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Phylogenetic profiling is a computational method to predict genes involved in the same
biological process by identifying protein families which tend to be jointly lost or retained
across the tree of life. Phylogenetic profiling has customarily been more widely used
with prokaryotes than eukaryotes, because the method is thought to require many
diverse genomes. There are now many eukaryotic genomes available, but these are
considerably larger, and typical phylogenetic profiling methods require_quadratic time
or worselin the number of genes. We introduce a fast, scalable phylogenetic profiling

approach entitled HogProf, which leverages hierarchical orthologous groups for the
construction of large profiles and locality-sensitive hashing for efficient retrieval of
similar profiles. We show that the approach outperforms Enhanced Phylogenetic Tree,
a phylogeny-based method, and use the tool to reconstruct networks and query for
interactors of the kinetochore complex as well as conserved proteins involved in sexual
reproduction: Hap2, Spo11 and Gex1. HogProf enables large-scale phylogenetic
profiling across the three domains of life, and will be useful to predict biological
pathways among the hundreds of thousands of eukaryotic species that will become
available in the coming few years. HogProf is available at
https://github.com/DessimozLab/HogProf .
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Abstract

Phylogenetic profiling is a computational methqd to predict genes involved in the same biological
process by identifying protein families which teny to be jointly lost or retained across the tree of
life. Phylogenetic profiling has customarily beeh more widely used with prokaryotes than
eukaryotes, because the method is thought to require many diverse genomes. There are now
many eukaryotic genomes available, but these arg¢ considerably larger, and typical phylogenetic
profiling methods require quadratic time or We introduce a fast,
scalable phylogenetic profiling approach entitled HogProf, which leverages hierarchical
orthologous groups for the construction of large profiles and locality-sensitive hashing for efficient
retrieval of similar profiles. We show that the approach outperforms Enhanced Phylogenetic Tree,
a phylogeny-based method, and use the tool to reconstruct networks and query for interactors of
the kinetochore complex as well as conserved proteins involved in sexual reproduction: Hap2,
Spo11 and Gex1. HogProf enables large-scale phylogenetic profiling across the three domains of
life, and will be useful to predict biological pathways among the hundreds of thousands of
eukaryotic species that will become available in the coming few years. HogProf is available at

https://github.com/DessimozlLab/HogProf.
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Wl
Introduction

The NCBI Sequence Read Archive (SRA) contains 1.6X10'® nucleotide bases of data and the
quantity of sequenced organisms keeps growing expgnentially. To make sense of all of this new
genomic information, annotation pipelines need to gvercome speed and accuracy barriers. Even in
a well-studied model organism such as Arabidogsis thaliana, nearly a quarter of all genes are not
annotated with an informative gene ontology/term [1]. One way to infer the function of a gene

product is to analyse the biological network]it is involved in and form\a hypothesis based on its

physical or regulatory interactors. Unfortunately, biological network inference is mostly limited to

model organisms]ﬂ@@ genome scale data is only available through the use of noisy
high-throughput experiments. ”

To ascribe biological functions to these new sequences, most of which originate from non-model
organisms, computational methods are essential [reviewed in 2]. Among the computational function
prediction techniques that leverage the existing body of experimental data, one important but still
underutilised approach in eukaryotes is phylogenetic profiling [3]: positively correlated patterns of
gene gains and losses across the tree of life are suggestive of genes involved in the same

biological pathways. O'“[{O fade v | 7 or)

Phylogenetic profiling has been more commonly performed on prokaryotic genomes than on
eukaryotic ones. Perhaps due to the relative paucity’ of eukaryotic genomes in the 2000s, earlier
benchmarking studies observed poorer performance Wwith eukaryotes than with Prokaryotes [4-6].
The situation today is considerably different; the GOLD database [7] tracks over 6000 eukaryotic
genomes. Multiple succe;asiuelﬁe;pﬁllications of phylogenetic profiling in eukaryotes have been
published in recent years, wg. to infer small RNA pathway genes [8], the kinetochore network [9],

ciliary genes [10], or homologous recombination repair genes [11]. ¢ alread Know
y genes [10] 9 pair genes [11] /\/‘f Ty = ye-guvae

—_— )
Still, large-scale phylogenetic profiling with eukaryotes remains comp?dﬁonally challenging,

because eukaryotic genomes are larger and more complex than their prokaryotic counterparts, and

because state-of-the-art phylogenetic profiling methods typicallyscale at least quadratically/with

the number of gene families an@with the number of gencin@ As a/ result, most

N
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mainstream phylogenomic databases, s as Ensembl [12], EggNO [1 3], OrthoDB [14], or OMA

[15]/do not provide phylogenetic profiles U o> dhs

Yy ey oW
The infer hylogenetic profiles using large datasets is challenging. Some pipelines resort to

all-vs-all sequence similarity searches to derive orthologous groups and only count binary

presence or absence of a member of each group in a limited number of genomes [16,17] or forego T wes\d "”‘:

\k
this step altogether and ignore the evolutionary history of each group of homologues, relyingf‘jc:w, A:)“‘:f,
v w2 °

. . . . v
instead on co-occurrence in extant genomes [18]. Other tree-based methods infer the underlylng“’(“’? f‘,‘a.

evolutionary history from the presence of extant homologues [1 9].|In our pipeline, we leveraged the

already existing OMA orthology inference algorithm, which has been benchmarked and integratej_ (o

with other proteomic and genomic resources [1 5].Ehe OMA database describes the orthology

relationships among all protein coding genes of over 2000 cellular organisms. One core object of
this database is the Hierarchical Orthologous Group (HOG) [20]. Each HOG contains all of the
descendants of a single ancestor gene. When a gene is duplicated during its evolution, the
paralogous genes and the descendants of the orthologue are contained in separate subhogs which

describe their lineage back to their single ancestor gene (hence the hierarchical descriptor). Bbrief

