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AbVWUacW: Ph\logeneWic SUofiling iV a comSXWaWional meWhod Wo SUedicW geneV inYolYed in Whe Vame
biological SUoceVV b\ idenWif\ing SUoWein familieV Zhich Wend Wo be joinWl\ loVW oU UeWained
acUoVV Whe WUee of life. Ph\logeneWic SUofiling haV cXVWomaUil\ been moUe Zidel\ XVed
ZiWh SUokaU\oWeV Whan eXkaU\oWeV, becaXVe Whe meWhod iV WhoXghW Wo UeTXiUe man\
diYeUVe genomeV. TheUe aUe noZ man\ eXkaU\oWic genomeV aYailable, bXW WheVe aUe
conVideUabl\ laUgeU, and W\Sical Sh\logeneWic SUofiling meWhodV UeTXiUe aW leaVW
TXadUaWic Wime aV a fXncWion of Whe nXmbeU of geneV. We inWUodXce a faVW, Vcalable
Sh\logeneWic SUofiling aSSUoach enWiWled HogPUof, Zhich leYeUageV hieUaUchical
oUWhologoXV gUoXSV foU Whe conVWUXcWion of laUge SUofileV and localiW\-VenViWiYe haVhing
foU efficienW UeWUieYal of VimilaU SUofileV. We VhoZ WhaW Whe aSSUoach oXWSeUfoUmV
Enhanced Ph\logeneWic TUee, a Sh\logen\-baVed meWhod, and XVe Whe Wool Wo
UeconVWUXcW neWZoUkV and TXeU\ foU inWeUacWoUV of Whe kineWochoUe comSle[ aV Zell aV
conVeUYed SUoWeinV inYolYed in Ve[Xal UeSUodXcWion: HaS2, SSo11 and Ge[1. HogPUof
enableV laUge-Vcale Sh\logeneWic SUofiling acUoVV Whe WhUee domainV of life, and Zill be
XVefXl Wo SUedicW biological SaWhZa\V among Whe hXndUedV of WhoXVandV of eXkaU\oWic
VSecieV WhaW Zill become aYailable in Whe coming feZ \eaUV. HogPUof iV aYailable aW
hWWSV://giWhXb.com/DeVVimo]Lab/HogPUof  .

AddiWional InfoUmaWion:

QXeVWion ReVSonVe

Financial DiVcloVXUe

EnWeU a financial diVcloVXUe VWaWemenW WhaW
deVcUibeV Whe VoXUceV of fXnding foU Whe
ZoUk inclXded in WhiV VXbmiVVion. ReYieZ
Whe VXbmiVVion gXidelineV foU deWailed
UeTXiUemenWV. VieZ SXbliVhed UeVeaUch
aUWicleV fUom PLOS ComSXWaWional Biolog\
foU VSecific e[amSleV.

ThiV VWaWemenW iV UeTXiUed foU VXbmiVVion
and Zill aSSeaU in Whe SXbliVhed aUWicle if
Whe VXbmiVVion iV acceSWed. PleaVe make
VXUe iW iV accXUaWe.

We Whank MoniTXe Zahn foU helSfXl feedback on Whe manXVcUiSW. ThiV ZoUk ZaV fXnded
b\ a gUanW b\ Whe NoYaUWiV FoXndaWion foU Medical-Biological ReVeaUch (#17B111 Wo
CD), b\ Whe SZiVV NaWional Science FoXndaWion (GUanW 183723 Wo CD), b\ Whe SZiVV
Leading HoXVe foU Whe LaWin AmeUican Region (Wo CD and PSA), and b\ Whe Agencia
Nacional de PUomociµn CienW¯fica \ Tecnolµgica (PICT-2017-0854 Wo PSA).

* hWWS://ZZZ.VWifWXngmedbiol.noYaUWiV.com
* hWWSV://clV.XniVg.ch/de/foUVchXng/leading-hoXVe/fXnding-inVWUXmenWV/2019-Veed-
mone\-gUanWV
* hWWS://ZZZ.Vnf.ch
* hWWSV://ZZZ.aUgenWina.gob.aU/ciencia/agencia

The fXndeUV had no Uole in VWXd\ deVign, daWa collecWion and anal\ViV, deciVion Wo
SXbliVh, oU SUeSaUaWion of Whe manXVcUiSW.
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UnfXnded VWXdieV
EnWeU: The aXWhoU(V) UeceiYed no VSecific
fXnding foU WhiV ZoUk.

FXnded VWXdieV
EnWeU a VWaWemenW ZiWh Whe folloZing deWailV:

IniWialV of Whe aXWhoUV Zho UeceiYed each
aZaUd

ವ

GUanW nXmbeUV aZaUded Wo each aXWhoUವ
The fXll name of each fXndeUವ
URL of each fXndeU ZebViWeವ
Did Whe VSonVoUV oU fXndeUV Sla\ an\ Uole in
Whe VWXd\ deVign, daWa collecWion and
anal\ViV, deciVion Wo SXbliVh, oU SUeSaUaWion
of Whe manXVcUiSW?

ವ

NO - InclXde WhiV VenWence aW Whe end of
\oXU VWaWemenW: The fXndeUV had no Uole in
VWXd\ deVign, daWa collecWion and anal\ViV,
deciVion Wo SXbliVh, oU SUeSaUaWion of Whe
manXVcUiSW.

ವ

YES - SSecif\ Whe Uole(V) Sla\ed.ವ

* W\SeVeW

ComSeWing InWeUeVWV

UVe Whe inVWUXcWionV beloZ Wo enWeU a
comSeWing inWeUeVW VWaWemenW foU WhiV
VXbmiVVion. On behalf of all aXWhoUV,
diVcloVe an\ comSeWing inWeUeVWV WhaW
coXld be SeUceiYed Wo biaV WhiV
ZoUkಧacknoZledging all financial VXSSoUW
and an\ oWheU UeleYanW financial oU non-
financial comSeWing inWeUeVWV.

ThiV VWaWemenW Zill aSSeaU in Whe
SXbliVhed aUWicle if Whe VXbmiVVion iV
acceSWed. PleaVe make VXUe iW iV
accXUaWe. VieZ SXbliVhed UeVeaUch aUWicleV
fUom PLOS ComSXWaWional Biolog\ foU
VSecific e[amSleV.

The aXWhoUV haYe declaUed WhaW no comSeWing inWeUeVWV e[iVW.
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NO aXWhoUV haYe comSeWing inWeUeVWV

EnWeU: The aXWhoUV haYe declaUed WhaW no
comSeWing inWeUeVWV e[iVW.

AXWhoUV ZiWh comSeWing inWeUeVWV

EnWeU comSeWing inWeUeVW deWailV beginning
ZiWh WhiV VWaWemenW:

I haYe Uead Whe joXUnal'V Solic\ and Whe
aXWhoUV of WhiV manXVcUiSW haYe Whe folloZing
comSeWing inWeUeVWV: [inVeUW comSeWing
inWeUeVWV heUe]

* W\SeVeW

DaWa AYailabiliW\

AXWhoUV aUe UeTXiUed Wo make all daWa
XndeUl\ing Whe findingV deVcUibed fXll\
aYailable, ZiWhoXW UeVWUicWion, and fUom Whe
Wime of SXblicaWion. PLOS alloZV UaUe
e[ceSWionV Wo addUeVV legal and eWhical
conceUnV. See Whe PLOS DaWa Polic\ and
FAQ foU deWailed infoUmaWion.

A DaWa AYailabiliW\ SWaWemenW deVcUibing
ZheUe Whe daWa can be foXnd iV UeTXiUed aW
VXbmiVVion. YoXU anVZeUV Wo WhiV TXeVWion
conVWiWXWe Whe DaWa AYailabiliW\ SWaWemenW
and Zill be SXbliVhed in Whe aUWicle, if
acceSWed.

ImSoUWanW: SWaWing ಫdaWa aYailable on UeTXeVW
fUom Whe aXWhoUಬ iV noW VXfficienW. If \oXU daWa
aUe onl\ aYailable XSon UeTXeVW, VelecW ಫNoಬ foU
Whe fiUVW TXeVWion and e[Slain \oXU e[ceSWional
ViWXaWion in Whe We[W bo[.

Do Whe aXWhoUV confiUm WhaW all daWa

XndeUl\ing Whe findingV deVcUibed in WheiU

manXVcUiSW aUe fXll\ aYailable ZiWhoXW

UeVWUicWion?

YeV - all daWa aUe fXll\ aYailable ZiWhoXW UeVWUicWion

DeVcUibe ZheUe Whe daWa ma\ be foXnd in
fXll VenWenceV. If \oX aUe coS\ing oXU
VamSle We[W, UeSlace an\ inVWanceV of XXX
ZiWh Whe aSSUoSUiaWe deWailV.

