends in whole-tissue RNA profiles. A third

explanation for the dissimilarity could be that the DAM activation

state in b-amyloidmodels is a protective response by healthymi-

croglia (Keren-Shaul et al., 2017), whereas genetic and histolog-

ical findings suggest that human AD involves impairments in mi-

croglial activation (Hansen et al., 2018; Streit et al., 2009).

Additional profiles with increased cellular resolution for various

AD stages and brain regions, different neurodegenerative dis-

eases, and additional disease models that incorporate human

microglial cells will shed further light on how the HAM profile re-

lates to mechanisms of AD protection or pathogenesis.
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Antibodies

anti-CD11b APC Millipore MABF366; RRID:AB_2857951

anti-GFAP PE BD PharMingen 561483; RRID:AB_10689630

anti-NeuN AlexaFluor488 Millipore MAB377X; RRID:AB_2149209

anti-CD31 PE-Cy7 BD PharMingen 563651; RRID:AB_2738348

Chemicals, Peptides, and Recombinant Proteins

Human Fc Block BD PharMingen 564220

Deposited Data

Sorted-cell RNA-Seq Data from AD and Control SFG GEO GSE125050

Bulk Tissue RNA-Seq Data from AD and Control FuG GEO GSE125583
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Brad Friedman

(friedman.brad@gene.com).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
All new RNA-Seq data described in this study are available from the GEO/SRA repository: GSE125050 (sorted cell RNA-Seq from AD

and control SFG) andGSE125583 (bulk tissue RNA expression from FuG of AD and Control subjects). This study did not generate any

new software; questions about data analysis should be directed to the Lead Contact, Brad Friedman (friedman.brad@gene.com).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Frozen superior frontal gyrus and fusiform gyrus tissue blocks and pathology/clinical reports, including age, sex, diagnosis, and

Braak stage, were obtained from the Banner Sun Health Research Institute Brain and Body Donation Program in accordance with

institutional review boards and policies at bothGenentech andBanner SunHealth Research Institute. All samples obtained fromBan-

ner Sun Health Research Institute were stored at �80�C until the time of processing.

All subjects had been characterized clinically and neuropathologically by the Arizona Study of Aging and Neurodegenerative Dis-

ease/Brain and Body Donation Program (Beach et al., 2015). All AD subjects were clinically diagnosed with AD in life and brains were

neuropathologically confirmed to have ‘‘frequent’’ CERAD neuritic plaque densities (Mirra et al., 1991) and Braak score V or VI (Braak

and Braak, 1991). Controls did not have dementia, AD or other neurological disease diagnoses in life.

For sorted cell cohort (GSE125050), controls had either ‘‘zero’’ or ‘‘sparse’’ CERAD neuritic plaque densities, andmostly had Braak

scores ranging from 0 to III (median II). One control subject was designated Braak stage IV due to slight tau pathology in the amyg-

dala, and one control subject was diagnosed post-mortem with ‘‘argyrophilic grain disease.’’
All Subjects Subjects with QC-passing Myeloid Profiles

Control AD p* Control AD p*

N 21 21 15 10

Male 13 (62%) 10 (48%) 0.536 10 (67%) 5 (50%) 0.442

ApoE4+ 0 (0%) 9 (43%) 0.00132 0 (0%) 6 (60%) 0.00119

Age 80 (71-88) 79 (72-84) 0.943 83 (67-89.5) 78.5 (72.8-83.2) 0.938

PMI 3 (2.5-3.25) 3 (2.33-3.08) 0.519 3 (2.75-3.2) 2.92 (2.2-3) 0.619

Last MMSE 28.5 (27.8-29) 1 (0-4) 6.52E-27 28.5 (27.8-29.2) 0.5 (0-5.5) 5.39E-11

Cell Reports 31, 107843, June 30, 2020 e1

mailto:friedman.brad@gene.com
mailto:friedman.brad@gene.com


Resource
ll

OPEN ACCESS
*p values for Sex (Male) and ApoE4 status from Fisher’s Exact Test, others from Student’s t test. Median and interquartile range

shown for Age/Post-mortem interval (PMI)/Last Mini-Mental State Exam (MMSE).

Linear model testing as well as visual exploration revealed no significant correlation between PMI and any of the other variables

(diagnosis, see also Figure S2C PMI panel; sex; ApoE4 status; age; or Last MMSE).

