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S1. DOWNLOADING SOFTWARE

S1.1. Download location
The MATLAB source code required to run the reported Eyecatcher test can be downloaded from
the project homepage: https://github.com/petejonze/Eyecatcher. Please note: the code is
provided as-is, and non-trivial modifications may be required to install and run it. We hope in
future to develop a simple executable version of the test, but at the time of writing this should
be considered ‘research grade’ code.

S1.2. License
The code is available under a GNU GPL v3.0 license, which allows the software to be freely
used, modified, and distributed. Any modifications to, or software including this code must also
be made available under the GNU GPL v3.0 license.

S1.3. Programming language & operating system
The code is written primarily in MATLAB, and will work on any platform that supports MATLAB

2012 or newer (including Mac OS X, Linux, and Microsoft Windows). Note, however, that
this code requires input from an eye-tracker, and some manufacturers only provide drivers for
selected operating systems. For example, the Tobii EyeX eye-tracker only supports Windows.
The code has been designed primarily using Tobii EyeX eye-trackers, but can be easily modified
to work with input from other devices, and example code for other popular devices is provided
(Tobii Pro series, Eyelink 1000, SMI Red).

S1.4. Additional dependencies
The code requires Psychtoolbox v3.0 (http://psychtoolbox.org).
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S2. TECHNICAL DETAILS

S2.1. Choice of software/hardware
Graphics card. An Nvidia Quadro K620 graphics card was used for threshold testing, because
it supports 10-bit luminance control (when connected to a 10-bit monitor via a DisplayPort
adapter). Other 10-bit graphics cards, such as the AMD FirePro series (Advanced Micro Devices,
Inc.; Sunnyvale, California, USA), are also available, but were not tested. Unlike with a
standard 8-bit display, the smallest luminance difference on a 10-bit display is subliminal for
human observers. This gives more precise stimulus control, and also means that differences in
display uniformity can be corrected without visible steps in background color. An alternative,
cheaper solution is to use bit-stealing? (chromatic dithering) to simulate 10.7-bit luminance
on a standard 8-bit display. During initial piloting, no substantive difference in test results was
observed between native 10-bit and simulated 10.7 bit performance. However, given falling
hardware costs, the savings of using an 8-bit display are relatively small. Conversely, bit-stealing
introduces visible chromatic artifacts, complicates the underlying code, and prevents chromatic
feedback from being interleaved with test stimuli (i.e., since it only supports monochromatic
graphics).

LCD screen. Testing was performed using an EIZO CG277 monitor. The size of this monitor
is 59.7 x 33.6 cm (2560 x 1440 pixel), and it was viewed at a distance of approximately 60
cm (∴, 52.9◦ x 31.3◦ visual angle). This display device was chosen as it has a certified level of
spatial uniformity (∆E ≤ 3), a wide intensity range (0 – 300 cd/m2, though manually limited
in the present test to 0 – 245 cd/m2), a reasonably fast response time (6 ms; gray-to-gray),
an IPS panel with a reasonably wide viewing angle (half-angle = ±89◦), a fast warm-up time
(∼7 minutes), and supports native 10-bit luminance. This screen was also of particular interest
as it has an integrated photometer and ambient light sensor, which can potentially be used to
calibrate the screen (study ongoing). The screen was VESA-mounted on an Ergontron extendable
arm for comfortable viewing and easy repositioning (Ergrotron Inc., Eagan, Minnesota, USA).
During piloting, a 30 inch Samsung SyncMaster 305T LCD Monitor (Samsung Electronics Co.
Ltd., Seoul, South Korea) was also used. This also appeared to provide acceptable results.
However, it was not used during testing as the 305T does not support 10-bit luminance, does
not contain an integrated photometer, and is generally lower-spec.