The daWa iV aYailable aV VXSSlemenWaU\ maWeUialV. The code iV UeleaVed on GiWHXb
XndeU an oSen VoXUce licenVe.
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If Whe daWa aUe held oU Zill be held in a
SXblic UeSoViWoU\, inclXde URLV,
acceVVion nXmbeUV oU DOIV. If WhiV
infoUmaWion Zill onl\ be aYailable afWeU
acceSWance, indicaWe WhiV b\ Wicking Whe
bo[ beloZ. FoU e[amSle: All XXX fileV
aUe aYailable fUom Whe XXX daWabaVe
(acceVVion nXmbeU(V) XXX, XXX.).

ವ

If Whe daWa aUe all conWained ZiWhin Whe
manXVcUiSW and/oU SXSSoUWing
InfoUmaWion fileV, enWeU Whe folloZing:
All UeleYanW daWa aUe ZiWhin Whe
manXVcUiSW and iWV SXSSoUWing
InfoUmaWion fileV.

ವ

If neiWheU of WheVe aSSlieV bXW \oX aUe
able Wo SUoYide deWailV of acceVV
elVeZheUe, ZiWh oU ZiWhoXW limiWaWionV,
SleaVe do Vo. FoU e[amSle:

DaWa cannoW be VhaUed SXblicl\ becaXVe
of [XXX]. DaWa aUe aYailable fUom Whe
XXX InVWiWXWional DaWa AcceVV / EWhicV
CommiWWee (conWacW Yia XXX) foU
UeVeaUcheUV Zho meeW Whe cUiWeUia foU
acceVV Wo confidenWial daWa.

The daWa XndeUl\ing Whe UeVXlWV
SUeVenWed in Whe VWXd\ aUe aYailable
fUom (inclXde Whe name of Whe WhiUd SaUW\
and conWacW infoUmaWion oU URL).

ವ

ThiV We[W iV aSSUoSUiaWe if Whe daWa aUe
oZned b\ a WhiUd SaUW\ and aXWhoUV do
noW haYe SeUmiVVion Wo VhaUe Whe daWa.