Here, we introduce a scalable approach which combines the efficient generation of
phylogeny-aware profiles from hierarchical orthologous groups with ultrafast retrieval of similar
profiles using locality sensitive hashing. Furthermore, the approach leverages the properties of
minhash signatures to allow for the selection of clade subsets and for clade weightings in the
construction of profiles. The improvements in performance of our method make it possible to build
profiles for the over 2000 genomes contained in OMA. We show that the method is as accurate as ofler
LAstaid-pfemesarf phylogeny-based methods, and illustrate its usefulness by retrieving biologically

relevant results for several genes of interest. Because the method is unaffected by the number of

genomes included and scales logarithmically with the number of hierarchical orthologous groups

added, it will efficiently perform with the exponentially growing number of eukaryotic genomes.
@ntm(&

Te code used to pyopUi® the results

https://github.com/DessimozlLab/HogProf.

ol auculo-b\z.
this manuscript ganvbedowrteaded at
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In the following sections, we first compare oun profiling distance metric Jagainst other profile

distances in order to characterize the Jaccard hash estimation’s precision and recall

characteristics. Following this quantification, we show our pipeline’s capacity in reconstituting a

well known interaction network as well as augmenting it with more putative interactors using its
search functionality. Finally, to illustrate a typical use case of our tool, we explore a poorly

~wnile Gno lag
.} oC ’ﬂHJ 5/’Ud"/' /pe “
ﬂ"" A \‘(‘.'7',]' " Darn ,..f\r wkh dle .[fgllow“ﬁﬁ
akler, A |headvre tenes” parmgy Parmgrefh.

A scalable phylogenetic profiing method using locality-sensitive hashing and hierarchical

characterized network.

orthologous groups

Most phylogenetic profiling methods consist om creating a profile for each homologous
or orthologous group, and comparing profiles. When they were first implemented, profiles were
constructed as binary vectors of presence and absence across species [3]. Since then, variants
have been proposed, which take continuous values [9] —such as alignment scores with the gene of
a reference species [11]—or which count the number of paralogs present in each species. Yet
other variants convey the number of events on branches of the species tree [6]. However, all
approaches are limited with respect to the computational power required to cluster profiles using
their respective distance metrics. Due to this computational cost, profiling efforts are typically

focused on reconstructing pathways with known interactors using existing annotations and

evidence rather than being used as an exploratory tool to search for new interactors and

reconstituting completely unknown networks.

In our approach to the problem of profiling, we captured the evolutionary history of each HOG in 7))

Wl
enhanced phylogenies and encode them in probabilistic data structures (Fig. 1). These are used to ,fan'”"’
compile searchable databases to allow for the retrieval of coevolving HOGs with similar |gp0vd \_;',’fb

o \’l
evolutionary histories and compare the similarity of two HOGs. The two major components of the “Mns

pipeline that are responsible for constructing the enhanced phylogenies and calculating

X
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‘ .
isf;:\fmic Tree OrthoXML files
for HOGs
In OMA

HOGH1
HOG2

=S

Gene trees labelled with
speciations duplications & losses

Phylogenetic profile
(columns: taxonomic clades; rows: HOGS)

Presence Losses Duplications

e I - = -

Datasketch: Transformation to
weighted minhash signatures

Add Hash values for % (] Store Hash values

HOGs to LSH Forest — for HOGs in HDF5

Fig. 1. Diagram summarizing the different steps of the pipeline to generate the LSH

Forest and hash signatures for each HOG. The labelled phylogenetic trees generated by

pyHam are converted into phylogenetic profiles and used to generate a weighted minhash

signature with Datasketch. The hash signatures are inserted into the LSH Forest and stored in

an HDF5 file.

Accuracy of predicted phylogenetic profiles in an empirical benchmark
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We compared the performance of our profiling metric to existing profile distances using
benchmarking data available in Ta et al. [16]. In that benchmark, the true positive protein-protein
interactions (PPIls) were constructed using data available from CORUM [21] and the MIPS [22]
databases for the human and yeast interaction datasets. True negatives were constructed by
mixing proteins known to be involved in different complexes. The dataset is balanced with 50%
positive and 50% negative samples. Using their Uniprot identifiers, these interaction pairs were
mapped to their respective HOGs and their profiles were compared using the hash based Jaccard
score estimate. The comparison below shows HogProf alongside other profiling distance metrics
that are considerably more computationally intensive, including the Enhanced Phylogenetic Tree
metric shown in Ta et al. [16]. Yet, our approach outperformed these previous methods, yielding

the highest Area Under the Curve for both yeast and human datasets (Figure 2, Table 1).