Eye-tracker. A Tobii EyeX eye-tracker was used during testing because: it supports monocular
tracking, operates remotely without any observer attachments, can estimate viewing distance,
and has a short operating distance (∼60 cm – allowing even a reasonably small monitor to
support a 24-2 test grid). The Tobii EyeX device was also of particular interest, as, with a retail
price of ∼$100, it provides a lower bound on what might be achieved given a more expensive,
‘research grade’ eye-tracker. The Tobii EyeX, however, may not appropriate for general use
due to: (i) its restrictive terms of use that discourage ‘research’ or ‘medical’ purposes (beyond
proof-of-concept piloting), and (ii) the emergence of more advanced eye-tracking devices. For
example, since testing was complete, Tobii have launched an ‘X3-120’ device, which has over
twice the sampling rate of the EyeX. Other remote eye-tracking devices, such as the SMI Red
(Sensomotoric Instruments GmbH, Teltow, Germany), the Eyelink 1000 Plus (SR Research Ltd,
Oakville, Canada), or the Livetrack FM (Cambridge Research Systems, Rochester, UK) might
also be capable of supporting the reported visual-field test, but have not be tested.

S2.2. Key differences between the Eyecatcher procedure and traditional automated static
threshold perimetry [ASTP] methods

As with the HFA, targets in Eyecatcher were 0.43◦ diameter (Goldmann III) circles of variable
luminance. These were presented on a 24-2 grid, against a 10 cd/m2 white background.
However, unlike with the HFA:
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1. Participants responded by making an eye-movement towards the target location, rather
than by pressing a button. This is an intuitive response, which occurs spontaneously even
in newborn infants? . Participants were instructed to “look at anything that appears on the
screen” and were told, “the test will be completed most quickly if you only move your eyes
when you see something”.

2. Participants were not required to maintain fixation on a central cue. Instead, target stimuli
were presented relative to the current point of fixation: wherever the participant was
fixating at trial onset. Typically, this would be the target location from the previous trial.
In practice, this lead to a number of practical challenges, and algorithms were developed
that automatically: (i) waited for steady fixation before presenting a target, and presented
a ‘stabilization’ cue after 500 msec if required; (ii) presented ‘refixation’ cues to shift gaze
position when a target would otherwise fall outside the screen area; (iii) avoided placing
targets near the center of the screen (due to a widespread bias to fixate there? in the
absence of a stimulus); (iv) avoided placing targets in areas of the screen that exhibited
poor tracking accuracy/precision. Further details concerning stimulus placement are given
below.

3. Participants sat normally on a standard office chair, and head location was not constrained.
The eye-tracker remotely tracked eyeball location, and so was able to stabilize gaze
location, independent of minor head movements. In addition, the distance of the
participant’s eyeball was used to dynamically scale the size of the stimulus on the screen,
to ensure a constant stimulus size on the retina (invariant of viewing distance).

4. The four test-points from the top and bottom of the standard 24-2 grid were omitted.
This was due to technical limitations – current eye-trackers tend to have limited vertical
range, and often exhibit poor precision and systematic inaccuracies in the vertical
extremities? . The omission of these points is unlikely to have affected the present findings.
However, some of the omitted points are informative for certain clinical populations (e.g.,
some glaucomatous eyes exhibit pronounced deterioration in the upper extremity? ? ).
In principle, these test-points could be reintroduced, either through improvements in
hardware, or using additional ‘refixation’ trials to shift the patient’s gaze to the extremities
of the screen.

5. As the HFA’s (‘SITA-standard’) thresholding algorithm is proprietary technology, the
qualitatively similar ZEST algorithm? ? ? ? was used to adapt stimuli and determine
detection thresholds. The prior was a bimodal probability density function, constructed
by combining normative data for healthy and glaucomatous eyes, as per Ref∼[? ]. The
likelihood function was a cumulative Gaussian, with a fixed slope of σ = 1.25, and a
variable mean of µ = 〈0, 1, 2, . . . , 34〉 (i.e., target levels were uniformly distributed on a
log-scale, and were adaptively varied in dB integer steps). The growth pattern is given in
Figure 2C of the Main Manuscript. The starting guess was determined by normative data?

for the initial points, and by the arithmetic mean of adjacent estimates thereafter (though
see S3.1. Luminance-corrected eye-tracking procedure: Correcting for a technical error in
calculation of ∆L). A dynamic termination criterion was used? ? , in which the spread of
the estimated posterior function was required to have a standard deviation of σ ≤ 1.5 dB.