ವ

* W\SeVeW

AddiWional daWa aYailabiliW\ infoUmaWion:
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5HYLHZHU������
�
,Q�P\�RSLQLRQ�SK\ORJHQHWLF�SURILOHV�DUH�RQH�WKRVH�PHWKRGV�WKDW�DUH�LQWHQVLYHO\�UHVHDUFKHG�DQG�GHYHORSHG�E\�
FRPSXWDWLRQDO�ELRORJLVWV�EXW�UHODWLYHO\�SRRUO\�XWLOL]HG�E\�PROHFXODU�ELRORJLVW���VRPH�QRWDEOH�H[FHSWLRQV�RI�FRXUVH�
H[FOXGHG��7KH�UHDVRQV�IRU�WKLV�UHODWLYH�ODFN�RI�XWLOL]DWLRQ�DUH�PDQ\�PDQ\�IROG��DV�DOVR�GLVFXVVHG�LQ�WKLV�PDQXVFULSW��,�
VLQFHUHO\�KRSH�WKDW�WKLV�PDQXVFULSW�ZLOO�KHOS�WR�FORVH�WKLV�JDS��,�GR�KDYH�VRPH�FRPPHQWV�SHUKDSV�QRW�VR�PXFK�RQ�WKH�
QRYHO�SURSRVHG�PHWKRGRORJ\��DV�PRUH�RQ�WKH�ZD\�LQ�ZKLFK�WKH�UHVXOWV�DUH�LQWURGXFHG�DQG�FRQWH[WXDOL]HG��
�
5(63216(��:H�WKDQN�WKH�UHYLHZHU�IRU�WKHLU�VXSSRUWLYH�DQG�FRQVWUXFWLYH�DVVHVVPHQW��
�
7KH�LQWURGXFWLRQ�LQWURGXFHV�WKH�LQLWLDO�ODFN�RI�JHQRPH�GLYHUVLW\�RI�HXNDU\RWHV�DV�RQH�RI�WKH�LVVXHV�LQ�DGRSWLQJ�
SK\ORJHQHWLF�SURILOHV�IRU�HXNDU\RWHV��DQG�WKHQ�LQWURGXFHV�20$�DQG�WKH�+2*V�DV�D�QLFH�RUWKRORJ\�GDWDEDVH�ZLWK�
³�����FHOOXODU�RUJDQLVPV´��+RZHYHU�LW�LV�QRW�PHQWLRQHG�KRZ�PDQ\��DQG�KRZ�GLYHUVH��HXNDU\RWHV�20$�FRQWDLQV��,W�LV�
P\�LPSUHVVLRQ�WKDW�WKH�DPRXQW�DQG�GLYHUVLW\�RI�HXNDU\RWHV�LQ�20$�LV�D�PLQRULW\�LQ�WKHVH������RUJDQLVPV��,�WKLQN�LW�
ZRXOG�EH�PRUH�WUDQVSDUHQW�LI�WKH�DXWKRUV�H[SOLFLWO\�PHQWLRQ�WKH�DPRXQW��DQG�³GLYHUVLW\´��RI�HXNDU\RWLF�RUJDQLVPV�LQ�
20$��
�
5(63216(��:H�QRZ�SURYLGH�WKH�QXPEHU�DQG�GLVWULEXWLRQ�RI�HXNDU\RWLF�VSHFLHV�LQ�WKH�LQWURGXFWLRQ���
�
7KH�LQWURGXFWLRQ�VHHPV�WR�VXJJHVW�WKDW�SK\ORJHQHWLF�SURILOHV�IRU�PDQ\�RUWKRORJ\�GDWDEDVHV�DUH�FXUUHQWO\�QRW�RIIHUHG��
7KLV�LV�QRW�FRPSOHWHO\�WUXH��7KH�675,1*�'%�VWLOO�DOORZV�SK\ORJHQHWLF�SURILOH�VHDUFKHV�QRW�MXVW�RQ�QRUPDOL]HG�
³KRPRORJ\´��E\�GHIDXOW��EXW�DOVR�RQ�RUWKRORJV�JURXSV��DOWKRXJK�WKLV�RSWLRQ�LV�VRPHZKDW�KLGGHQ���
�
5(63216(��:H�QRZ�FLWH�675,1*�'%�DQG�WKH�SK\ORJHQHWLF�SURILOLQJ�PHWKRG�WKH\�XVH�WR�FRQVWUXFW�WKHLU�
SURILOHV�DQG�GHWHFW�FRHYROXWLRQ��$OVR��ZH�QRZ�PHQWLRQ�WKH�GLIIHUHQFH�LQ�DSSURDFK��³$OWKRXJK�WKLV�DSSURDFK�
FDSWXUHV�LQIRUPDWLRQ�RQ�WKH�GLVWULEXWLRQ�RI�H[WDQW�GLVWDQFHV��LW�GRHV�QRW�UHFRQVWLWXWH�WKH�HYROXWLRQDU\�KLVWRU\�
RI�SURWHLQ�IDPLOLHV�DQG�PD\�ODFN�LQIRUPDWLRQ�UHODWLYH�WR�GXSOLFDWLRQ�DQG�ORVV�HYHQWV��)XUWKHUPRUH��DV�ZH�VKRZ�
LQ�WKH�0HWKRGV�VHFWLRQ��WKH�WUXQFDWHG�6LQJXODU�9DOXH�'HFRPSRVLWLRQ�DSSURDFK�GRHV�QRW�VFDOH�ZHOO�EH\RQG�D�
IHZ�JHQRPHV�DW�D�WLPH�´���
�
7KH�LQWURGXFWLRQ�DUJXHV�WKDW�WKH�PDLQ�UHDVRQ�WKDW�SK\ORJHQHWLF�SURILOHV�DUH�QRW�XVHG�DV�PXFK�LQ�HXNDU\RWHV�DV�WKH\�
FRXOG�LV�VSHHG�RI�VLPLODULW\�FRPSXWDWLRQ��3HUKDSV�WKLV�LV�LQGHHG�JRLQJ�WR�EH�D�SUREOHP�LQ�WKH�QHDU�IXWXUH��EXW�DV�
JHQHUDO�DVVHUWLRQ�,�DP�QRW�HQWLUHO\�FRQYLQFHG�WKLV�VWDWHPHQW�LV�IXOO\�WUXH��,Q�RXU�ZRUN�ZH�KDYH�VR�IDU�EHHQ�HDVLO\�DEOH�
RQ�RXU�ORFDO��DGPLWWHGO\�EHHI\��ZRUNVWDWLRQV�WR�VXFFHVVIXOO\�FRPSXWH�SK\ORJHQHWLF�SURILOH�VLPLODULW\�IRU�ODUJH�HXNDU\RWLF�
GDWD�VHWV��3HUKDSV�WKLV�SRLQW�FRXOG�EH�PRUH�PDGH�VWURQJO\�LI�WKH�SUHVHQW�PDQXVFULSW�ZRXOG�LQFOXGH�D�VPDUW�
LPSOHPHQWDWLRQ�RI�MDFFDUG�RI�SURILOH�VLPLODULWLHV�RQ�VLPSOH�20$�+2*�SUHVHQFH�DEVHQFH�SURILOH�DQG�VKRZ�WKDW�LQGHHG�
KRZ�ZKHUH�WKH�FRPSXWDWLRQDO�ERWWOHQHFN�LV���RU�SHUKDSV�WKH�PDQXVFULSW�DOUHDG\�SUHVHQW�VXFK�DQ�DQDO\VLV�DQG�,�
PLVVHG�LW���
�
5(63216(��:H�KDYH�DGGHG�D�ILJXUH��QHZ�)LJXUH����LOOXVWUDWLQJ�WKH�PXFK�EHWWHU�VFDOLQJ�SURSHUWLHV�RI�
0LQ+DVK�EDVHG�GDWD�VWUXFWXUHV��7KLV�VKRZV�WKH�XWLOLW\�RI�RXU�DSSURDFK�LQ�WKH�FXUUHQW�UHVHDUFK�FRQWH[W�ZKHUH�
WKH�QXPEHU�RI�JHQRPHV�LV�JURZLQJ�H[SRQHQWLDOO\��
�
,�WKLQN�WKDW�WKH�RUWKRORJ\�GDWDEDVH�DQG�WKH�PHWKRG�RI�SK\ORJHQHWLF�SURILOH�VHDUFKLQJ�DUH�QRW�VWULFWO\�QHFHVVDULO\�
FRQQHFWHG��7KH�LQWURGXFHG�0LQ+DVK�VHDUFK�PHWKRG�VHHPV�WR�QHHG�DQ�RUWKRORJ\�WKDW�DOORZV�D�VSHFLHV�WUHH�WR�EH�
DQQRWDWHG�ZLWK�GXSOLFDWLRQV�DQG�ORVVHV��6XFK�GDWD�DUH�DYDLODEOH�HOVHZKHUH��0RVW�HDVLO\�WKH\�VKRXOG�EH�H[WUDFWDEOH�
IURP�WKH�3$17+(5�GDWDEDVH��%XW�DOVR�(**12*�LV�KLHUDUFKLFDO�DQG�WKH\�FRXOG�SHUKDSV�DOVR�EH�UHWULHYHG�IURP�
QXPHURXV�(16(0%/�FRPSDUD�JHQRPH�VXEVHWV��,�WKLQN�LW�ZRXOG�VWUHQJWKHQ�WKH�PHVVDJH�RI�DSSOLFDELOLW\�RI�WKLV�
PHWKRG�LI�LW�ZRXOG�EH�DSSOLHG�WR�RWKHU�RUWKRORJ\�GDWDVHWV��
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�
5(63216(��7KH�PHWKRGV�VHFWLRQ�KDV�EHHQ�UHZRUNHG�WR�PRUH�FOHDUO\�GHVFULEH�WKH�GLIIHUHQW�VWHSV�RI�WKH�
SLSHOLQH�DV�ZHOO�DV�WKH�LQSXWV�DQG�RXWSXWV�RI�HDFK�VWHS��:H�QRZ�H[SOLFLWO\�PHQWLRQ�WKH�SRVVLELOLW\�RI�XVLQJ�
RWKHU�VRXUFHV�RI�RUWKRORJ\�GDWD�DV�LQSXW�XVLQJ�RWKHU�GDWDEDVHV��IRU�LQVWDQFH�E\�FRQYHUWLQJ�JHQH�WUHHV�WR�
2UWKR;0/�XVLQJ�WRROV�VXFK�DV�(7(��³S\+DP�FDQ�DOVR�EH�XVHG�WR�LQIHU�HQKDQFHG�SK\ORJHQLHV�IRU�RWKHU�
GDWDVHWV�DYDLODEOH�LQ�2UWKR;0/�IRUPDW�VXFK�DV�(16(0%/��=HUELQR�HW�DO��������RU�ZLWK�GDWD�JHQHUDWHG�IURP�
SK\ORJHQHWLF�WUHHV�VXFK�DV�WKRVH�IRXQG�LQ�3$17+(5��0L�HW�DO��������WKURXJK�WKH�XVH�RI�WKH�IXQFWLRQ�
HWUHH�RUWKR[PO���LQ�WKH�WUHH�DQDO\VLV�SDFNDJH�(7(���+XHUWD�&HSDV��6HUUD��DQG�%RUN�������´��:H�WKDQN�WKH�
UHYLHZHU�IRU�QRWLQJ�WKLV�LPSRUWDQW�SRLQW�DQG�QRZ�ZH�WKLQN�RXU�PHWKRG�DSSOLFDELOLW\�LV�FOHDU�DQG�DFFHVVLEOH�WR�
WKH�UHDGHU���
�
)RU�HYDOXDWLQJ�SRWHQWLDO�QRYHO�FRQQHFWLRQV�WR�NLQHWRFKRUH�LW�DSSHDUV�WKH�SURWHLQV�GHWDLOHG�LQ�7DEOH���H[HPSOLI\�
DQRWKHU�SUREOHP�ZLWK�ILQGLQJ�ZLGH�VSUHDG�XWLOL]DWLRQ�RI�SK\ORJHQHWLF�SURILOHV�E\�PROHFXODU�ELRORJLVWV��6R�,�UHDFKHG�RXW�
YLD�WKH�ELR5[LY�YHUVLRQ�RI�WKLV�DUWLFOH�WR�D�PROHFXODU�ELRORJLVW�VRPHZKDW�IDPLOLDU�ZLWK�WKH�NLQHWRFKRUH��,W�VHHPV�WKDW�WKH�
FR�HYROXWLRQ�RI�$3&���ZLWK�&'&���LV�D�VSXULRXV�RUWKRORJ\�LGHQWLILHU�SUREOHP�DV�&'&���LV�D�V\QRQ\P�RI�$3&���DQG�
UHIHUHQFH�>��@�XVHG�DV�HYLGHQFH�VWLOO�XVLQJ�WKH�ROG�QRPHQFODWXUH�IRU�$3&����7KH�FR�HYROXWLRQ�RI�.1/��ZLWK�7$&&��LV�
DVVHUWHG�WR�ELQG�WR�WKH�NLQHWRFKRUH�EXW�LQVRIDU�DV�WKH\�XQGHUVWDQG�WKH�OLWHUDWXUH�WKLV�LV�QRW�WKH�FDVH�DQG�UHIHUHQFH�>��@�
LV�DOVR�QRW�VKRZLQJ�WKDW��6RPH�YHU\�LQGLUHFW�OLQNDJH�RI�7$&&��WR�NLQHWRFKRUH�IXQFWLRQ�LV�NQRZQ�WR�WKH�H[WHQW�WKDW�
7$&&��LV�PLFURWXEXOH�DVVRFLDWHG�DQG�VHHPV�WR�EH�VWDELOL]LQJ�WKH�VSLQGOH��EXW�WKDW�GRHV�QRW�TXDOLI\�DV�EHLQJ�SDUW�RI�
WKH�ZHOO�GHILQHG�VHW�RI�FRPSOH[HV�WKDW�PDNH�XS�WKH�NLQHWRFKRUH��7KH�RWKHU�OLQNV�ZHUH�VHHQ�DV�QRW�VSHFLILF�HQRXJK�WR�
EH�UHOHYDQW�IRU�D�PROHFXODU�ELRORJLVWV�EXW�,�JXHVV�WKLV�GLVPLVVDO�E\�H[SHULPHQWDOLVW�LV�PRUH�D�*HQH�2QWRORJ\�YHUVXV�
UHDO�ELRORJ\�SUREOHP�WKDQ�VRPHWKLQJ�LQKHUHQW�WR�SK\ORJHQHWLF�SURILOHV��
�
5(63216(��7KDQN�\RX�DJDLQ�IRU�\RXU�GHWDLOHG�FULWLTXH�DQG�FRQVLGHUDWLRQ�RI�RXU�FRQFOXVLRQV�UHJDUGLQJ�WKH�
PROHFXODU�ELRORJ\�RI�WKH�NLQHWRFKRUH��,QGHHG�ZH�RYHUORRNHG�WKH�HTXLYDOHQFH�EHWZHHQ�FGF���DQG�DSF���DQG�
VRPH�RI�WKH�UHWXUQHG�UHVXOWV�PD\�QRW�EH�GLUHFWO\�SK\VLFDOO\�ERXQG�WR�WKH�NLQHWRFKRUH�FRPSOH[��:H�KDYH�
UHYLVHG�WKLV�VHFWLRQ�WR�PDNH�WKLV�FOHDU���
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Abstract 

 

Phylogenetic profiling is a computational method to predict genes involved in the same 

biological process by identifying protein families which tend to be jointly lost or retained across 

the tree of life. Phylogenetic profiling has customarily been more widely used with prokaryotes 

than eukaryotes, because the method is thought to require many diverse genomes. There are 

now many eukaryotic genomes available, but these are considerably larger, and typical 

phylogenetic profiling methods require at least quadratic time as a function of the number of 

genes. We introduce a fast, scalable phylogenetic profiling approach entitled HogProf, which 

ManXscripW Click heUe WR acceVV/dRZQlRad;MaQXVcUiSW;UeVXbmiVViRQ.dRc[
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leverages hierarchical orthologous groups for the construction of large profiles and locality-

sensitive hashing for efficient retrieval of similar profiles. We show that the approach outperforms 

Enhanced Phylogenetic Tree, a phylogeny-based method, and use the tool to reconstruct 

networks and query for interactors of the kinetochore complex as well as conserved proteins 

involved in sexual reproduction: Hap2, Spo11 and Gex1. HogProf enables large-scale 

phylogenetic profiling across the three domains of life, and will be useful to predict biological 

pathways among the hundreds of thousands of eukaryotic species that will become available in 

the coming few years. HogProf is available at https://github.com/DessimozLab/HogProf. 