Yeast PPI ROC curve Human PPl ROC curve
104 10
081 08 /
g 2 /
© © -
= 061 = 06 e
[ o
2 2
= =
g 3
Q Q
g 04 g 04
= —— EPT _score = —— EPT _score
Occ_Ed s Occ_Ed
021 /
—— Occ_Ps /, / —— Occ_Ps
—— Bin_Ps g —— Bin_Ps
. W .
ool jaccard_hash - ccard_hash
00 014 C‘G 10 00 02 . C‘6 08 10
a. False positive rate b False pOstiye rate

Ld w two shdy.
Ave /@J
Fig.Z/ ROC curves for @/p{ofiling methods. a. Yeast protein-protein interactions. Jaccard

Has andrwom perform foetter than all metrics overall but when high precision is

at required, EPT score (is still slightly goore accurate. b. Human protein-protein interactions.
g\e ? ¥ %

K,\ Q\\"a vE Jaccard Hash and|Jaccard Hash Optfperfbrm better than all metrics overall but again, when high
() '\ T

precision is required, EPT score is still slightly more accurate. In both subfigures, Jaccard hash
¥

()

refers to the profiles containing all clades jwith all weights for each event and taxonomic level set
to 1. “EPT_score” refers to the Enhanced Phylogenetic Tree metric developed in [16]. “Bin_Ps”

refers to a distance using binary vectors|and Pearson correlation described in [23]. “Occ_Ed”

wheve 2 tle corve for thed wednc?
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and “Occ_Ps” refer to the occurence profiles with Euclidean distance and Pearson correlation as

described in [24]. (l
Very \ov e 4
ool > A
Eahemely low T"Fww"“b
Table 1. AUC values for Profiling distance metrics.
Metric AUC Yeast AUC Human
Jaccard Hash 0.6634 0.6155
EPT 0.6104 0.5875
BIN PS 0.5840 0.5463
OCC ED 0.5829 0.5268
OCC PS 0.6028 0.5714

Recovery of a canonical network: the kinetochore network

To further validate our profiling approach on a known biological network, we used our pipeline to
replicate previous work shown in van Hooff et al. [9]. Their analysis focuses on the evolutionary
dynamics of the kinetochore complex, a microtubule organizing structure that was present in the
last eukaryotic common ancestor (LECA) and has undergone many modifications throughout
evolution in each eukaryotic clade where it is found. Its modular organization has allowed for
clade-specific additions or deletions of modules to the core complex which remains relatively
stable. This modular organisation and clade-specific emergence of certain parts of the complex

make it an ideal target for phylogenetic profiling analysis. Cks {:[«;&M,\ .

We show that our minhash signature comparisons are also capable of recovering the kinetochore
complex organisation. After considering just the HOGs for the families used in van Hooff et al. [9],
we augmented their set of profiles using the LSH Forest/to retrieve interactors that may also be
involved in the kinetochore and anaphase promoting complex (APC) network which have not been
detected by these authors. By using a well-studied network in eukaryotes to test the LSH Forest
search, we can rely on previous work and annotations to quantify the quality of the returned results.
Using the Gene Ontology (GO) terms [25] of all proteins returned in our searches for novel
interactors, we quantify how enriched they are for the specific functions we would expect to be

related to our network of interest.

In their work, van Hooff et al. [9] used pairwise Pearson correlation coefficients between the
presence and absence vectors of the various protein components of the kinetochore in the 90

proteomes of a manually selected set of organisms as a distance metric between a manually
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curated set of profiles corresponding to each component of the complex. Using this pairwise
comparison of all vectors, they clustered the profiles and were able to recover known
sub-componenents of the complex using just evolutionary information. Using our hash-based
Jaccard distance metric in an all-vs-all comparison between the HOGs corresponding to each of
these protein families, we were also able to recover the main modules of the kinetochore complex
with a similar organisation to the one defined by van Hooff et al. The color clustering in figure 3
corresponds to their original manual definition of these different subcomplex modules@’ 72

Despite the vastly different methods used in the construction and comparison of the profiles used

to recover the network in both pipelines, we observe that the distance matrices generated by each
profiling approach are correlated and are recovering similar evolutionary signals, with Spearman
correlation of 0.26 (p < 1e-100) and Pearson correlation of 0.35 (p < 1e-100).

N
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@m [9] to their corresponding HOG, a distance matrix was

Ao\

code used to construct the figure is available on the HogProf repository. af ww-----.. . ”
J gll over Rle we,yaawoﬁ C‘%‘NM/ dexcribe vding If'”'"l

le, ”hvca\(d{

Tewse. Why wot viwg, for exam .
The All-vs-All comparison of the profiles]reveals [several well defined clusters in both \works)- chodees?

including the Dam-Dad-Spc19 and CenP subcomplexes. However, our profiles were constructed
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alongside all other HOGs in OMA and were not curated before being compared. With only the
information of which proteins were in the complex, we mapped them to their corresponding OMA
HOGs and, with this example, demonstrated the ability to reconstruct any network of interest or
construct putative networks using the search functionality of our pipeline with minimal computing
time. However, it should be noted that the quality of the OMA HOGs used to construct the
enhanced phylogenies and hash signatures directly influences our ability to recover complex

organisation.

To illustrate the utility of the search functionality of our tool)f we used the profiles known to be
associated with the kinetochore complex to search for other interactors. All HOGs corresponding
to the protein families used to analyse the kinetochore evolutionary dynamics in van Hooff et al. [9]
were used as queries against an LSH Forest containing all HOGs in OMA. By performing an
all-vs-all comparison of the minhash signatures of the queries and returned results, a Jaccard
distance matrix was generated showing potential functional modules associated with each known

component of the kinetochore and APC complexes.
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Fig. 4. Putative novel components of the kinetochore and APC complexes. The profiles
associated with all HOGs mapping to known kinetochore components shown in Figure 3 were
used to search the LSH Forest and retrieve the top 10 closest coevolving HOGs resulting in a list
of 871 HOGs including the queries from the original complexes. The Jaccard distance matrix is
shown between the hash signatures of all query and result HOGs. UPGMA clustering was
applied to the distance matrix rows and columns. Labelled rows and columns correspond to

profiles from the starting kinetochore dataset [9]. A cutoff hierarchical clustering distance of 1.3

|
(A)Lul".
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(blue lines) was used to generate a total of 136 clusters of HOGs used for GO enrichment to
identify functional modules. The coloring of the protein family names to the right and below the
matrix is identical to the complex related coloring shown in Figure 3. All code used to construct

this figure is available in the HogProf repository.