Whole tissue studies cohorts were as follows:
GSE95587 (previously published) GSE125583 (new subjects in this study)

Control AD P* Control AD P*

N 33 84 42 158

Male 23 (70%) 42 (50%) 0.0644 19 (45%) 86 (55%) 0.3

ApoE4+ 8 (24%) 38 (45%) 0.0574 5 (12%) 85 (54%) 5.29E-07

Age 82 (80-90) 87 (81-91) 0.471 89 (84.2-91) 84 (77-88) 7.45E-06

Last MMSE 29 (28-29) 17 (7-22) 2.10E-23 28.5 (27-30) 14 (6-21) 1.06E-47
*P values for Sex (Male) and ApoE4 status from Fisher’s Exact Test, others from Student’s t test. Median and interquartile range

shown for Age and Last MMSE.

Although age was not well controlled in the new cohort, the direction of difference was anti-conservative, with the AD cases on

average about a half decade younger.

METHOD DETAILS

Tissue processing, library preparation, and RNA-Seq for whole tissue RNA studies
For whole tissue RNA studies (GSE125583), frozen tissue was sectioned in approximately 8 slices 40 mm thick and stored at �80�C.
Tissue was homogenized in 1 mL QIAzol with 5 mm stainless steel beads using a Tissuelyzer (20 Hz for 4 min). After homogenization,

200 mL of choloroform were added to the cleared lysate (1 min at 12,000 rcf. at 4�C), vigorously shook and incubated at room tem-

perature 2-3 min. Samples were centrifuged for 15 min at 12,000 rcf. at 4�C and the upper aqueous phase was transferred to a new

tube. RNA was extracted using QIAGEN miRNeasy mini columns, yielding samples with RNA integrity (RIN) scores averaging 6.5.

Standard polyA-selected Illumina RNA-Seq analysis was performed as described (Srinivasan et al., 2016) on samples with RNA

integrity (RIN) scores at least 5 and post-mortem intervals (PMIs) no greater than 5 hr. Of 289 total samples, 89 were from subjects

that had already been profiled in our previous study, GSE95587. These are available in GSE125583 andmarked therein as duplicated

in GSE95587. These samples, which came from new fusiform gyrus tissue blocks, showed very similar sample-by-sample DE profiles

as the corresponding samples from the same subjects in GSE95587 (Figure S4A), but were omitted in all other analyses associated

with this manuscript to avoid overlap between the two datasets (see Figures 3D, S4B, and S4C; Data S2 and S3; and website).

Tissue processing, library preparation, and RNA-Seq for sorted cell studies
For sorted cell studies, frozen samples were opened on dry ice and a 100-200 mg portion was excised. The excised portion was

thawed in ice-cold Hibernate A and minced on a cold block with a pre-chilled razor. Minced SFG samples included both gray and

white matter, while only gray matter from FuG was used for mincing since gray matter atrophy was pronounced in FuG from AD sub-

jects and we did not want differences between AD and control microglia to be dominated by potential differences between white

matter and gray matter microglia. (For sixteen SFG samples, excess minced tissue fragments were refrozen and stored for a later

attempt to repeat the entire sorting and RNA-Seq procedure from the same brain region—see QC section below.)

Minced tissue was transferred to a 2mL round-bottom tubewith cold 1.6mL of Accutase and incubated 20-30minutes on a rotator

at 4�C, mechanically dissociated/triturated by pipetting, centrifuged, resuspended, and ethanol-fixed for 10 minutes on ice as pre-

viously described (Srinivasan et al., 2016). Cells were washed briefly and incubated with anti-CD11b APC (Millipore MABF366), anti-

GFAPPE (BDPharMingen 561483), anti-NeuNAlexaFluor488 (MilliporeMAB377X), anti-CD31 PE-Cy7 (BDPharMingen 563651), and

Human Fc Block (BD PharMingen 564220) for 20 minutes at 4�C with sample rotation. Cells were centrifuged at 2,000 rcf. for 2 mi-

nutes and briefly washed prior to DAPI (1 mg/ml stock) being added at 1:1,000 followed by FACS sorting on ARIA sorters. Only DAPI+

singlet cell bodies were collected, and each cell population of interest was gated to be negative for all the other antibody marker

channels. Samples were generally processed in pairs, with one AD and one control sample. While each human sample was unique

and gating was occasionally fine-tuned, samples generally separated based on the same broad FACS gates. (We did not attempt to

distinguish CD45low parenchymal microglia from CD45high peripheral/perivascular macrophages primarily for biological reasons

since we did not want to exclude activated microglia which often display elevated CD45 reactivity, but also for technical reasons

since we have not found a CD45 stain compatible with ethanol fixation.)