 

 

Introduction  

The NCBI Sequence Read Archive (SRA) contains 1.6x1016 nucleotide bases of data and the quantity 

of sequenced organisms keeps growing exponentially. To make sense of all of this new genomic 

information, annotation pipelines need to overcome speed and accuracy barriers. Even in a well-

studied model organism such as Arabidopsis thaliana, nearly a quarter of all genes are not 

annotated with an informative gene ontology term (SkXnca, AlWenhoff, and DeVVimo] 2012; ęTAIR 

- Portals - Genome SnapVhoWĚ n.d.). One way to infer the function of a gene product is to analyse 

the biological network it is involved in. Using guilt by association strategies it is possible to infer 

function based on physical or regulatory interactors. Unfortunately, biological network inference 



Scalable Phylogenetic Profiling Using MinHash 3 

is mostly limited to model organisms and genome scale data is only available through the use of 

noisy high-throughput experiments. 

To ascribe biological functions to these new sequences, most of which originate from non-model 

organisms, computational methods are essential (reviewed in Cozzetto and Jones 2017). Among 

the computational function prediction techniques that leverage the existing body of experimental 

data, one important but still underutilised approach in eukaryotes is phylogenetic profiling 

(Pellegrini et al. 1999): positively correlated patterns of gene gains and losses across the tree of 

life are suggestive of genes involved in the same biological pathways. 

Phylogenetic profiling has been more commonly performed on prokaryotic genomes than on 

eukaryotic ones. Perhaps due to the relative paucity of eukaryotic genomes in the 2000s, earlier 

benchmarking studies observed poorer performance in retrieving known interactions with 

eukaryotes than with Prokaryotes (Snitkin et al. 2006; Jothi, Przytycka, and Aravind 2007; Ruano-

Rubio, Poch, and Thompson 2009). The situation today is considerably different; the GOLD 

database (Mukherjee et al. 2017) tracks over 6000 eukaryotic genomes. Multiple successful 

applications of phylogenetic profiling in eukaryotes have been published in recent years. For 

example, they have been used to infer small RNA pathway genes (Tabach et al. 2013), the 

kinetochore network (van Hooff et al. 2017), ciliary genes (Nevers et al. 2017), or homologous 

recombination repair genes (Sherill-Rofe et al. 2019).  

Large-scale phylogenetic profiling with complex eukaryotic genomes is computationally 

challenging since most state-of-the-art phylogenetic profiling methods typically scale at least 

quadratically with the number of gene families and linearly with the number of genomes. As a 
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result, most mainstream phylogenomic databases, such as Ensembl (Zerbino et al. 2018), EggNOG 

(Huerta-Cepas et al. 2016), OrthoDB (Zdobnov et al. 2017), or OMA (Altenhoff et al. 2018) do not 

provide phylogenetic profiles. One available resource is STRING (Szklarczyk et al. 2017), a protein 

interaction focused database which integrates multiple channels of evidence to support each 

interaction. The links between profiles STRING offers are obtained using SVD-phy (Franceschini et 

al. 2016) which represents profiles as bit-score distances between all proteins present in a given 

proteome and their closest homologues in all of the genomes included in the analysis. 

Dimensionality reduction is applied to the matrix to remove signal coming from the species tree 

and the profiles are clustered to infer interactions. In STRING, this is implemented with their set 

of 2031 organisms for which profile distance matrices are precalculated and incorporated into 

their network inference pipeline. Although this approach captures information on the distribution 

of extant distances, it does not reconstitute the evolutionary history of protein families and may 

lack information relative to duplication and loss events. Furthermore, as we show in the Methods 

section, the truncated Singular Value Decomposition approach does not scale well beyond a few 

genomes at a time.  

To construct profiles representing groups of homologues, some pipelines resort to all-vs-all 

sequence similarity searches to derive orthologous groups and only count binary presence or 

absence of a member of each group in a limited number of genomes (Ta, Koskinen, and Holm 

2011; Kensche et al. 2008) or forgo this step altogether and ignore the evolutionary history of 

each protein family, relying instead on co-occurrence in extant genomes (Niu et al. 2017). Other 

tree-based methods infer the underlying evolutionary history from the presence of extant 

homologues (Li et al. 2014).  
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Here, we introduce a scalable approach which combines the efficient generation of phylogeny-

aware profiles from hierarchical orthologous groups with ultrafast retrieval of similar profiles using 

locality sensitive hashing. A scalable phylogenetic profiling method using locality-sensitive hashing 

and hierarchical orthologous groups 

Most phylogenetic profiling methods consist of two steps: creating a profile for each homologous 

or orthologous group, and comparing profiles. When they were first implemented, profiles were 

constructed as binary vectors of presence and absence across species (Pellegrini et al. 1999). Since 

then, variants have been proposed, which take continuous values (van Hooff et al. 2017)Ęsuch as 

alignment scores with the gene of a reference species (Sherill-Rofe et al. 2019)Ęor which count 

the number of paralogs present in each species. Yet other variants convey the number of events 

on branches of the species tree (Ruano-Rubio, Poch, and Thompson 2009).  

In our pipeline, we leveraged the already existing OMA orthology inference algorithm to provide 

the input data to create our profiles. The OMA database describes the orthology relationships 

among all protein coding genes of currently 2288 cellular organisms (1674 bacteria, 152 archaea, 

and 462 eukaryotes). Within eukaryotes, OMA includes 188 animals, 135 fungi, 57 plants, and 82 

protists and has been benchmarked and integrated with other proteomic and genomic resources 

(Altenhoff et al. 2018). One core object of this database is the Hierarchical Orthologous Group 

(HOG) (Altenhoff et al. 2013). Each HOG contains all of the descendants of a single ancestor gene. 

When a gene is duplicated during its evolution, the paralogous genes and the descendants of the 

orthologue are contained in separate subhogs which describe their lineage back to their single 

ancestor gene (hence the hierarchical descriptor).  

§
" " " "t ""

if
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We captured the evolutionary history of each HOG in enhanced phylogenies and encoded them 

in probabilistic data structures (Fig. 1). These are used to compile searchable databases to allow 

for the retrieval of coevolving HOGs with similar evolutionary histories and compare the similarity 

of two HOGs. The two major components of the pipeline that are responsible for constructing the 

enhanced phylogenies and calculating probabilistic data structures to represent them are pyHam 

(Train et al. 2018) and Datasketch (ęDaWaVkeWch: Big DaWa LookV Small Ę Datasketch 1.0.0 

DocXmenWaWionĚ n.d.), respectively. Further details on the implementation are provided in the 

Methods section. The combination of these two tools now allows for the main innovation of our 

pipeline: the efficient exploration and clustering of profiles to study known and novel biological 

networks. 

Currently, existing profiling pipelines are limited with respect to the computational power required 

to cluster profiles using their respective distance metrics. Due to this bottleneck, profiling efforts 

are typically focused on reconstructing pathways with known interactors using existing annotations 

and evidence rather than being used as an exploratory tool to search for new interactors and 

reconstituting completely unknown networks.  

 

-

-
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Fig. 1. Diagram summarizing the different steps of the pipeline to generate the LSH 

Forest and hash signatures for each HOG. The labelled phylogenetic trees generated by 

pyHam are converted into phylogenetic profiles and used to generate a weighted MinHash 

signature with Datasketch. The hash signatures are inserted into the LSH Forest and stored in 

an HDF5 file.  
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The tool we have created leverages the properties of MinHash signatures to allow for the selection 

of clade subsets and for clade weightings in the construction of profiles and make it possible to 

build profiles with the complete set of genomes contained in OMA. We show that the method 

outperforms other phylogeny-based methods (Ta, Koskinen, and Holm 2011; Glazko and 

Mushegian 2004; Ranea et al. 2007), and illustrate its usefulness by retrieving biologically relevant 

results for several genes of interest. Because the method is unaffected by the number of genomes 

included and scales logarithmically with the number of hierarchical orthologous groups added, it 

will efficiently perform with the exponentially growing number of genomes as they become 

available. 