To verify that the results returned by our search were not spurious, we performed GO enrichment
analysis of the returned HOGs that were not part of the original set of queries but appeared to be
coevolving closely with known kinetochore components. Given the incomplete nature of Geng~ GO
@rﬁbfrbgy\annotations [“open world assumption”, 26], many of these proteins may actually be
involved in the kinetochore interaction network but this biological function could be still
undiscovered. However, even with this limitation, salient annotations relevant to the kinetochore
network were returned in the search results (Table 2 and Supplementary Data 1). The identifiers of
all protein sequences contained in the HOGs returned by the search results were compiled and the
GO enrichment of each cluster shown in Figure 4 was calculated using the OMA annotation corpus
as a background. The enrichment results were manually parsed and salient annotations related to
HOGs were selected to be reviewed further in the associated literature to check for the associatio

of the search result with the query HOG (Table 2).
9 ’\” *LU ?’M‘f)w'l(h Sound>  WMoK like « ‘()C(Ii';on —
oC o webhod , (slead of o dear wesa It o€
mV\ul\().t'I-
(’ Table 2. Manually curated biologically relevant search results for interactors coevolving

with van Hooff et al.’s kinetochore and APC selected protein families [9]. Notable protein
families (Result) returned within clusters containing query HOGs (Cluster) are listed with their

pertinent annotation and literature. GO enrichment results of clusters that contained one or more

queries from the original kinetochore network) were analyzed manually. )We searched for

literature supporting the relevant GO annotations, thereby confirming that the results returned by

the LSH were associated with kinetochore and APC processes. This is a non-exhaustive

summary of some selected results. The full enrichment results are available as Supplementary
. Data 1.

Cluster Result GO Term Citation
APC1 CFAP157 GO:0035082 axoneme assembly [27]
HOMRAD BRWD1 GO0:0007010 cytoskeleton organization [28]

APC12 CDC26 G0:0007346 regulation of mitotic cell cycle [29]

T 1) H’/{/{W'Ai Al
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KNLA1 TACCS3 G0:0007091 metaphase/anaphase transition of [30]
mitotic cell cycle

r.p()(o))wn ~— @

For instance, TACCS3, a known physical interactor of the kinetochore complex and important
regulator of the kinetochore tension [30]was found by our search. Another example is CFAP157, a

cilia and flagella associated protein which may seem like an unlikely interactor with the APC.

owever, it has previously been shown that the APC activity regulates ciliary length unstabilizing
axonemal microtubules [31]. Thus, CFAP157 might be involved in recruitment of APC regulators

(such as Cdc20) or ciliary kinases (such as Nek1) both known to mediate APC regulation of ciliary

dynamics [31] (;lee these results are certainly promising, many of the unannotated proteins

returned by our search likely contain more regulatory, metabolic and physical interactors which
may prove to be interesting experimental targets. The diverse types of interactions detected by our

pipeline are discussed further in the discussion section. %l’&-k -

e o A g Ke

o XS
A e XN * “DV\ vt Pl
6('01/\0 K W‘:\:g» Lt v

o

Search for a novel network

When studying networks with a lack of annotation ghd experimental characterization, it is difficult
to quantify the relevance of retrieved search /results. In typical research cases involving
uncharacterized protein families in poorly studied neworks, this will often be the case. In this

section we present the search results for three HOG queries known to be involved in the processes

and losses [32]. The three followirlg sections detail the returned results of the phylogenetic profiling

pipeline with the Hap2, Gex1 ald Spo11 families which all share this evolutionary pattern and are
known to be critical for the pyocess of gamete fusion, nuclear fusion and meiotic recombination,
respectively.(As in section 3.2 we)also used GO enrichment to quantify the relevance of the
returned search results. The proteins contained in the top 100 HOGs returned by the LSH Forest

were analyzed for GO enrichment using all OMA annotations as a background. Due to the presence

of biases in the GO annotation corpus [33] we have also chosen to show the number of proteins
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annotated with each biological process selected from the enrichment out of the total number of

annotated proteins.

.
Query with Hap2 ( No ¢) oL

The Hap2 protein family has been shown to catalyze gamete membrane fusion in many eukaryotic
clades [34,35]. It has a particularly spotty pattern of presence and absence on the taxonomic tree
despite its phylogeny supporting the hypothesis of vertical descent from LECA. This protein family
is known to be highly divergent in amino acid sequence despite its conserved fold and shares
homology with viral and somatic membrane fusion proteins [35-37]. The HOG containing Hap2 in
OMA only contains the eukaryotic gamete fusion protein subfamily of this structural superfamily.
Part of the GO enrichment of the search results for the top 100 coevolving HOGs are shown below
in table 3.

Table 3.[ Manually curated biologicallij'elevant enriched GO terms from returned results.

The chosen input protein sequence for Hap2 is that of UniProt entry F4JP36 and the
corresponding OMA entry ARATH26614 belonging to OMA HOG:0406399. The full enrichment

results are available in the Supplementary Data 2.