Typical cell numbers collected were 100K CD11b+ cells, 40K GFAP+ cells, 10K CD31+ cells, and 400K NeuN+ cells. FACS-iso-

lated cell populations were spun at 5,000 rcf. for 5 minutes and resuspended in 0.35 mL Buffer RLT from QIAGEN RNeasy Micro kit.

Lysed samples were stored at �80�C until all samples for a given brain region were sorted. Each cell type was then processed for
e2 Cell Reports 31, 107843, June 30, 2020
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RNA purification as a single batch. Typical RNA yields were 1 mg for neurons, 25 ng for microglia and astrocytes, and 5 ng for endo-

thelial cells. RNA integrity (RIN) and concentration were determined by 2100 Bioanalyzer (Agilent Technologies). RIN scores for all cell

types were typically between 1 and 3. Total RNA extracted from sorted cell populations was subjected to Fluidigm qPCR assaywhich

yielded reliable cell-specific gene expression data, despite poor RNA quality resulting from post-mortem status, freeze/thaw process

and fixation. In addition to the methods for dissociation and immunolabeling described above, we also attempted dissociation tech-

niques involving trypsin or papain at 37�C, psychrophilic proteases at 4�C, longer Accutase treatment periods, automated mechan-

ical dissociation instead of pipetting, other fixatives besides ethanol, labeling and sorting of non-fixed cells for cell types with surface

markers (CD11b and CD31), and antibodies for alternative cell type markers. None of these attempts were as good as the method

described above in terms of cell yield and RNA recovery.

Given the highly fragmented condition of our sorted cell RNA preps, we chose the NuGEN Ovation RNA-Seq System V2 kit for

cDNA synthesis since it uses random oligos for cDNA priming. We knew this would result in high percentages of intronic and

non-coding RNA reads, but our priority was to sample across all exons instead of having an extreme 30 bias and reduced complexity

in our library. (Only exonic reads were counted toward nRPKM values.) Generated cDNAwas sheared to 150-200bp size using LE220

ultrasonicator (Covaris). Following shearing, the size of cDNAwas determined byBioanalyzer DNA 1000Kit (Agilent) and quantity was

determined by Qubit dsDNA BR Assay (Life Technologies). Sheared cDNA was subjected to library generation, starting at end repair

step, using Illumina’s TruSeq RNA Sample Preparation Kit v2 (Illumina). Size of the libraries was confirmed using 4200 TapeStation

and High Sensitivity D1K screen tape (Agilent Technologies) and their concentration was determined using KAPA Library Quantifi-

cation kits. The libraries were multiplexed within cell types and then sequenced on Illumina HiSeq2500 (Illumina) to generate 50M

of single end 50bp reads.

QUANTIFICATION AND STATISTICAL ANALYSIS

RNA-Seq data processing and QC for whole tissue samples and bulk cell type samples
Sorted cell and whole tissue RNA-Seq data were analyzed using the GSNAP aligner and HTSeqGenie as described (Friedman et al.,

2018), except as follows. For Gosselin et al. (2017) (phs001373.v1.p1, humanmonocytes andmicroglia) we did not have access to the

raw FASTQ files, so we used the author-provided tables of counts and TPM values. For ROSMAP-DLPFC we downloaded the file

ROSMAP_RNAseq_FPKM_gene_plots_1_to_6_normalized.tsv from the synapse.org website, in order to take advantage of the

batch normalization that the authors already applied. We did not use the samples from batches 7 and 8 since, despite restricting

to the batch-normalized values, we still saw very strong clustering of these two batches separately from the first 6 on PCA.