6. In addition to trials in which test-points were presented (Mean N = 256 per test),
further ‘ancillary’ trials were interleaved throughout testing (Mean N = 94 per test).
These consisted of: (i) suprathreshold refixation trials (Mean N = 51), to allow
eccentric stimulus placement; (iii) suprathreshold stabilization trials (Mean N = 4),
when participants were making excessive eye-movements prior to stimulus onset (iii)
suprathreshold calibration trials (Mean N = 18), to calibrate the eye-tracker; (iv)
suprathreshold catch trials (Mean N = 10), to evaluate false-negative response rates;
(v) subthreshold (blank) catch trials (Mean N = 11), to evaluate false-positive response
rates. The 21 catch trials were used to evaluate error rates, but could be omitted from
clinical tests (e.g., as per SITA FAST).

7. Stimuli were presented on a planar surface (a ‘tangent screen’), not on an arc concentric
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with eye (as with dome perimeters, such as the HFA). Equal distances on a plane do
not correspond with equal angles in the eye? . The shape and size of stimuli were
therefore warped in software, to ensure constant shape/location on the retina (invariant
of eccentricity).

8. To remove stimulus edge-effects (a potential detection artefact), a 2-D Gaussian low-pass
filter was applied to the stimuli. This ensured that stimuli were contrast-modulated
smoothly at their edges. Filtering was performed through convolution, using a 2-D finite
impulse response (FIR) filter, and a rotationally symmetric Gaussian kernel of size 15x15
px and standard deviation 2.85 px.

9. Once all test points were complete, any suspect estimates were retested. Suspect estimates
were identified as follows. For each test location, the difference was computed between
estimated DLS, and expected DLS given prior normative data. These differences were
converted to Z-scores, based on the observed distribution of differences across all of the
44 test points for that individual. Any differences > 2 Z-scores in magnitude was classified
as an outlier, and retested. Thus, a single highly deviant point would be retested, but if all
points were consistently higher/lower than expected then no points would be retested. In
practice, the median number of points retested was two.

S2.3. Stimulus selection (ZEST)
The algorithm for selecting target stimuli is shown schematically in Figure S1. In short, test trials
were uniformly randomly selected from the current ‘wave’ of test locations. Waves proceeded in
sequence from 1 to 4, in the manner shown in Figure 1C of the Main Manuscript. In addition to
test trials, blind-spot trials and catch trials were randomly interleaved throughout testing.
If a selected target location could not be displayed (i.e., fell outside the valid test area of the
screen), then a new location was selected. If, after four attempts, no valid target location had
been generated, then a ‘refixation’ trial was used to manually move the participants view to
a pseudo-random location, such that the current target location could be presented on the
following trial.
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Fig S1. Flowchart showing how the target stimulus was selected on each trial.
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S2.4. Stimulus placement
The valid test regions of the display screen are shown in Figure S2 (areas not shaded red).
In accordance with perimetric standards? , target edges were not permitted to fall within two
stimulus-diameters of the screen edge. In addition, target centroids could not fall within:

1. 3 degrees of the (left/right) sides of the screen
2. 7.2 degrees of the upper-left/right corner of the screen
3. 3.6 degrees of the screen center of the screen

Since classification errors occurred most frequently in the bottom corners of the screen, future
iterations of the test will likely extend criterion (2) to these regions too.
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Fig S2. Target placement. Valid/invalid areas of the screen are shown in grey/red,
respectively. Blue circles indicate stimulus locations in all individual trials during
the 128 (2x64) tests reported in the main manuscript.