Term Biological process P-value N-proteins
G0:0006338 chromatin remodeling 9.72e-54 61/3426
GO0:0048653  anther development 1.69e-35 17/3426
GO0:0009793  embryo development ending in seed dormancy  2.88e-13 15/3426
GO0:0051301 cell division 6.88e-16 5/3426

Widely conserved sequences not belonging to the Hap2 HOG and found in coevolving HOGs were
linked to gamete development and reproductive structure development (Table 3) [38,39]. This
mirrors the initial discovery of Hap2, which was first found in angiosperms and linked to pollen tube
guidance before the double fertilization event. Since Mendel, extensive work has been carried out
describing reproductive processes in plants. Therefore, it is expected that the corpus of available
annotations would be biased for annotations related to plant reproductive processes. The Hap2
HOG also appears to be coevolving with HOGs related to chromatin remodeling, an important part
of the reproductive process during gamete generation, and also post fusion, after the zygote cell is

formed.

One particular family of interest which was returned in our search results is already characterized in

angiosperms: LFR or leaf and flower related [40]. This protein family is required for the development
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of reproductive structures in flowers and serves as a master regulator of the expression of many
reproduction related genes, but its role in lower eukaryotes remains undescribed despite its broad
evolutionary conservation. Experiments targeting LFR’s potential regulation of Hap2 expression
may provide insight into how the fusion process is transcriptionally controlled in gametes across

many eukaryotes despite their distinct reproductive strategies.

Query with Gex1

Gex1 has been shown to be involved in nuclear fusion (“karyogamy”) and is present in many of the
same clades as Hap2, with a similar spotty pattern of absence across eukaryotes and a phylogeny
indicating a vertical descent from LECA [41]. GO enrichment of the search results for the top 100

coevolving HOGs shows the predictive potential of HogProf (table 4).

Table 4. Manually curated biologically relevant enriched GO terms from returned results.
The input protein sequence chosen for Gex1 is based on the UniProt identifier Q681K7 and the
corresponding OMA identifier ARATH38809 belonging to OMA HOG:0416115. The full

enrichment results are available as Supplementary Data 3.

GO Term P-value N-Proteins
G0:0042753 positive regulation of circadian 2.12e-285 113/2685
rhythm
G0:0048364 root development 7.81e-125 70/2685
GO0:0051726 regulation of cell cycle 1.22e-92 99/2685
G0:0000712 resolution of meiotic recombination 1.65e-47 26/2685
intermediates
G0:0007140 male meiotic nuclear division 1.19e-39 26/2685
G0:0009553 embryo sac development 1.43e-28 17/2685
G0:0022619 generative cell differentiation 3.59e-18 5/2685

In many sexually reproducing organisms, karyogamy is followed by restarting of the cell cycle. Our
results strongly suggest that HOGs related to the restarting of the cell cycle have coevolved with

Gex1 (Table jﬂt: many Engiosperm specific annotations due to the prior work in the
Ll
of their sexual reproduction. As was the case for Hap2, the taxonomic spread of the HOGs

found in this search is broader than just angiosperms. Gex1 has also been shown to be involved in

gamete development and embryogenesis [42] and therefore GO terms 0022619 and 0009553 are
*EMO\\:‘J\‘\ Gramar 5"\'0'7\) Ig(
heanly vensed Ahosg e
Tesk -
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applied to this protein. Thuz@eins that HogProf identified as putative Gex1 interactors sharing

these GO terms indicates thq potential relevance of these search results. D ¥ U¢'1 fqﬂdl“‘(""" )
~ .
y,‘-qll.c :

One result of particular interest is a protein family which goes by the lyrical name offparting danc

(PTD). PTD belongs to a family that has been characterized irj rabidopsis thalianajand yeast, and

is known to be required in reciprocal homologous recombination in meiosis and localizes to the
nucleus [43]. Our search shows that Gex1 coevolved closely with PTD, a protein known to be

involved in preparing genetic material for its eventual merger with another cell’s nucleus.

Query with Spo11

Spo11 is a helicase that has been shown to be involved in meiosis by catalyzing DNA double
stranded breaks (DSBs) triggering homologous recombination. Spo11 is highly conserved
throughout eukaryotes and homologues are present in almost all clades [44]. The GO enrichment of

the search results for the top 100 coevolving HOGs are shown below in table 5.

Table 5. Manually curated biologically relevant enriched GO terms from returned results.
The chosen input protein sequence for Spo11-1 is based on the UniProt identifier QOM4A2
and the corresponding OMA identifier ARATH19148 belonging to OMA HOG:0605395. The full
enrichment results are available in Supplementary Data 4.

GO Term P-value N-Proteins
G0:0000737 DNA catabolic process, endonucleolytic 0.00e+00 415/20562
G0:0043137 DNA replication, removal of RNA primer 0.00e+00 353/20562
G0:0006275 regulation of DNA replication 0.00e+00 552/20562
G0:0006302 double-strand break repair 8.11e-242 285/20562
G0:0007292 female gamete generation 2.71e-184 136/20562
G0:0022414 reproductive process 1.66e-93 127/20562

The process of chromosome recombination is one of the crucial steps in the generation of gametes and
happens during meiotic prophase | when homologous chromosomes are paired and form the synaptonemal
complex. It is encouraging to find that Spo11, the trigger of meiotic DSBs, has coevolved with other families
involved in the inverse process of repairing the DSBs and finishing the process of recombination (Table 5).
Other identified HOGs contain annotations such as gamete generation and reproduction also focusing at
processes that result in cellular commitment to a gamete cell fate through meiosis. Proliferating cell nuclear
antigen or PCNA [45] was also retrieved by our search. This ubiquitous protein family is an auxiliary scaffold
protein to the DNA polymerase and recruits other interactors to the polymerase complex to repair damaged