The code used to generate the results in this manuscript are available at 

https://github.com/DessimozLab/HogProf. 

Results 

In the following sections we first compare our profiling distance metric against other profile 

diVWanceV in order Wo characWeri]e Whe Jaccard haVh eVWimaWionĜV preciVion and recall characWeriVWicV. 

FolloZing WhiV qXanWificaWion, Ze VhoZ oXr pipelineĜV capacity in reconstituting a well known 

interaction network as well as augmenting it with more putative interactors using its search 

functionality. Finally, to illustrate a typical use case of our tool, we explore a poorly characterized 

network. 

developed .

Mourn
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Accuracy of predicted phylogenetic profiles in an empirical benchmark 

We compared the performance of our profiling metric to existing profile distances using 

benchmarking data available in Ta et al. (2011). In that benchmark, the true positive protein-

protein interactions (PPIs) were constructed using data available from CORUM (Giurgiu et al. 2018) 

and the MIPS (Mewes et al. 2004) databases for the human and yeast interaction datasets. True 

negatives were constructed by mixing proteins known to be involved in different complexes. The 

dataset is balanced with 50% positive and 50% negative samples. Using their Uniprot identifiers, 

these interaction pairs were mapped to their respective HOGs and their profiles were compared 

using the hash based Jaccard score estimate. The comparison below shows HogProf alongside 

other profiling distance metrics that are considerably more computationally intensive, including 

the Enhanced Phylogenetic Tree (EPT) metric shown in Ta et al. (2011). Yet, our approach 

outperformed these previous methods, yielding the highest Area Under the Curve for both yeast 

and human datasets (Figure 2, Table 1). 
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Fig. 2. ROC curves for all profiling methods. a. Yeast protein-protein interactions. Our method 

(MinHash Jaccard HogProf), performs best overall, but when high precision is required, 

Enhanced phylogenetic Tree (Ta, Koskinen, and Holm 2011) is still slightly more accurate. b. 

Human protein-protein interactions. Jaccard Hash HogProf performs better than all metrics 

overall but again, when high precision is required, EPT score is still slightly more accurate. Binary 

Pearson refers to a distance using binary vectors and Pearson correlation described in (Glazko 

and Mushegian 2004). Occurence Euclidean and Occurence Pearson refer to the occurence 

profiles with Euclidean distance and Pearson correlation as described in (Ranea et al. 2007). 

 

Table 1. AUC values for Profiling distance metrics.  

Metric AUC Yeast AUC Human 

Jaccard Hash 0.6634 0.6155 

EPT 0.6104 0.5875 
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BIN PS 0.5840 0.5463 

OCC ED 0.5829 0.5268 

OCC PS 0.6028 0.5714 

 

Recovery of a canonical network: the kinetochore network 

To further validate our profiling approach on a known biological network, we used our pipeline 

to replicate previous work shown in van Hooff et al. (2017). Their analysis focuses on the 

evolutionary dynamics of the kinetochore complex, a microtubule organizing structure that was 

present in the last eukaryotic common ancestor (LECA) and has undergone many modifications 

throughout evolution in each eukaryotic clade where it is found. Its modular organization has 

allowed for clade-specific additions or deletions of modules to the core complex which remains 

relatively stable. This modular organisation and clade-specific emergence of certain parts of the 

complex make it an ideal target for phylogenetic profiling analysis.  

We show that our MinHash signature comparisons are also capable of recovering the kinetochore 

complex organisation. After considering just the HOGs for the families used in van Hooff et al. 

(van Hooff et al. 2017), we augmented their set of profiles using LSH Forest (Bawa, Condie, and 

Ganesan 2005) to retrieve interactors that may also be involved in the kinetochore (and the also 

included anaphase promoting complex (APC)) networks which have not been cataloged by these 

authors. Using the Gene Ontology (GO) terms (Ashburner et al. 2000) of all proteins returned in 

our searches for novel interactors, we were able to identify proteins with specific functions we 

would expect to be related to our network of interest. 
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In their work, van Hooff et al. (van Hooff et al. 2017) used pairwise Pearson correlation coefficients 

between the presence and absence vectors of the various kinetochore components to recompose 

the organisation of the complex. Their profiles were constructed using the proteomes of a 

manually selected set of 90 organisms with manually curated profiles corresponding to each 

component of the complex. After establishing a distance kernel, they clustered the profiles and 

were able to recover known sub-components of the complex using just evolutionary information. 

Using our hash-based Jaccard distance metric in an all-vs-all comparison between the HOGs 

corresponding to each of these protein families, we were also able to recover the main modules 

of the kinetochore complex with a similar organisation to the one defined by van Hooff et al. The 

color clustering in Figure 3 corresponds to their original manual definition of these different 

subcomplex modules. We observe that the distance matrices generated by each profiling approach 

are correlated (with Spearman correlation of 0.268 (p < 1e-100) and Pearson correlation of 0.364 

(p < 1e-100) ) and are recovering similar evolutionary signals despite their construction using 

different methods. 
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Fig. 3. Recovery of kinetochore and APC complexes. After mapping each of the protein 

families presented in Van Hooff et al. (van Hooff et al. 2017) to their corresponding HOG, a 

distance matrix was constructed by comparing the Jaccard hash distance between profiles using 

HogProf. Name colors in the rows and columns of the matrix correspond to the kinetochore 
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and APC subcomplex components as defined manually using literature sources (van Hooff et 

al. 2017).  

 

The All-vs-All comparison of the profiles revealed several well defined clusters in both studies 

including the Dam-Dad-Spc19 and CenP subcomplexes. Unlike the Van Hoof er al. approach, 

HogProf profiles were constructed alongside all other HOGs in OMA and were not curated before 

being compared. With only the initial information of which proteins were in the complex, we 

mapped them to their corresponding OMA HOGs and, with this example, demonstrated the ability 

to reconstruct any network of interest or construct putative networks using the search functionality 

of our pipeline with minimal computing time. It should be noted that the quality of the OMA 

HOGs used to construct the enhanced phylogenies and hash signatures directly influences our 

ability to recover complex organisation. 

To illustrate the utility of the search functionality of our tool, we used the profiles known to be 

associated with the kinetochore complex to search for other interactors. All HOGs corresponding 

to the protein families used to analyse the kinetochore evolutionary dynamics in van Hooff et al. 

(van Hooff et al. 2017) were used as queries against an LSH Forest containing all HOGs in OMA. 

By performing an all-vs-all comparison of the minhash signatures of the queries and returned 

results, a Jaccard distance matrix was generated showing potential functional modules associated 

with each known component of the kinetochore and APC complexes. 
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Fig. 4. Putative novel components of the kinetochore and APC complexes. The profiles 

associated with all HOGs mapping to known kinetochore components shown in Figure 3 were 

used to search the LSH Forest and retrieve the top 10 closest coevolving HOGs resulting in a 

list of 871 HOGs including the queries from the original complexes. The Jaccard distance matrix 

is shown between the hash signatures of all query and result HOGs. UPGMA clustering was 
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applied to the distance matrix rows and columns. Labelled rows and columns correspond to 

profiles from the starting kinetochore dataset (van Hooff et al. 2017). A cutoff hierarchical 

clustering distance of 1.3 was manually chosen (blue lines) to limit the maximum cluster size to 

less than 50 HOGs. This cutoff resulted in a total of 142 clusters of HOGs used for GO 

enrichment to identify functional modules. The coloring of the protein family names to the 

right and below the matrix is identical to the complex related coloring shown in Figure 3. 

To verify that the results returned by our search were not spurious, we performed GO enrichment 

analysis of the returned HOGs that were not part of the original set of queries but appeared to 

be coevolving closely with known kinetochore components. Given the incomplete nature of GO 

annotations (ęopen Zorld aVVXmpWionĚ, DeVVimo], ŅkXnca, and ThomaV 2013), many of these 

proteins may actually be involved in the kinetochore interaction network but this biological 

function could be still undiscovered. However, even with this limitation, salient annotations 

relevant to the kinetochore network were returned in the search results (Table 2 and 

Supplementary Data 1). The identifiers of all protein sequences contained in the HOGs returned 

by the search results were compiled and the GO enrichment of each cluster shown in Figure 4 

was calculated using the OMA annotation corpus as a background. The enrichment results were 

manually parsed and salient annotations related to HOGs were selected to be reviewed further in 

the associated literature to check for the association of the search result with the query HOG 

(Table 2). 