‘‘Pass’’ or ‘‘Fail’’ status for our sorted cell RNA-Seq profiles was determined primarily using tSNE analysis (perplexity = 14, theta =

0.4) colored by cell type to visualize how profiles clustered (Figure S2A). tSNE clustering of profiles was generally confirmed by sam-

ple similarity heatmaps (not shown). Interpretation of tSNE clusters was informed by gene versus sample heatmaps (similar to the

heatmap in Figure S2B but with unbiased hierarchical clustering of the 500 most variable genes, and blinded to AD diagnosis), which

enabled us to see which tSNE clusters contained libraries with neat cell type-specific expression profiles and which clusters con-

tained libraries with degenerate features including reduced specificity of cell type expression markers (see Figure S2B). Compared

to ‘‘Pass’’ libraries, ‘‘Fail’’ libraries generally showed higher percentages of intergenic reads and lower percentages of exonic and

intronic reads (see Figure S2C). We discarded 1/43 neuron libraries, 19/38 astrocyte libraries, 14/41 endothelial cell libraries, and

18/43 microglia libraries from original frozen tissues, and 16/16 microglia libraries from twice frozen tissues (which underscored

the liabilities of the freeze-thaw process).

Principal Component Analysis (Figure 1C) was performed on Z-score normalized matrix of 1000 most variable genes by IQR using

the R function prcomp().

Differential expression (DE) analysis for bulk-sorted cells
DE between AD and controls for this study’s sorted cell populations was first attempted using voom+limma, which identified only 12

DE genes (adjusted p% 0.05) in myeloid cells and none in the other cell types.We then used DESeq2 instead (adjusted p% 0.05), but

we used the DESeq2-provided Cook’s distances to filter out genes likely driven by outlier samples. Any gene for which the Cook’s

distance was greater than the a = 0.01 critical value of the F distribution was omitted from our DE genes lists. The Cook’s distance

filter eliminated 6/10 neuronal DE genes, 9/75myeloid DE genes, and 382/517 endothelial DE genes from consideration, leaving 4 DE

genes in neurons, 66 in myeloid cells, and 135 in endothelial cells. The absence of any voom+limma hits for neurons and endothelial

cells, the high fraction of DESeq2 hits driven by outliers in these two cell types, and the lack of other human AD datasets available at

the time for cross-comparison led us to set these cell types aside (taking a conservative position) and focus on the whether the

changes in myeloid cells could be validated. In the myeloid cells, 11/12 DE genes identified by voom+limma were also identified

by DESeq2, with CD44 being the only exception (p = 0.113 in DESeq2). We included CD44 in our panel of genes tested by qPCR

in FuG myeloid cell sorts, and it was again increased in the AD samples (unadjusted p = 0.041), so we consider its DE to be genuine

though we did not include it in our HAM-Up gene set analyses, other than visualizing it in Figure S6A.

Our analysis of Galatro et al. (2017) was performed using DESeq2 (adjusted P value% 0.05, maximumCook’s P valueR 0.01). For

Galatro et al. (2017) the ages of the subjects were taken from their supplemental table rather than GEO (these differed only for the

sample GSM2631906), and the DE analysis was simply the linear model �Age, only using the samples with tissue = ’’Microglia.’’
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For Gosselin et al. (2017), DE between microglia and monocytes was performed using DESeq2 using only the samples with Cultur-

eStatus = ’’ExVivo.’’

Single-cell/nucleus RNA-Seq analysis
For Mathys et al. (2019) (syn18485175, human AD snRNA-Seq), count tables provided on synapse.org website were used as input.

Gene symbols, or, if necessary, aliases, were used to map onto our internal gene annotation, based on Ensembl. NIA Reagan scores

(for low, intermediate and high pathology) were obtained from Rush University via synapse.org. Analysis in this manuscript was

limited to cells with the authors’ provided broad.cell.type = ‘‘Mic,’’ although only the subset of these cells that we believe represent

parenchymal microglia were used for the pseudobulk (see Data S4, panel 2). Total transcript number normalization was performed,

dividing each gene expression value for a cell by a factor proportional to the total number of transcripts in that cell.

ForMasuda et al. (2019) (GEO:GSE124335, scRNA-SeqofCD45+ cells from fresh surgical resectionsofMSand control patients), we

downloaded each of the 32 gene quantification files from the GSE124335 GEO record (file names like GSM3529822_MS_case1_

3.coutt.csv.gz). These files each contained 192 columns corresponding to the cells of one batch, and one row per gene. The gene sym-

bols weremapped onto IDs as described above. After this step cells with less than 800 total transcripts or greater than 30%mitochon-

drial transcripts were discarded, resulting in 1,738 QC-passing cells for analysis. Total transcript number normalization was performed

as describe above.