DNA, making it an interesting candidate for a potential physical interactor with Spo11.

whieh
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In summary, this HogProf search focused on three proteins involved in sexual reproduction yielded a list of
promising candidate proteins. A.ﬂ:crfn-" go,,,l _CM&' L{ 5\2&) 7

A broader search for the reproductive network

A more in-depth treatment of the gvolutionapyC€onservation of gamete cell fate commitment and mating is

available f [32,47,46-50]. Using these sources, a list of broadly conserved protein
families known to be involved in sexual yeproduction were compiled to be used as HOG queries to the LSH

Forest to retrieve the top 10 closest/coevolving HOGs. The hash signatures of the queries and results

were compiled and used in an all-vs-all comparison to generate a Jaccard distance matrix.
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Fig. 5. HogProf’s reproductive network. A list of proteins known to be involved in conserved
sexual reproduction biological processes was compiled and each protein family was mapped to
its HOG and used to search an LSH forest containing all HOGs in OMA. Each row and column of
the Jaccard distance matrix corresponds to a HOG containing known sexual reproduction
pathway protein families or a HOG returned by the search. A Jaccard distance matrix was
generated by performing an All vs All comparison of the Hash signatures of the results and

queries. UPGMA clustering was performed on the rows and columns to organize the HOGs into
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functional modules. The initial set of 121 protein sequences was augmented using the search
functionality of the LSH by adding the top 20 closest returned HOGs resulting in a total of 2041
HOGs including the queries. A cutoff distance of .995 was used to generate a total of clusters of
HOGs (blue lines). The labels correspond to the names of the proteins used to generate the
queries. HOG names shown correspond to the yeast gene names ( apart from Hap2 which is not
present in fungi ). This nomenclature was chosen due to the large body of work related to the
yeast pheromone response and mating pathways. The HOGs returned by our search are not

labelled on the distance matrix. All code used to construct this figures is available on the

5
HogProf repository. Y any i /ie7
€ W\ Vlé) ow M alke
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The all-vs-all comparison of the Jaccard distances between these rgturned HOGs reveals clustgfs UC\Y’ Y

Q

annotations related to sexual reproduction were found. These are summarized in/Table 6 after a

manual curation and literature review as done i ble 2 for the kinetochore search results. In

addition to annotated protein sequences and HOGs, many unannotated, coevolving HOGs where
found.|Again, these may prove to be useful experimental targets to answer open questionsW

mechanisms behind sexual reproduction. J 2"?‘*‘ kru,& 5\—m|4wn47-

0 Particularly for biological processes as complex and evolutionarily diverse as sexual reproduction,
é M—Gene Ontology annotations are, unsurprisingly, incomplete. Fortunately, our profiling approach is
successful in identifying protein families with similar evolutionary patterns that have already been
characterised and are directly relevant to sexual reproduction (Table 6). By considering the
uncharacterized or poorly characterized families at the sequence and structure level, we may be

able to predict their functions and reconstitute their local interactome. Our ultimate goal is to guide

in vivo experiments to test and characterize these targets within the broader context of eukaryotic

sexual reproduction. T @yt pe dg\n w0 \r(,\eW\-nX
(\Ag\_w. W \V&OJM"\“M -

Table 6\ Manually curated biologically relevant putative interactors from sexual
reproduction search results. Notable protein families (Result) within clusters containing query
HOGs (Cluster) are listed with their pertinent annotation and literature. GO enrichment results of
clusters that contained one or more queries from our list of queries were analyzed manually. We
searched for literature associated to the relevant GO annotations confirming results returned by
the LSH that were associated with sexual reproduction. This is a non-exhaustive summary of
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some salient returned results. The full enrichment results are available in the Supplementary
Data 5.

Cluster Result GO Term Citation
REC8 NSE4 G0:0030915 Smc5-Smc6 complex [51]
SPC72 MID2 G0:0000767 cell morphogenesis [52]
involved in conjugation
SPO71 LES2 G0:0031011 Ino80 complex [53,54]
SHC1, SPO16 POG1 G0:0000321 re-entry into mitotic cell [55,56]

cycle after pheromone arrest

This example related to the ancestral sexual reproduction network illustrates the utility of the LSH
Forest search functionality and OMA resources in exploratory characterization of poorly described
networks. The interactions presented above (Table annly represent our limited effort to manually
review literature to highlight potentially credible interactions detected by our pipeline. Again, as was
the case with our kinetochore and APC related searches, several interactions might not appear
obvious on their face. For example, SPC72 and MID2 are both involved in meiotic processes but
localized to different parts of the cell (the centriole and the membrane respectively). However, it has
been shown that microtubule organization and membrane integrity sensing pathways do show
interaction during gamete maturation [57]. Others, like the Ino80 complex related Les2 subunit and
SPO71 appear to be directly involved in the biological process of DNA remodelling during

recombination and it may be easier to imagine their mode of interaction and design experiments to

probe it. of Dof' |Jf[9(/19il'\w‘3 6]‘3"‘“\1 T’M 1254 "”"’.7
(‘ -

Discussion

We introduced a scalable system for phkylogenetic profilifg from hierarchical orthologous groups.
The ROC and AUC values shown in the benchmark of|section 3.1 findicates that the minhash