Table 2. Manually curated biologically relevant search results for interactors coevolving 

with van Hooff et al.ğU kineVochoTe and APC selected protein families (van Hooff et al. 

2017). Protein families returned within clusters containing query HOGs are listed with their 
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pertinent annotation and literature. This is a non-exhaustive summary of some selected 

results. The full enrichment results are available as Supplementary Data 1. 

Cluster Result  GO Term Citation 

APC1 CFAP157 GO:0035082 axoneme assembly     (Weidemann et al. 2016) 

APC12 C2CD3 GO:0061511 centriole elongation (Thauvin-Robinet et al. 

2014) 

CenpQ ESCO2 GO:0007059 chromosome segregation (Lu et al. 2017) 

KNL1 TACC3 GO:0007091 metaphase/anaphase transition 

of mitotic cell cycle 

(Cheeseman et al. 2013) 

 

 

For instance, our search identified TACC3, which is known to be part of a structural stabilizer of 

kinetochore microtubules tension although it does not directly interact with the kinetochore 

complex (Cheeseman et al. 2013). ESCO2, a cohesin N-acetyltransferase needed for proper 

chromosome segregation during meiosis also plays a role in kinetochore-microtubule attachments 

regulation during meiosis (Lu et al. 2017). While these results are certainly promising, many of the 

unannotated proteins returned by our search likely contain more regulatory, metabolic and 

physical interactors which may prove to be interesting experimental targets. 

Search for a novel network 

Typical research use cases for profiling often involve uncharacterized protein families acting within 

poorly studied neworks. In this section we present search results for three HOGs known to be 

involved in the processes of meiosis, syngamy and karyogamy. Despite the ubiquitous nature of 

sex and its probable presence in LECA (Speijer, LXkeņ, and Eliiņ 2015), the protein networks 
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involved in each part of these processes have limited experimental data available, even in model 

organisms. Some key protein families involved in each step are known to have evolutionary 

patterns indicating an ancestral sequence in the LECA with subsequent modifications and losses 

(Speijer, LXkeņ, and Eliiņ 2015). The three following sections detail the returned results of the 

phylogenetic profiling pipeline with the Hap2, Gex1 and Spo11 families which all share this 

evolutionary pattern and are known to be critical for the process of gamete fusion, nuclear fusion 

and meiotic recombination, respectively. The proteins contained in the top 100 HOGs returned by 

the LSH Forest were analyzed for GO enrichment using all OMA annotations as a background. 

Due to the presence of biases in the GO annotation corpus (Altenhoff et al. 2012) we have also 

chosen to show the number of proteins annotated with each biological process selected from the 

enrichment out of the total number of annotated proteins. 

Query with Hap2 

The Hap2 protein family has been shown to catalyze gamete membrane fusion in many eukaryotic 

clades and shares structural homology with viral and somatic membrane fusion proteins (Liu et 

al. 2008; ValanVi eW al. 2017; Fpdr\ eW al. 2017; Feng, Dong, and Springer 2018). A subset of the 

GO enrichment of the search results for the top 100 coevolving HOGs are shown below in Table 

3. 
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Table 3. Manually curated biologically relevant enriched GO terms from returned results. 

The query sequence Hap2 is UniProt entry F4JP36 with OMA identifier ARATH26614 belonging 

to OMA HOG:0406399. The full enrichment results are available in the Supplementary Data 2. 

Term Biological process P-value N-proteins 

GO:0006338 chromatin remodeling 9.72e-54 61/3426 

GO:0048653 anther development 1.69e-35 17/3426 

GO:0009793 embryo development ending in seed 

dormancy 

2.88e-13 15/3426 

GO:0051301 cell division 6.88e-16 5/3426 

 

One particular family of interest which was returned in our search results is already characterized 

in angiosperms: LFR or leaf and flower related (Wang et al. 2012). This protein family is required 

for the development of reproductive structures in flowers and serves as a master regulator of the 

expression of many reproduction related genes, but its role in lower eukaryotes remains 

undescribed despite its broad evolutionary conservation. 

Query with Gex1 

The nuclear fusion protein Gex1 is present in many of the same clades as Hap2, with a similar 

spotty pattern of absence across eukaryotes and a phylogeny indicating a vertical descent from 

LECA (Ning et al. 2013). A subset of the GO enrichment of the search results for the top 100 

coevolving HOGs are shown below in Table 4. 

 

Table 4. Manually curated biologically relevant enriched GO terms from returned results. 

The query sequence Gex1 is UniProt identifier Q681K7 with OMA identifier ARATH38809 
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belonging to OMA HOG:0416115. The full enrichment results are available as Supplementary 

Data 3. 

GO Term P-value N-Proteins 

GO:0042753 positive regulation of circadian 

rhythm 

2.12e-285 113/2685 

GO:0048364 root development 7.81e-125 70/2685 

GO:0051726 regulation of cell cycle 1.22e-92 99/2685  

GO:0000712 resolution of meiotic recombination 

intermediates 

1.65e-47 26/2685 

GO:0007140 male meiotic nuclear division  1.19e-39 26/2685 

GO:0009553 embryo sac development  1.43e-28 17/2685 

GO:0022619 generative cell differentiation 3.59e-18 5/2685 

 

Gex1 has been shown to be involved in gamete development and embryogenesis (Alandete-Saez 

et al. 2011) and therefore GO terms 0022619 and 0009553 are applied to this protein. Thus 

proteins that HogProf identified as co-evolving with Gex1 and sharing these GO terms can be 

considered potential Gex1 interactors. 

One search result of particular interest is a protein family which goes by the lyrical name of parting 

dancers (PTD). PTD belongs to a family that has been characterized in Arabidopsis thaliana and 

budding and fission yeast, and is known to be required in reciprocal homologous recombination 

during meiosis (Wijeratne et al. 2006). Our search shows that Gex1 co-evolved closely with PTD, 

a protein known to be involved in preparing genetic material for its eventual merger with another 

cellĜV nXcleXV. 
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Query with Spo11 

The Spo11 helicase is involved in meiosis by catalyzing DNA double stranded breaks (DSBs) 

triggering homologous recombination. Spo11 is highly conserved throughout eukaryotes and 

homologues are present in almost all clades (Keeney, Giroux, and Kleckner 1997). A subset of the 

GO enrichment of the search results for the top 100 coevolving HOGs are shown below in Table 

5. 

Table 5. Manually curated biologically relevant enriched GO terms from returned results. 

The query sequence Spo11-1 is UniProt identifier Q9M4A2 with OMA identifier ARATH19148 

belonging to OMA HOG:0605395. The full enrichment results are available in Supplementary 

Data 4. 

GO Term P-value N-Proteins 

GO:0000737 DNA catabolic process, endonucleolytic 0.00e+00 415/20562 

GO:0043137 DNA replication, removal of RNA primer 0.00e+00 353/20562 

GO:0006275 regulation of DNA replication  0.00e+00 552/20562 

GO:0006302 double-strand break repair       8.11e-242 285/20562 

GO:0007292 female gamete generation 2.71e-184 136/20562 

GO:0022414 reproductive process  1.66e-93 127/20562 

 

It is encouraging to find that Spo11, the trigger of meiotic DSBs, has co-evolved with other families 

involved in the inverse process of repairing the DSBs and finishing the process of recombination 

(Table 5). Other identified HOGs contain annotations such as gamete generation and reproduction 

also focusing on processes that result in cellular commitment to a gamete cell fate through 

meiosis. Proliferating cell nuclear antigen or PCNA (Strzalka and Ziemienowicz 2011) was also 

retrieved by our search. This ubiquitous protein family is an auxiliary scaffold protein to the DNA 
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polymerase and recruits other interactors to the polymerase complex to repair damaged DNA, 

making it an interesting candidate for a potential physical interactor with Spo11. 

A broader search for the reproductive network 

A more in-depth treatment of the evolutionary conservation of gamete cell fate commitment and 

mating is available in previous publications (Malik eW al. 2007; Loidl 2016; Speijer, LXkeņ, and Eliiņ 

2015; Ning et al. 2013; Schurko and Logsdon 2008; Niklas, Cobb, and Kutschera 2014; Goodenough 

and Heitman 2014). Using these sources, a list of broadly conserved protein families known to be 

involved in sexual reproduction were compiled to be used as HOG queries to the LSH Forest to 

retrieve the top 10 closest coevolving HOGs. The hash signatures of the queries and results were 

compiled and used in an all-vs-all comparison to generate a Jaccard distance matrix. 
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Fig. 5. HogPTofğU TepTodWcViXe neVYoTk. A list of proteins known to be involved in sexual 

reproduction was compiled and mapped to OMA HOGs. These queries were used to search for 

the 20 closest coevolving HOGs in an LSH forest containing all HOGs in OMA. A Jaccard kernel 

was generated by performing an All vs All comparison of the Hash signatures of search results 

and queries. UPGMA clustering was performed on the rows and columns of the kernel. A cutoff 
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distance of .995 ( blue lines ) was manually chosen to limit cluster sizes to less than 50 HOGs. 