For Jäkel et al. (2019) (GEO: GSE118257, snRNA-Seq of post-mortem MS and control brains) and Hasselmann et al. (2019) (GEO:

GSE133433, scRNA-Seq of xMG in 5xFAD and non-diseased mouse brains), the single-nucleus/cell count tables were similarly

downloaded fromGEO and processed as above. For Jäkel et al. (2019) only nuclei with at least 400 total UMIswere taken for analysis,

and for Hasselmann et al. (2019) only cells with log10(total UMIs) R 3.25 and at most 5% mitochondrial transcripts were taken.

R/Seurat was used to calculate PCA, tSNE coordinates and Louvain clustering for all of these studies. Cell IDs, tSNE coordinates,

Seurat clusters, and interpretations of Seurat clusters for each cell visualized in Data S4, panels 2 and 3, and individual cell-level re-

sults in Data S5 (CSV file).

Pseudo-bulk analysis of sc/snRNA-Seq datasets
Pseudo-bulk datasets were derived from single-cell/single-nucleus datasets first by aggregating the cells of each sample of the same

cell type. So, for n samples and m cell types there were nm total possible pseudo-bulks (that is, aggregates of cells of a single type

from a single sample). If fewer than 10 cells of a particular typewere present in a given sample then they were discarded, so the actual

total number of pseudo-bulks was typically less than nm. A single ‘‘raw count’’ expression profile was created for each pseudobulk

simply by adding the total number of UMIs for each gene across all the cells. This gave a gene-by-pseudobulk count matrix which

was then normalized to a normalizedCount statistic using the estimateSizeFactors function from DESeq2, used for calculating gene

set scores and visualizing gene expression, and for normalization factors for differential expression analysis. DE was performed on

pseudobulk data-sets using voom+limma methods for bulk RNA-Seq.

To put this into more formal notation, let nij be the raw UMI number of gene i in cell j. Let sj and cj indicate the sample and cell type,

respectively, of cell j.

Then the pseudobulks are the set of pairs ðs; cÞ of samples s and cell types c for which there are at least 10 cells jwith ðsj;cjÞ= ðs;cÞ.
The pseudobulk count matrix B, with rows indexed by genes and columns indexed by pseudobulks (that is, ðs; cÞ pairs) is defined as

Bi;sc =
X

j:ðsj ;cjÞ= ðs;cÞ
nij

The matrix B is then analyzed using the standard methods of bulk RNA-Seq.

Other covariates: Post-mortem interval, sex, APOE genotype
Differential expression analysis (Data S4, panel 1) revealed that the expression of about 80 genes was significantly increased in mi-

croglia from subjects with larger post-mortem interval (PMI). This seemed to be largely driven by elevatedmitochondrial gene expres-

sion in a subset of the sampleswith large PMI. However, the distribution of PMI in our ADand control sampleswas similar (Figure S2C;

Data S4, panel 1A, inset), there was no overlap between the AD-related DE genes and the PMI-associated genes, and adding PMI to

our statistical model for AD-associated DE gave very similar results. Therefore, we did not include PMI in subsequent analyses. Sex-

associated DE in microglia was almost entirely restricted to X and Y chromosome genes. For APOE genotype, we only detected one

DE gene, ACY3, in AD microglia between APOE-ε4 carriers versus non-carriers. It showed variable expression levels in the Controls

(all non-carriers), so it may be a false positive.

Fluidigm qPCR analysis
qPCR data were collected as described (Srinivasan et al., 2016). Then, for each assay target, the maximum Ct of quality > 0 was

calculated. The Ct value maxCt+0.5 was assigned to each assay that had Ct larger than this value (including 999). All assays were

performed in duplicate and the average of these two Ct values was kept, except for twelve sample/assay pairs for which the differ-

encewasmore than 2.82 (corresponding to a standard deviation of 2), whichwere discarded.DCt normalization was performed using
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global median (the median Ct value for all assays for a given sample) and differential expression between AD and control was per-

formed using limma.