S2.5. Eye-tracker calibration
Gaze calibration overview. To map estimated gaze locations (x/y screen coordinates, in pixels)
to their true values, participants completed a calibration procedure in which they were directed
to sequentially fixate nine highly visible/salient targets (Figure S3A). Standard algebraic
regression was then used to find the second-order polynomial surface that best predicts the
‘true’ gaze coordinates, given the observed gaze coordinates (minimizing least-square Euclidean
error). This calibration procedure was carried out before the first trial, and then again: (i)
every 400 trials; (ii) if the false negative response rate exceeded 20% (after a minimum of five
suprathreshold catch trials).
Two precautions were taken to ensure good quality calibrations. Firstly, as illustrated in
Figure S3B, regression fits were made twice, with statistical outliers from the first fit excluded
from the second. Fits were performed recursively in this way in order to avoid the calibration
being biased by erroneous measurements (e.g., because the observer fixating the wrong location,
or due to measurement error – for example, due to flickery contact or eye-blink artefacts).
Secondly, as detailed in the next section, a log-likelihood classifier was used during the
presentation phase to ensure that observers fixated each point. Points that were not deemed
to have been fixated (within three seconds) were repeated, until either a successful fixation was
detected, or until âĂŞ in extreme cases – the test was manually aborted by the experimenter.

Ensuring that gaze-calibration targets were fixated. A log-likelihood classifier? was used to
ensure that observers fixated calibration targets (non-fixated calibration targets were presented
again). This classifier worked as follows:
Two fixation distributions were hypothesized: A ‘Miss’ distribution, which predicted where gaze
coordinates would fall when not fixating the target; and a ‘Hit’ distribution, which predicted
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A B

Fig S3. Eye-tracker gaze calibration. (A) Calibration locations and target.
Targets were positioned at nine locations across the screen, and were presented
sequentially, in random order. (B) Surface fitting, showing: calibration target
locations (black filled circles); raw gaze measurements used for calibration (green
plus signs); statistical outliers automatically excluded from the calibration (red
crosses). Blue triangles show new gaze coordinates, generated at the same nine
average locations as the initial measurements, after applying the fitted calibration.
Note that the calibration procedure described here occurred after, and in addition
to, any calibration using the eye-tracker’s own proprietary calibration routines.
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Fig S4. Classification of gaze during eye-tracker calibration. (A) Target location. (B)
Hypothesized distributions of eye-gaze, given target fixation (solid red) or random
eye-movements (dashed blue). (C) Example classifier ‘random walk’, as evidence is
accumulated over time.

where gaze coordinates would fall when fixating the target. As shown in Figure S4B, each
distribution only used the horizontal (x-coordinate) gaze data, as these were found to be more
reliable than uncalibrated vertical (y-coordinate) gaze estimates.
For each gaze-coordinate returned by the eye-tracker, xj , the classifier computed the
log-likelihood of each distribution being true, given the observed gaze data. At each timepoint,
the sum of the log-likelihoods, LL, for each distribution was computed:

LL = lnL =

N∑
j=1

ln
[
p(xj)

]
S1a

The ratio of these two log-likelihoods was the dependent variable that was used to classify
the observer’s response (Figure S4C). Note that the use of logarithms is purely pragmatic:
increasing computational efficiency and preventing numerical underflow. Note also that the
use of summation presumes that each gaze-estimate is independent. This assumption is
incorrect, strictly speaking, but is an acceptable approximation that simplifies the mathematics
considerably.
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The probability of observing the gaze coordinates given the ‘Miss’ distribution, pMiss(x), was
specified by a continuous uniform probability density function, which extended across the
number of pixels in the whole screen, plus an additional ±25% margin:

pMiss(x) = U(x, a, b)

=
1

b− a
,

S1b

where in the present setup, a = -640 and b = 3200 (i.e., monitor width = 2560 px; margin =
±640 px). Thus, it was assumed that an observer who did not fixate the target would look
randomly, anywhere on the screen. To prevent spurious (−∞) values, likelihood values for
coordinates outside of the range 〈a, b〉 were changed from 0 to 1E-09.

The probability of observing the gaze coordinates given the ‘Hit’ distribution, pHit(x), was
specified by primarily by Gaussian probability density function, φ(x, µ, σ), centered on the
target:

pHit(x) = 0.95φ(x;µ, σ) + 0.05U(x, a, b)

=
0.95

σ
√

2π
e

(
− (x−µ)2

2σ2

)
+

0.05

b− a
,

S1c

where µ is the center of the calibration image location, and σ = 43.75 (one eighth of the
calibration image width – this figure was determined by informal piloting, and meant that
∼20% of the distribution fell within the circular target). Note that the Gaussian distribution
was linearly mixed, 19:1, with a uniform pedestal , to prevent sudden spikes in the value of
pHit due to isolated outliers (e.g., because of technical errors, or eye-blinks). As with the Miss
distribution, likelihood values for coordinates outside of the range 〈a, b〉 were changed from 0
to 1E-09.
To make a classification decision, the difference between the two log-likelihood metric was
compared to a static criterion, λ:

Resp→


`Hit', if (LLHit − LLMiss) > λHit

`Miss', if (LLMiss − LLHit) > λMiss

Wait, otherwise

S2

For the Hit distribution, λHit = 800. For the Miss distribution, λMiss = ∞, meaning that the
system would in practice wait forever until a Hit was detected. However, if no decision was
reached after 3 seconds, then the classifier defaulted to ‘Miss’. In future, this simple heuristic
could be replaced by a more principled algorithm, once enough normative data has been
collected.
In practice, the log-likelihood metric in Eq S1a was modified in order to account for the facts
that: (i) eye-gaze is not stationary, and (ii) it takes time for observers to move their gaze to
the target location. Generally, the classifier is therefore interested only in the most recent gaze
samples, and those that occur a given interval after target onset. To reflect these facts, gaze
samples were linearly weighted:

LL =

N∑
j=1

(
ωj ln

[
p(xj)

])
, S3a
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where weights, ωj , were determined in two ways. Firstly, only the last 90 gaze samples were
ever considered (i.e., ω = 0, for any samples occurring & 1.8 seconds previously). Secondly,
samples occurring shortly after target onset were ramped using the following equation, which
is shown graphically in Figure S5:

ωj = min

(
1,max

(
0,

tramp1 − tj
tramp1 − tramp2

))
, S3b

where tj is the time of sample xj in seconds, and tramp1 and tramp2 are the inflection points of
the onset ramp, as shown in Figure S5. In practice, tramp1 = t0 + 0.4, and tramp2 = t0 + 0.8,
where t0 is the time of target onset, in seconds).
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Fig S5. Weighting of incoming gaze-samples, when using the log-likelihood gaze
classifier (Eq S3a). See body text for details.

Overall, this classifier — which is the same as we have used previously to calibrate gaze
coordinates in infants? — performed well. However, it may be worth noting that, should a
large, systematic error discrepancy exist between actual-versus-estimated gaze coordinates, the
classifier may fail to ever register a Hit, thereby preventing the calibration from completing.
In principle, this might be resolved by performing a two-step procedure, in which additional
calibration targets are initially placed centrally and/or in which the classifier has a larger error
tolerance (the σ parameter in Eq S1c). Alternatively, operators could in future be given the
option to manually override the classifier, if they were confident that the observer was fixating
the calibration target.

Additive drift correction (gaze). In addition to the gaze calibration procedure detailed above, an
additive drift-correction mechanism was used to maintain gaze-estimation accuracy throughout
testing. Immediately after calibration, the error in estimated gaze location was assumed to be
〈0, 0〉. Subsequently, after each trial where the observer was sure to have fixated the target (see
below), the error between target location and gaze location was computed. This error was then
integrated with the current running total, via a process of weighted-vector-addition. All future
measurements were then transposed by this amount.
In practice: (i) only suprathreshold ‘attention grabber’ trials were used to update the
drift-correction factor, and of these, only those subset of ‘attention grabber’ trials where the
observer was classified as having fixated the target; (ii) new offsets were linearly-integrated
with the running total, using a weight of 0.15 (i.e., allowing the correction factor to be gradually
refined over the course of the experiment); (iii) computed offsets that deviated by a Euclidean
distance of more than 6 degrees from the current running total were assumed to be erroneous,
and were not integrated with the running total.

Additive drift correction (Z distance). It was observed that estimated distance of the eyeball
from the screen was subject to random error between individuals. Thus, viewing distance was
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consistently underestimated in some individuals, and overestimated in others. To correct for
this, participants were initially instructed to sit at a fixed distance from the screen (60 cm
– confirmed by aligning the participant with markings on the wall). The difference between
the reported distance (as estimated by the eye-tracker) and 60 cm was computed, and was
subtracted from all future measurements. In future, it may be possible to simplify this process,
by using a laser range-finder or ultrasonic distance sensor to provide an objective measure of
viewing distance.
S2.6. Processing raw eye-tracking data
Incoming eye-tracking data were cleaned/processed in three steps. (1) Outlying values were
excluded. (2) Small gaps in data were filled-in using linear interpolation (3) Data were
smoothed (low-pass filtered). This steps are visualized in Figure S6.