This generated a total of 215 clusters of HOGs. Names for queries are shown with 

Saccharomyces cerevisiae gene names (apart from Hap2 which is not present in fungi ). 

The all-vs-all comparison of the Jaccard distances between these returned HOGs reveals clusters 

of putative interactors co-evolving closely with specific parts of the sexual reproduction network. 

Manual analysis of GO enrichment results revealed several sexual reproduction-related proteins 

which are summarized in Table 6. In addition to annotated protein sequences and HOGs, many 

unannotated, coevolving HOGs were found. 

Particularly for biological processes as complex and evolutionarily diverse as sexual reproduction, 

GO annotations are, unsurprisingly, incomplete. Fortunately, our profiling approach is successful 

in identifying protein families with similar evolutionary patterns that have already been 

characterised and are directly relevant to sexual reproduction (Table 6). By considering the 

uncharacterized or poorly characterized families at the sequence and structure level, we may be 

able to predict their functions and reconstitute their local interactome. Our ultimate goal is to 

guide in vivo experiments to test and characterize these targets within the broader context of 

eukaryotic sexual reproduction. 

Table 6. Manually curated biologically relevant putative interactors from sexual 

reproduction search results. Protein families within clusters containing query HOGs are listed 

with their pertinent annotation and literature. GO enrichment results of clusters containing one 

or more queries were analyzed manually. Full enrichment results are available in the 

Supplementary Data 5. 

Cluster Result GO Term Citation 
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REC8 NSE4 GO:0030915 Smc5-Smc6 complex (Zelkowski et al. 

2019) 

SPC72 MID2 GO:0000767 cell morphogenesis 

involved in conjugation 

(Rajavel et al. 1999) 

SPO71 LES2 GO:0031011 Ino80 complex (Serber et al. 2016; 

Bao and Shen 2011) 

SHC1, SPO16 POG1 GO:0000321  re-entry into mitotic cell 

cycle after pheromone arrest 

(Leza and Elion 1999; 

van Werven et al. 

2012) 

 

This example related to the ancestral sexual reproduction network illustrates the utility of the LSH 

Forest search functionality and OMA resources in exploratory characterization of poorly described 

networks. The interactions presented above ( Table 6 ) only represent our limited effort to manually 

review literature to highlight potentially credible interactions detected by our pipeline. Again, as 

was the case with our kinetochore and APC related searches, several interactions might not appear 

obvious on their face. For example, SPC72 and MID2 are both involved in meiotic processes but 

localized to different parts of the cell ( centriole and plasma membrane, respectively). However, it 

has been shown that microtubule organization and membrane integrity sensing pathways do show 

interaction during gamete maturation (Gordon et al. 2006).  

Discussion 

We introduced a scalable system for phylogenetic profiling from hierarchical orthologous groups. 

The ROC and AUC values shown using an empirical benchmark in the first section of Results  

indicates that the MinHash Jaccard score estimate between profiles has slightly better performance 

than previous tree and vector based metrics, while also being much faster to compute. This is 

remarkable in that one typically expects a trade-off between speed and accuracy, which does not 
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appear to be the case here. We hypothesise that the error introduced by the MinHash 

approximation is compensated by the inclusion of an unprecedented amount of genomes and 

taxonomic nodes in the labelled phylogenies used to construct the profiles. 

Furthermore, while our MinHash-derived Jaccard estimates are able to capture some of the 

differences between interacting and non-interacting HOGs, as shown above, their unique strength 

lies in the fast recovery of the top k closest profiles within an LSH Forest. Once these profiles are 

recovered, the inference of submodules or network structure can be refined using other, 

potentially more compute intensive methods, on this much smaller subset of data. 

We have shown that HogProf is able to reconstitute the modular organisation of the kinetochore, 

as well as increase the list of protein families interacting within the network with several known 

interactors of the kinetochore and the APC. As for the other HOGs returned in these searches, our 

results suggest that some are yet unknown interactors involved in aspects of the cell cycle or 

ciliary dynamics. Likewise, our attempt at retrieving candidate members of the sexual reproduction 

network recapitulated many known interactions, while also suggesting new ones.  

The current paradigm for exploring interaction or participation in different biological pathways 

across protein families relies heavily on data integration strategies that take into account 

heterogenous high-throughput experiments and knowledge found in the literature. Many times, 

these datasets only describe the networks in question in one organism at a time. Furthermore, 

signaling, metabolic and physical interaction networks are all covered by different types of 

experiments and data produced by these systems is located in heterogeneous databases. By 

contrast, phylogenetic profiles can potentially uncover all three types of networks from sequencing 

mommy
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data alone. This was highlighted in our work during retrieval of potential interactors within the 

sexual reproduction and kinetochore networks with the retrieval of LFR and CFAP157, respectively. 

CFAP157, a cilia and flagella associated protein might be involved in recruitment/regulation of 

APC-Cdc20 or ciliary kinases (e.g Nek1), both known to mediate APC regulation of ciliary dynamics 

(Wang and Kirschner, 2014). In both cases, a regulatory action within the network was the 

biological process which involved both the query and retrieved HOGs, not a physical interaction. 

The advances put forward by our new methodology and the property of retrieving entire networks 

and not just physical interactions opens the possibility of performing comparative profiling on an 

unprecedented scale and lays the groundwork for integrative modeling of the interplay between 

PPI, regulation and metabolic networks in a more holistic way.  

Further work remains to be done on tuning the profile construction with the appropriate weights 

at each taxonomic level, as well as constructing profiles for subfamiles arising from duplications 

which may undergo neofunctionalization, a theme which has been previously explored in 

phylogenetic profiling efforts relying on far fewer genomes (Dey et al. 2015). Downstream 

processing of the explicit representation of the data, as opposed to the the hash signature, can 

also be designed using more computationally intensive methods to detect interactions on smaller 

subsets of profiles after using the LSH as a first search. 

The phylogenetic profiling pipeline presented in this work will be integrated into OMA web-based 

services. Meanwhile, it is already available on Github as a standalone package 

( https://github.com/DessimozLab/HogProf). 

Methods 
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The following section details the creation of phylogenetic profiles using OMA data, their 

transformation into MinHash based probabilistic data structures and the tools and libraries used 

in the implementation. 

Profile construction 

To generate large-scale gene phylogenies labelled with speciation, duplication and loss events 

(a.k.a. enhanced phylogenies or tree profiles) for each HOG in OMA, we processed input data in 

OrthoXML format (Schmitt et al. 2011) with pyHam (Train et al. 2018), using the NCBI taxonomic 

tree (Sayers et al. 2010) pruned to contain only the genomes represented in OMA (Altenhoff et 

al. 2018). Tree profiles contain a species tree annotated at each taxonomic level with information 

on when the last common ancestor gene appeared, where losses and duplications occurred and 

the copy number of the gene at each taxonomic level. More information on the pyHam inference 

of evolutionary events can be found in (Train et al. 2018). pyHam can also be used to infer 

enhanced phylogenies for other datasets available in OrthoXML format such as ENSEMBL (Zerbino 

et al. 2018) or with data generated from phylogenetic trees such as those found in PANTHER (Mi 

et al. 2017) through the use of the function etree2orthoxml() in the tree analysis package 

ETE3 (Huerta-Cepas, Serra, and Bork 2016). 

The enhanced phylogeny trees for each HOG are parsed to create a vector representation of the 

presence or absence of a homologue at each extant and ancestral node as well as the duplication 

or loss events on the branch leading to that node. Each profile vector contains 9345 columns 

( corresponding to the 3115 nodes of the taxonomy used and the 3 categories of presence, loss 

and duplication ).  
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To encode profile vectors as weighted MinHash signatures (Sergey Ioffe 2010) we used the 

Datasketch library (ęDaWaVkeWch: Big DaWa LookV Small Ę DaWaVkeWch 1.0.0 DocXmenWaWionĚ n.d.). 

In this formulation, the Jaccard score between multisets representing profiles can be more heavily 

influenced by nodes with a higher weight. The final MinHash signatures used were built with 256 

hashing functions.  

After transforming HOG profile vectors to their corresponding weighted MinHashes using the 

datasketch library, an estimation of the Jaccard distance between profiles can be obtained by 

calculating the Hamming distance between their hash signatures (S. Ioffe 2010). The speed of 

comparison and lower bound for accuracy of the estimation of the Jaccard score is set by the 

number of hashing functions. The comparison of hash signatures has O(N) time complexity where 

N is the number of hash functions used to generate the MinHash signature. Due to this property, 

an arbitrary number of elements can be encoded in this signature without slowing down 

comparisons. In our use case, this enables the use of an arbitrarily large number of taxa for which 

we can consider evolutionary events. Additionally, hardware implementations of hash functions 

allow the calculation of hash signatures at rates of giga hashes per second and allow for extremely 

fast implementation of this step, placing the bottleneck of the pipeline at the calculation of 

enhanced phylogenies. 