Gene set analysis
Gene Sets can be found in Data S3, as follows:

d Figures 1B and S2B: Cell type marker genes in column O ‘‘Barres Human cell Types.’’

d Figure 3D: ‘‘HAM-Up’’/‘‘HAM-Down’’ are the DE genes from this study, noted in column N. ‘‘DAM’’ are disease/damage-asso-

ciated microglia genes, called ‘‘Neurodegeneration-Related’’ in column Q ‘‘Myeloid Activation (Coarse).’’ ‘‘LPS-Specific’’

genes are significantly induced in myeloid cells by LPS but not significantly changed in myeloid cells in response to LCMV,

b-amyloid, Tau pathology, or SOD1G93A, in column R ‘‘Immune-Specific.’’

d Figure 4A and Table S1: Mouse-derived gene sets (left panel) in column Q ‘‘Myeloid Activation (Coarse)’’ except for ‘‘LPS-Spe-

cific’’ in column R ‘‘Immune-Specific.’’ BrainMyeloid gene set contains the orthologs of the union of genemodules 2, 3, 5, 7 and

9 from previous publication (Friedman et al., 2018) (column T of that manuscript’s Data S4). These are genes elevated in micro-

glia relative to infiltrating and peripheral macrophages but not so much relative to perivascular macrophages.

d Figure 4B: DE gene sets taken from our previous manuscript (Friedman et al., 2018)

d Figure 7: ‘‘GalatroAging-Down’’ and ‘‘GalatroAging-Up’’ are the genes DE with age (depicted in Figures 5A and 5C), with DE

stats and adjusted p < 0.05 in columns CU-CW. ‘‘Resting Microglia’’ refers to the Microglia module genes annotated in column

Q. Other gene sets described above, with APOE removed as indicated.

d Figure S4C: Same gene sets as Figure 3D, plus neuron and myeloid markers from Figure 1B

d Figures S5A–S5C: Same gene sets as Figure 4A

d Data S4, panels 2 and 3: Gene sets not described above are included in column P ‘‘ABAMouse Cell types,’’ column S ‘‘scRNA-

Seq Characterization,’’ and column T ‘‘FerritinCluster.’’

Gene set scores (Figures 3D, 4A, 7, S4B, and S4C; Data S4, panels 2 and 3) were calculated as described (Friedman et al., 2018).

Briefly, gene expression values were first log-transformed and stabilized as Log2(nRPKM+1), or, for ROSMAP-DLPFC, Log2(normal-

ized RSEM+1). Then the average log-scale expression values of the controls were subtracted out for each dataset to yield control-

centered gene expression values. The gene set score for a sample was then calculated as the average over all genes in the set of the

control-centered gene expression values. For DE scores (Figures 3C, 4B, 5D, 5E, S3A, and S4A) a similar method was used, but with

a signed average: up genes were weighted by +1 and down genes by �1 to capture comparisons of both up and down genes in a

single score.

In cases where gene set scores were presented in the same figure or analysis in a manner that suggested or required cross-project

comparisons (Figures 3C, 3D, 7, S3A, and S4; Data S4, panels 2 and 3), gene sets were limited to those genes present in all studies

compared.

Myeloid balancing (Figures 3D and S4B) of whole tissue RNA profiles was performed as described (Friedman et al., 2018). Briefly,

for each dataset, samples were split into 20 bins of similar myeloid gene set scores. In each bin, control or AD samples were randomly

discarded as needed to reduce differences in the ratio of AD to control samples across bins.

ADDITIONAL RESOURCES

Brain Myeloid Landscape 2 Website: http://research-pub.gene.com/BrainMyeloidLandscape. This website updates our previously

released resource at the same URL with the datasets described in this manuscript. Users can enter genes of interest and quickly see

their differential expression across all of these brain myeloid-related datasets, as well as expression within the samples in each in-