Jaccard score estimate between profiles is alcompetitive alternative\to previous tree and vector

based metrics, while also being to compute. This is remarkable in that one typically
expect a trade-off between sp€ed and accuracy, which does n to be the case here. We
hypothesise that the eprOr introduced by the fast minhash approximation is more than
compensated by the jriclusion of an unprecedented amount of genomes and taxonomic nodes in

the labelled phylogénies used to construct the profiles.
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Furthermore, while our minhash-derived Jaccard estimates are able to capture some of the

differences between interacting and non-interacting HOGs, as shown above, their unique strength

lies in the(%st recovery of close profiley Once these profiles are recovered, the inference of

submodules or network structure can be refined using other, potentially more compute intensive

. T d0~Y ¥now What yovave
methods, on this much smaller subset of data. /a‘ ?T:?;ngvt)b"* here - 3

—
Because phylogenetic profiling is not yet broadly used on eukaryotic data, HogProf is largely

orthogonal to and thus particularly effective combined with existing functional annotations. We

showed that HogProf was able to reconstitute the modular organisation of the kinetochore, as well
as increase the list of protein families interacting within the network with several known interactors
of the kinetochore and the APC. As for the other HOGs returned in these searches, our results
suggest that some are yet unknown interactors involved in aspects of the cell cycle or ciliary
dynamics. Likewise, our attempt at retrieving candidate members of the sexual reproduction

network recapitulated many known interactions, while also suggesting new ones.

The current paradigm for exploring interaction or participation in different biological pathways
across protein families relies heavily on data integration strategies that take into account
heterogenous high-throughput experiments and knowledge found in the literature. Many times,
these datasets only describe the networks in question in one organism at a time. Furthermore,
signaling, metabolic and physical interaction networks are all covered by different types of
experiments and data produced by these systems is located in heterogeneous databases. By
contrast, phylogenetic profiles can potentially uncover all three types of networks from sequencing
data alone. This was highlighted in our work during retrieval of potential interactors within the
sexual reproduction and kinetochore networks with the retrieval of LFR and CFAP157, respectively.
In both cases, a regulatory action within the network was the biological process which involved
both the query and retrieved HOGs, not a physical interaction. The advances put forward by our
new methodology and the property of retrieving entire networks and not just physical interactions
opens the possibility of performing comparative profiling on an unprecedented scale and lays the
groundwork for integrative modeling of the interplay between PPI, regulation and metabolic

networks in a more holistic way.

Further work remains to be done on tuning the profile construction with the appropriate weights at
each taxonomic level, as well ao construct profiles for subfamiles arising from duplications

which may undergo neofunctionalization. Downstream processing of the explicit representation of
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the data, as opposed to the the hash signature, can also be designed using more computationally
intensive methods to detect interactions on smaller subsets of profiles after using the LSH as a first

search.

The phylogenetic profiling pipeline presented in this work will be integrated into OMA web-based

services. Meanwhile, it is already available on Github as a standalone package. [Wl\uc o WwWw. \ .

Methods

The following section details the creation of phylogenetic profiles using OMA data, their
transformation into minhash based probabilistic data structures and the technical details of the

implementation.

Profile construction

To generate large-scale gene phylogenies labelled with speciation, duplication and loss events
(a.k.a. enhanced phylogenies or tree profiles) for each HOG in OMA, we processed input data in
OrthoXML format [58] with pyHam [59], using the NCBI taxonomic tree [60] pruned to contain only
the genomes represented in OMA [15]. Tree profiles contain a species tree annotated at each
taxonomic level with information on when the last common ancestor gene appeared, where losses
and duplications occurred and the copy number of the gene at each taxonomic level. More

information on the pyHam inference of evolutionary events can be found in [59].

Using this gene tree representation of the HOG, a multiset for presence, loss and duplication at
each taxonomic level is compiled into a vector representation. In this representation each column
corresponds to an evolutionary event or presence of a gene at a specific taxonomic level and the
weight in the column corresponds to the weight (or importance) given to each node of the
taxonomic tree for that class of events (Fig. 1). In this formulation, the Jaccard score between
multisets [61] representing profiles will be more heavily influenced by nodes with a higher weight. In

this manuscript only profiles with binary vectors are considered; the optimization of weighting and
 the optimization of weighting and.

other refinements of the profiling pipeline will be the subject of future publications. 7 97

Profile construction with Weighted Minhashing and@atabase construction using LSH Forest
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Historically, distance metrics between profiles have fallen into two categories: tree-based and
vector-based metrics [6,17]. Comparing all-vs-all profiles to define a distance matrix using metrics
detailed in other phylogenetic profiling approaches, such as mutual information, Hamming distance
or tree-aware methods [6,18,62-64], scales quadratically with the number of profiles. The time it
takes to calculate profiles and a distance between two profiles typically scales poorly with the
number of genomes considered, especially with tree-based methods. These computations are not

practical when comparing the labelled phylogenies produced by pyHam for all HOGs in OMA, even

with high performance computinw

Several studies have established the Jaccard similarity [65] between two profiles of presence an

absence patterns across extant genomes as a valid phylogenetic profiling distance metric, which is
able to capture an evolutionary signal closely related to shared protein functions [18,66,67]. This
profile distance metric integrates well with the available algorithms and data structures available in
the Datasketch library [68]. These data structures are built around minhashing techniques to

retrieve similar sets of elements in sublinear time and allow a user to efficiently search the profile

pace without explicitly calculating the distance matrix between all profiles, as well as approximate
he Jaccard similarity between profiles, by comparing hash signatures. Using these data structures

o represent and search for the phylogenetic profiles effectively removes the necessity for an

lI-vs-all comparison. )