Excluding outliers. Eye-trackers are liable to occasionally report spurious values. This can be
due to hardware/measurement error, or because the eyes could not be tracked momentarily
(i.e., at which point the device may default to an arbitrary/impossible value, such as ‘-1’). Such
spurious values were identified and replaced with ‘blank’ values, to be filled by interpolation
(see next). In the present test, outlying values were defined as those where either: (i) the
eye-tracker self-reported an invalid sample code; (ii) the reported eyeball location was ‘0 cm’;
(iii) the reported gaze location was more than 2000 pixels outside the screen area.

Interpolating missing data. Linear interpolation was used to ‘fill-in’ small amounts of missing
data, such as those caused by poor registration of the eye by the eye-tracker. Missing gaze
coordinates were replaced with the arithmetic mean of the two points either side (ω± 1). If this
failed to yield a valid value (i.e., if one of these data points are themselves missing) then the
window size, ω, was progressively increased to ω±2. If this failed (i.e., if there was an extended
run of missing values, as with a blink or head-turn), no further interpolation was attempted.

Smoothing. Low-pass smoothing was used to reduce any random error in eye-gaze estimates,
arising due to either measurement error or nystagmus. Filtering was performed by computing
the running mean (‘Moving Average’) of incoming gaze coordinates. A running mean is an
efficient way to implement a low-pass filter in the time-domain, and resulted in gaze-coordinates
that were more consistent over time. However, a wider averaging window introduces inertia into
the gaze-data, and also increase lag. In the present test, the size of the window was therefore
fixed at a relatively narrow value of ±2 samples. Note that filtering occurred after internal
processing by the eye-tracking device. In the present case, this consisted of a proprietary ‘lighting
filtering’ algorithm, which involved an adaptive filter based on eye-movement velocity.

1 7 4 Inf 15 10 20 18 20 …

7 4 9.5 15 10 20 18 …

4 6.8 9.5 11.5 15 16 19.3 …

Fig S6. Schema showing how incoming data (1st row/blue circles) were
interpolated (2nd row) and smoothed (3rd row/red crosses); here using a window
of ± 1 sample. Processing was carried out independently for each gaze coordinate
〈x, y〉. See body text for details.

S2.7. Eye-movement evaluation (Classifying hits/misses)
To determine whether the participant looked at a target location (a ‘Hit’), we used a simple ‘hit
box’ classifier, in which:
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Resp→


Hit, if N gaze estimates fell within a D◦ x D◦ box,

within Rmax seconds of stimulus onset.

Miss, otherwise.

S4

Gaze estimates did not have to be consecutive, so all samples occurring within Rmax seconds
were counted, even if some samples strayed outside of the hit box (although, given the brief
time period, this was more likely to occur due to nystagmus and/or measurement error, rather
than saccadic eye-movements). It was assumed participants would be slower and less accurate
at fixating more distant target locations. Therefore, to minimize false-negative responses, the
parameters N , D, and Rmax varied as function of stimulus eccentricity, E, thus:

N = 10− nint

(
min

{
9,max

{
0,

(E − 5)

2

}})
S5a

D = 2 + max

{
0,

(E − 5)

10

}
S5b

Rmax =
N

Fs
+ 1.5 S5c

where E is the Euclidean distance of the target from the participant’s point of fixation at trial
onset, in degrees, and where Fs is the sampling rate of the eye-tracker, in Hz. For example, given
an eye-tracker with a sampling rate of 50 Hz, a target at 〈+9◦,+9◦〉 would be scored as seen
(only) if the participant’s gaze fell within 2.77◦ of the target for 6 samples (120 milliseconds),
within 1.62 seconds of stimulus onset.