dividual dataset.
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 Figure S1. Example FACS plots showing isolation of four cell type populations from one AD sample. Related to Figure 
1A.  
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Figure S2. Quality control of SFG RNA-Seq profiles. Related to Figure 1B-1D. 
(A) tSNE analysis of passing and failing RNA-Seq profiles. Note that separation of cell types degrades in “Fail” samples.  
(B) Heatmap of all samples. Solid vertical lines separate cell types, and Pass/Fail within cell types. Dashed lines 
separate Control and AD samples. Libraries from 16 samples which were processed after repeated freeze/thaw are 
indicated below. “Fail” samples often displayed less specific expression of cell type markers. 
(C) Subject, sample and library attributes separated by cell type, quality group (Pass/Fail) and diagnosis. Age and PMI 
in particular do not appear to show strong differences between Pass and Fail samples, although some RNA-Seq library 
statistics, such as %exonic and %intergenic, do appear quite different. Denominators for percentages as 
follows. %rRNA: total reads; %unmappable, %multiply mapping, %uniquely mapping: “processed” reads (total reads 
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with rRNA, low quality, and adapter contamination removed); %intergenic, %intronic, %exonic, %mitochondrial: total 
uniquely mapping reads.  
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Figure S3. Differentially expressed (DE) genes in AD microglia from SFG RNA-Seq data are largely reproduced in FuG 
qPCR data. Related to Figures 3A-3C. 
(A) DE scores were calculated for sorted microglia from SFG and FuG of the same subjects, with higher scores 
indicating increased degree of differential expression for the genes identified as DE by RNA-Seq in the SFG samples 
and present in the qPCR panel. Each point represents one subject for which passing SFG RNA-Seq and FuG qPCR 
profiles were available, with coordinates giving the DE scores (Methods) for corresponding SFG and FuG profiles. 
(B) Selected examples of gene expression measurements in SFG microglia by RNA-Seq and FuG microglia by qPCR. 
Depicted are 5 of 16 tested HAM-Up genes (ADAM8, APOE, IL15, PLXNC1, and SECTM1), 3 of 6 tested HAM-Down 
genes (CECR2, GLT1D1, SERPINF1), five DAM genes (APOE, CCL3, CXCR4, GPNMB, ITGAX), two “homeostatic” or 
“resting” microglia genes (CX3CR1, P2RY12) and other genes of interest (CD44, PILRA, TSPO). Whereas Figure 3B used 
adjusted P-values for both datasets, this figure panel lists unadjusted P-values for consideration of individual genes. 
Thus, CD44, GPNMB, and TSPO appear upregulated in SFG AD microglia in this figure, with unadjusted P-values ≤ 
0.05. The lack of replication in FuG microglia for ADAM8 and SECTM1 being upregulated in AD could be because the 
DE signal for these genes in SFG microglia was driven primarily by two outlier samples in the AD group. (See Data S2, 
columns EK-GH, for the entire qPCR panel’s gene expression values across all FuG microglia samples.) 
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Figure S4. Whole tissue RNA analyses validate HAM signature in late-stage AD. Related to Figure 3D. 
(A) Duplicated FuG samples show consistent DE. 89 samples were duplicated in GSE95587 and GSE125583, in the 
sense that they came from different tissue blocks of the same fusiform gyrus. For each of these, a sample-wise DE 
score was calculated separately in the two datasets using common DE genes. Plot shows that the DE scores are highly 
correlated, indicating that the expression signature of a small piece of tissue reflects the entire brain region.  
(B) Myeloid-balancing results in similar distributions of myeloid scores but still a strong depletion of neuron gene 
expression in whole AD brain tissue RNA. Plot shows gene set scores of indicated gene sets in individual whole tissue 
RNA samples from three different cohorts, similar to Fig. 3D but for different gene sets. Also, neuronal genes were 
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not removed (that would not be meaningful in this context since none of the Barres-Myeloid and all of the Barres-
Neuron genes are neuronal).  
(C) Gene set changes are observed in whole AD tissues at later Braak stages, with HAM-Up scores being larger than 
scores for mouse-derived DAM or LPS-specific gene sets. Plots are similar to Fig. 3D but include all samples and 
genes, without myeloid balancing or removing neuronal genes, and with samples stratified by Braak stage. 
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Figure S5. Differential expression patterns observed in mouse microglia are not conserved in human AD microglia. 
Related to Figure 4. 
(A-C) Heatmaps of DAM (Neurodegeneration-related) gene modules (A), BrainMyeloid gene modules (B), and 
“homeostatic” Microglia gene module expression in CD11b+ microglia/myeloid cells sorted from the PS2APP mouse 
model of β-amyloidosis versus non-transgenic mice (GSE89482), or sorted from frozen human SFG of AD versus 
control subjects (this study, GSE125050). Gene modules were defined in previous study (Friedman et al., 2018). The 
microglial responses commonly observed in PS2APP and other mouse neurodegeneration models—namely, the 
induction of DAM genes and the downregulation of BrainMyeloid/homeostatic microglia genes—are largely absent in 
human AD microglia. Overall sample-wise scores for these and other mouse-derived gene modules in human AD vs. 
control microglia are shown in Figure 4A. 
(D) “4-way” plots for the three mouse datasets for which the change in DE scores shown in Figure 4B was significant. 
Each point represents one gene from the mouse DE profile, with the gene’s fold-change in the respective mouse 
dataset plotted on the y-axis and its fold-change in human AD vs. control SFG microglia plotted on the x-axis. Very 
few genes are significantly altered in both datasets, and overall correlations between up- and down-regulation of DE 
genes between datasets are not obvious. 
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Figure S6. Few of the transcriptional changes observed in human Alzheimer’s microglia are observed in mouse 
models of neurodegeneration or other microglia-activating stimuli. Related to Figure 4. 
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(A) Heatmaps showing the expression of human AD microglia (HAM) DE genes (and CD44, see Methods) in mouse 
microglia datasets from models of b-amyloidosis, tauopathy model, infection, and aging. 
(B) Expression of selected HAM profile genes (the few which exhibit consistent changes in mouse datasets) in 
individual samples in mouse datasets. Expression values are normalized to average expression in the control group 
within each study. 
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Figure S7. Comparisons of differential expression for individual genes in human microglia/myeloid cell RNA-Seq 
datasets related to neurodegenerative diseases and in mouse models of amyloid or tau pathologies. Related to Figure 
7.  
(A) “4-way” plots comparing differential expression in each pairing of three AD-related human microglia studies. 
Points are genes significant in at least one of the two indicated studies, with axes showing corresponding log2-fold-
changes. Shape of the points (first two plots) or color of the points (last plot) indicate whether the differential 
expression of the indicated gene was statistically significant in one or both studies. In the first two plots, the points 
are colored by the pseudobulk expression in the single-cell/nucleus studies. Note that in particular, in Mathys 2019, 
many of the HAM-Up genes (on the right side) and HAM-Down genes (on the left side) were gray, indicating low 
detection rates in that study.  
(B) Control-centered expression of example genes with elevated human microglial expression in various 
neurodegenerative settings. Organization of studies is identical to Figure 7. Left column genes are genes that also 
show some elevation in mouse models. Right column are examples of HAM genes that do not change (PTPRG, IL15) 
or are barely expressed (DPYD, GYPC) in mouse datasets. Adjusted P-values and Δ (log2-fold-changes) come from 
corresponding differential expression analyses described in the methods. The apparent discrepancy in Δ in some 
datasets (e.g., SPP1 in the mouse datasets) relative to the data plotted is due to the plotted values being stabilized via 
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log2(x+1) transformation. P-values are omitted from the Jakel 2019 dataset (GSE118257) since only one control 
sample had enough (≥ 10) cells in the relevant tSNE clusters for pseudobulk analysis (see Data S4 panel 3). Other 
missing statistics are genes that were omitted due to “low expression” in the differential expression analysis. See 
Methods for more information on differential expression analyses. 
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Gene Set Mouse 
genes 