Minhashing techniques were devised to measure the similarity of documents and search for similar
documents within large datasets containing billions of elements [69-71]. A document can either be
encoded as a set of unique words that occur within it or as a multiset representing the number of
occurrences of each unique word. When dealing with sets where the total nhumber of unique
elements is unknown before processing all sets, it is preferable to encode them using the minhash
algorithm, which allows the hash signature of the set to be updated as new unique elements are
added without prior knowledge of all possible elements. When the total set of unique elements (e.g.
all of the possible words in a corpus of documents or all of the taxa present in the species tree) is
known, it is possible to use a minhash signature to represent the number of times each type of
element occurs in a multiset of all possible elements. This representation is known as a weighted
minhash and, depending on the dataset, may be more precise in retrieving relevant hash signatures

(e.g. a document that mentions a specific word many times). The mathematical principles




D. Moi et al. 24

underpinning weighted minhashing and locality sensitive hashing forest algorithms and their

implementation are described in earlier papers [61,72,73].

After transforming HOG profile vectors to their corresponding weighted minhashes using the
datasketch library, an estimation of the Jaccard distance between profiles can be obtained by
calculating the Hamming distance between their hash signatures [61]. The speed of comparison
and lower bound for accuracy of the estimation of the Jaccard score is set by the number of
hashing functions. The comparison of hash signatures has O(N) time complexity where N is the
number of hash functions used to generate the minhash signature. Due to this property, an
arbitrary number of elements can be encoded in this signature without slowing down comparisons.
In our use case, this enables the use of an arbitrarily large number of taxa for which we can
consider evolutionary events. With other metrics, such as Pearson correlation between vectors, the
profile comparison between vectors scales linearly with the number or genomes or taxa considered
in the best case scenario. In more complicated tree-based methods, these comparisons can be

much more costly.

Weighted minhash objects can also be used to compile a searchable data structure referred to as a
Locality Sensitive Hashing Forest (LSH Forest) [72]. The LSH Forest can be queried with a hash
signature to retrieve the K neighbors with the highest Jaccard similarity to the query hash. The K
closest hashes are retrieved from a B-Tree data structure [74]. This branching tree data structure
allows for the dynamic insertion, deletion and querying of the LSH Forest data structure built upon
it at orders of magnitude faster than previous profiling efforts. As previously mentioned, calculating
linkages between all groups in non-probabilistic data structures requires an all-vs-all comparison of
profiles which scales quadratically with7 t;1e number of profiles in the dataset and can easily
become computationally@ This penalty also applies whenever new genomes or
taxonomic levels are added to the input matrix and the linkages must be recalculated. In the case
of the LSH Forest, hash signatures of HOGs containing the new genome can be deleted and
replaced in the database with a time complexity that scales logarithmically with the number of
HOGs in the dataset. In non-probabilistic data structures, whenever a new HOG is added to an
existing input matrix and linkages are recalculated, the penalty is linearly proportional to the
number of HOGs already in the dataset and the number of HOGs added whereas in the case of the
LSH Forest, the time complexity scales logarithmically with the number of HOGs already in the
dataset and linearly with the number of HOGs added. Query time complexity in typical profiling

approaches is heavily penalized for the number of orthologous groups and genomes included in
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the analysis whereas HogProf is unaffected by the number of genomes included (since it is only
dependent on the number of hash functions used to generate the weighted minhash signature of
HOGs) and scales logarithmically with the number of HOGs added to the database.

I(
4 The ouly faragengh with clear
Orthology data and software libraries used ?m ced M.
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Our dataset contains approximately 600,000 HOGs computed from the 2,167 genomes in OMA
(June 2018 release), The main computational bottleneck in our pipeline is the calculation of the
labelled gene trees for each HOG using pyHam. Even with this computation, compiled LSH forest
objects containing the hash signatures of all HOGs’ gene trees can be compiled in under 3 hours
(with 10 CPUs but this can scale easily to more cores) with only 2.5 GB of RAM and queried
extremely efficiently (an average of 0.01 seconds over 1000 queries against a database containing
profiles for all HOGs in OMA on an Intel(R) Xeon(R) CPU E5530 @ 2.40 GHz and 2 GB of RAM to
load the LSH database object into memory). This performance makes it possible to provide online
search functionality, which we aim to release in an upcoming web-based version of the OMA
browser. Meanwhile, the compiled profile database can be used for analysis on typical
workstations (note that memory and CPU requirements will depend on the number of hash
functions implemented in the construction of profiles and the filtering of the initial dataset to clades

of interest to the user).

All gene ontology (GO) annotations (encompassing molecular functions, cellular locations, and
biological processes) for HOGs contained in OMA were analyzed with GOATOOLS [75]. To
calculate the enrichment of annotations, the results returned by the LSH Forest annotations for all
protein sequences contained in the HOGs returned by the search were collected and the entire

OMA annotation corpus was used as background.

HDF5 files were compiled with H5PY (ver. 2.9.0). Pandas (ver. 0.24.0) was used for data
manipulation. Labelled phylogenies were manipulated with ete3 [76]. Datasketch (ver. 1.0.0) was
used to compile weighted minhashes and LSH Forest data structures. Plots were generated using
matplotlib (ver. 3.0.2). PyHam (ver 1.1.6) was used to calculate labelled phylogenies for the HOGs
in OMA.

Pearson and Spearman correlation comparison of distance matrices
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Distance matrices between all pairs of profiles in the kinetochore and APC complex protein families
defined in [9] were compared using the Spearman and Pearson statistical analysis functions from

the the SciPy python package to verify the monotonicity of the scores between families.
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