To minimize false-positive responses (e.g., due to random searching of the screen), two
additional heuristics were used. Firstly, if participant’s gaze deviated outside a ± 8◦ region,
extending linearly from initial gaze location to target location, then the trial was classified as
a ‘Miss’ and immediately aborted. Secondly, if a ‘Hit’ occurred within Rmin seconds of stimulus
offset, then the trial was repeatedi.

Rmin =
N

Fs
+

1

3
S5d

Note that these algorithms are coarse heuristics based on limited pilot data, and they prioritized
simplicity over any formal measure of optimality. Their form and parameterizations could
likely be improved, given normative data on eye-movement patterns. Note also that, unlike
some previous eye-tracking applications? , we did not explicitly identify saccades. Instead,
classifications were based on the raw gaze data. The additional complexity of identifying
saccades was found to be unnecessary, and was a source of additional noise when using
eye-trackers with low temporal resolution (< 500 Hz).
Automated classifiers were also used to ensure that participants fixated calibration stimuli.
However, the calibration (‘log-likelihood’) classifier differed from that described here for test
targets (See S2.4. Eye-tracker calibration).

S2.8. Screen (luminance) calibration
For a given screen location, input command levels were mapped to the output luminance of
the display screen, via an empirical input-output (‘gamma’) function (Figure S7A). Empirical
measurements of luminance were performed at 17 input levelsii, using a ColorCal MK II

iiAlthough 17 measurements is sufficient for most applications, future calibrations will be made using 1024
measurements, to account for local non-linearities in LCD screens.
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colorimeter (Cambridge Research Systems, Cambridge, UK), and were repeated three times.
A spline function was then fitted to the 17 mean-luminance values. This function could be used
to predicted the necessary command level require for a specified output luminance.
LCD screens are notoriously non-uniform in luminance, with input-output functions varying
as a function of screen location? . The chosen screen (EIZO CG277) corrects for much of
this error in firmware, based on factory-made measurements. Residual error was corrected
for in software, using photometric measurements made manually within lab. Input-output
functions were measured independently at 48 screen locations (Figure S7B). Two-dimensional
tensor-product linear-interpolation was then used to compute the appropriate calibration for
any/every screen location (pixel).
Calibrations were validated using the ColorCal MK II photometer, and also with a CS-100
Chroma Meter (Minolta Camera Co., Osaka, JP).
Notably, the CS-100 is a handheld spot-photometer with an optical zoom. It could therefore
also be used to quantify the effects of viewing angle. Even at the most eccentric test-angles
(± 30◦) the drop-off in luminance output from the IPS panel was minimal. Therefore, while
viewing-angle effects could be corrected for in future iterations of the test, not doing so is
unlikely to have affected the present results substantively.
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Fig S7. Screen (luminance) calibration. (A) To ensure uniform luminance across
the screen, luminance (cd/m2) was measured for 17 command levels (0 . . . 255),
at each of 48 screen locations. (B) Tensor product linear interpolation was used to
derive spline-fit gamma functions for every screen location (pixel).

S2.9. Using bootstrapping to perform statistical comparisons
A non-parametric boostrapping procedure was used to evaluate differences in the 95%
Coefficient of Repeatability [CoR95] between the present test and the HFA. In short, 64
paired-samples of test-retest differences in mean sensitivity (MSrun2 - MSrun2) were randomly
drawn, with replacement, from each of the two tests. The difference in CoR95 was then computed
(HFACoR95− Eye-trackCoR95). This procedure was repeated 20,000 times. The p-value was
then computed as 2P, where P was the proportion of these 20,000 differences that had the
opposite sign to the observed difference in CoR95. This procedure is similar in principle to a
Mann-Whitney U test, and will also give quantitatively similar results to a t-test, in situations
where a t-tests parametric assumptions are met.
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S3. ADDITIONAL FOLLOW-UP EXPERIMENTS

After the main test protocol was complete, three of the original thirty-two participants completed
a number of additional tests, designed to validate key aspects of the reported method. These
additional tests took place approximately three months after the testing reported in the Main
Manuscript, and used the same basic hardware, personnel, and procedures.