Human 
orthologs 

Analyzeda Trending 
upb 

Trending 
downb 

Differentially expressed  
(P ≤ 0.05)c 

Notable strongly 
trending genes 

Interferon-Related 31 27 23 7 16   

Neurodegeneration
-Related/DAM 

134 126 112 55 56 APOE (FC=4.1, P=0.0004) APOC1 (FC=3.0, 
P=0.056),  

GPNMB (FC=2.2, 
P=0.11) 

Microglia 27 26 25 10 15   

Macrophage 15 14 10 5 4 TGFBI (FC=3.4, P=0.0042)  

Monocyte/ 
Neutrophil 

34 28 24 17 7   

Proliferation 82 81 67 27 40   

LPS-Related 81 76 69 42 26 ADAM8 (FC=4.4, 
P=0.025) 

TSPO (FC=2.8, 
P=0.14), 

 CD44 (FC=2.8, 
P=0.11) 

BrainMyeloid 136 132 126 60 65 SERPINF1 (FC=-2.8, 
P=0.006) 

 

LPS-specific 57 51 42 22 20   

 
Table S1. Analysis of differential expression in human AD myeloid cells for orthologs of mouse-derived gene sets. 
Related to Figure 4A.   
a  A few of the human orthologs were not analyzed either because the genes were either low expressed or because 

the calculated fold-changes and P-values were determined by Cook’s distance to be driven by outliers (see 
Methods). The number of “Analyzed” genes in each set is exactly equal to the number of genes in the next three 
columns: Trending up, Trending down, and Differentially Expressed. 

b  The terms “Trending up” and “Trending down” do not imply strong trends. The terms refer simply to whether the 
fold-change (FC) values were positive or negative (respectively) for all genes that were not differentially expressed 
in the DESeq2 analysis (i.e., all genes with P-values > 0.05).  

c  P-values shown are adjusted for genome-wide multiple testing (see Methods). 
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