S3.1. Luminance-corrected eye-tracking procedure: Correcting for a technical error in
calculation of ∆L

Due to a programming error, target stimuli for the data reported in the Main Manuscript
were presented 7 dB higher than their intended differential-luminance value (∆L). Reported
thresholds were corrected, post-hoc, to account for this error. However, it meant that starting
priors for the adaptive thresholds algorithms were effectively 7 dB higher than intended, and
therefore substantially over-estimated observers’ expected sensitivity. To assess the effects of this
error, three of the original participants were subsequently retested, using the correct stimulus
values and/or starting prior.
No differences in accuracy or precision were observed, compared to the results reported in the
Main Manuscript. In terms of accuracy, there was no significant differences between the post-hoc
corrected mean-DLS thresholds originally observed (Figure S8; yellow bars), and thresholds
re-estimated using the correct stimulus values (Figure S8; maroon bars). Likewise, in terms of
precision, there was no significant difference in 95% Coefficient of Repeatability, CoR95, for MS
or pointwise sensitivity.
However, when using the appropriate target levels, ∆L, the number of trials decreased by a
mean-average of 112 (40%), and test durations decreased by a mean-average of 2.4 minutes.

n.s. n.s. n.s.
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Fig S8. Mean sensitivity, MS, estimates for three individual observers, retested
using intended target differential-luminance values (∆L). Each bar represents
the mean of two runs. The ’corrected’ data show the original data, following
post-hoc correction for a technical error. Error bars represent bootstrapped 95%
confidence intervals (N = 20, 000). Statistical comparisons represent the results
of non-parametric bootstrap comparisons (see Main Manuscript), evaluated at α =
0.05.

S3.2. Substituting button-press responses for eye-movement classification
In the Main Manuscript, it was observed that false-negative response rates for Eyecatcher
were significantly greater with the novel eye-tracking procedure than with the HFA. Based on
informal piloting by the first author, this was mostly likely due to eye-movement classification
errors, although we cannot rule out lapses in attention, or observers failing to make
accurate/appropriate eye-movements.
To assess the impact of Eyecatcher’s greater false-negative rate, and to clarify its cause, three of
the original 64 participants were retested using a button-press as the target response. The three
participants were instructed to behave as before (i.e., they continued to make eye-movements),
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but were asked to also press a button when they saw a target. A ‘Hit’ was registered only if they
pressed the button within three seconds of the target onset (irrespective of any eye-movements),
otherwise a ‘Miss’ was registered.
Mean response-error rates for the button-press procedure and the original eye-tracking
procedure are shown in Figure S9. False-negative errors were completely eradicated when
button-pressing responses were used (0%). This is consistent with the hypothesis that the high
false-negative rate was due to eye-movement classification errors. However, it was interesting
to note that false-positive errors actually increased by 7% with the button-press procedureiii.
This is perhaps unsurprising, since an observer would be much less likely to make a correct
eye-movement by chance alone. It may also partly reflect button-presses being seen as a
less ‘costly’ than button-press responses (i.e., a difference in response criterion? ). The key
corollary of this change in error rates (lower false-negative, higher false-positive) was that,
in the button-press procedure, estimates of overall sensitivity, MS, increased by an average
of 0.48 dB (CI95: 0.43 – 0.49). Given the general pattern of response-errors, this may partly
reflect the eye-tracking procedure underestimating sensitivity, and the button-press procedure
overestimating sensitivity within these individuals. At the very least, however, it demonstrates
that even relatively small levels of response errors can substantively affect estimated thresholds,
and underlines the scope for further improvement of the test with refinement of the hardware
and software.
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Fig S9. Mean response-error rates for three individual observers, retested using
button-press responses instead of eye-movements. (Button-press false-negative
error = 0%.)

iiiNB: the observed false-positive rate under button-pressing was 12%. This is substantially greater than was observed
in the main manuscript for the HFA (∼3%), which also requires an explicit button-press response. This may be due
partly to the fact that the HFA does not include explicit false-positive catch trials. Instead, it estimates false-positives
based on button-presses that occur during an arbitrary inter-trial ‘window’. This procedure has been argued by other to
substantially underestimate true false-positive rates in some observers. ?
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