The ZeighWed MinHaVh objecWV for each HOGĜV enhanced ph\logen\ Zere compiled inWo a 

searchable data structure referred to as a Locality Sensitive Hashing Forest (LSH Forest) (Bawa, 

Condie, and Ganesan 2005) and their signatures were stored in an HDF5 file. The LSH Forest can 

be queried with a hash signature to retrieve the K neighbors with the highest Jaccard similarity to 

the query hash. The K closest hashes are retrieved from a B-Tree data structure (Comer 1979). 
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This branching tree data structure allows for the querying and dynamic insertion and deletion of 

elements in the LSH Forest data structure built upon it with logarithmic time complexity. 

The scaling properties of the MinHash data structures when compared to pairwise distance 

calculations and hierarchical clustering are shown below in Figure 6. 

 

Fig. 6. To illustrate the advantageous scaling properties of MinHash data structures, synthetic 

profiles of length 100 were generated in the form of binary vectors (0 and 1 equiprobable). 

Profiles were then clustered using an explicit calculation of the Jaccard distance, reduced to a 

lower dimensionality (5 dimensions) with truncated SVD, normalized and explicitly clustered 

using Euclidean distance as in SVD-Phy (Franceschini et al. 2016) or transformed into MinHash 
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signatures and inserted into an LSH Forest object as in our method. Orders of magnitude 

showing typical use cases for profiling pipelines are shown on the x-axis. Curves were fitted 

to each set of timepoints to empirically determine the time complexity of each approach.  

 

Computational resources, data and libraries  

Our dataset contains approximately 600,000 HOGs computed from the 2,167 genomes in OMA 

(June 2018 release) The main computational bottleneck in our pipeline is the calculation of the 

labelled gene trees for each HOG using pyHam. Even with this computation, compiled LSH forest 

objecWV conWaining Whe haVh VignaWXreV of all HOGVĜ gene WreeV can be compiled in Xnder 3 hoXrV 

(with 10 CPUs but this can scale easily to more cores) with only 2.5 GB of RAM and queried 

extremely efficiently (an average of 0.01 seconds over 1000 queries against a database containing 

profiles for all HOGs in OMA on an Intel(R) Xeon(R) CPU E5530 @ 2.40 GHz and 2 GB of RAM to 

load the LSH database object into memory). This performance makes it possible to provide online 

search functionality, which we aim to release in an upcoming web-based version of the OMA 

browser. Meanwhile, the compiled profile database can be used for analysis on typical workstations 

(note that memory and CPU requirements will depend on the number of hash functions 

implemented in the construction of profiles and the filtering of the initial dataset to clades of 

interest to the user). 

All gene ontology (GO) annotations (encompassing molecular functions, cellular locations, and 

biological processes) for HOGs contained in OMA were analyzed with GOATOOLS (Klopfenstein 

et al. 2018). To calculate the enrichment of annotations, the results returned by the LSH Forest 
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annotations for all protein sequences contained in the HOGs returned by the search were collected 

and the entire OMA annotation corpus was used as background.  

HDF5 files were compiled with H5PY (ver. 2.9.0). Pandas (ver. 0.24.0) was used for data 

manipulation. Labelled phylogenies were manipulated with ETE3 (Huerta-Cepas, Serra, and Bork 

2016). Datasketch (ver. 1.0.0) was used to compile weighted MinHashes and LSH Forest data 

structures. Plots were generated using matplotlib (ver. 3.0.2). PyHam (ver 1.1.6) was used to 

calculate labelled phylogenies for the HOGs in OMA.  

Time complexity analysis in Figure 6 was done with the scikit-learn implementation of truncated 

SVD (Pedregosa et al. 2011) and scipy (Jones, Oliphant, and Peterson 2001) distance functions. 

Pearson and Spearman correlation comparison of distance matrices 

Distance matrices between all pairs of profiles in the kinetochore and APC complex protein families 

defined in (van Hooff et al. 2017) were compared using the Spearman and Pearson statistical 

analysis functions from the the SciPy python package to verify the monotonicity of the scores 

between families. 
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Supplementary data 

x Supplementary Data 1—kineto_augment_goenrich.csv: Contains the results of GO 

enrichment analysis done on the results of our search for kinetochore interactors. After 

searching with the HOGs corresponding to each of the kinetochore components, the 

returned HOGs were clustered according to their jaccard similarity. Using a hierarchical 

clustering and a manually defined cutoff the results were separated into discrete clusters. 

Each cluster was analyzed using goatools for GO enrichment. Enrichment results for clusters 

containing a query gene were recorded in this CSV file. 

x Supplementary Data 2—hap_enrich.csv: Contains the goatools output for the GO 

enrichment analysis of the top 100 closest coevolving HOGs returned by a query with Hap2. 

x Supplementary Data 3—gex_enrich.csv: Contains the goatools output for the GO 

enrichment analysis of the top 100 closest coevolving HOGs returned by a query with Gex1.  

x Supplementary Data 5—repro_augment_goenrich.csv: Contains the results of GO 

enrichment analysis done on the results of our search for sexual reproduction network 

interactors. After searching with the HOGs corresponding to each of the manually curated list 

of conserved sexual reporduction network components, the returned HOGs were clustered 

according to their jaccard similarity. Using a hierarchical clustering and a manually defined 

cutoff the results were separated into discrete clusters. Each cluster was analyzed using 

goatools for GO enrichment. Enrichment results for clusters containing a query were 

recorded in this csv file. 
x Supplementary Data 4- repro_hogs.csv: Contains a manually selected set of highly 

conserved protein families involved in sexual reproduction. 
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Abstract 

 

Phylogenetic profiling is a computational method to predict genes involved in the same 

biological process by identifying protein families which tend to be jointly lost or retained across 

the tree of life. Phylogenetic profiling has customarily been more widely used with prokaryotes 

than eukaryotes, because the method is thought to require many diverse genomes. There are 

now many eukaryotic genomes available, but these are considerably larger, and typical 

phylogenetic profiling methods require at least quadratic time or worse in as a function of the 

number of genes. We introduce a fast, scalable phylogenetic profiling approach entitled HogProf, 
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which leverages hierarchical orthologous groups for the construction of large profiles and 

locality-sensitive hashing for efficient retrieval of similar profiles. We show that the approach 

outperforms Enhanced Phylogenetic Tree, a phylogeny-based method, and use the tool to 

reconstruct networks and query for interactors of the kinetochore complex as well as conserved 

proteins involved in sexual reproduction: Hap2, Spo11 and Gex1. HogProf enables large-scale 

phylogenetic profiling across the three domains of life, and will be useful to predict biological 

pathways among the hundreds of thousands of eukaryotic species that will become available in 

the coming few years. HogProf is available at https://github.com/DessimozLab/HogProf. 

 

 

Introduction  

The NCBI Sequence Read Archive (SRA) contains 1.6x1016 nucleotide bases of data and the quantity 

of sequenced organisms keeps growing exponentially. To make sense of all of this new genomic 

information, annotation pipelines need to overcome speed and accuracy barriers. Even in a well-

studied model organism such as Arabidopsis thaliana, nearly a quarter of all genes are not 

annotated with an informative gene ontology term [1].(Skunca, Altenhoff, and Dessimoz 2012; 

ęTAIR - Portals - Genome SnaSVhoWĚ n.d.). One way to infer the function of a gene product is to 

analyse the biological network it is involved in and form a hypothesis based on its. Using guilt by 

association strategies it is possible to infer function based on physical or regulatory interactors. 
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Unfortunately, biological network inference is mostly limited to model organisms as well and 

genome scale data is only available through the use of noisy high-throughput experiments. 

To ascribe biological functions to these new sequences, most of which originate from non-model 

organisms, computational methods are essential [reviewed in 2].(reviewed in Cozzetto and Jones 

2017). Among the computational function prediction techniques that leverage the existing body 

of experimental data, one important but still underutilised approach in eukaryotes is phylogenetic 

profiling [3]:(Pellegrini et al. 1999): positively correlated patterns of gene gains and losses across 

the tree of life are suggestive of genes involved in the same biological pathways. 

Phylogenetic profiling has been more commonly performed on prokaryotic genomes than on 

eukaryotic ones. Perhaps due to the relative paucity of eukaryotic genomes in the 2000s, earlier 

benchmarking studies observed poorer performance in retrieving known interactions with 

eukaryotes than with Prokaryotes [4ė6].(Snitkin et al. 2006; Jothi, Przytycka, and Aravind 2007; 

Ruano-Rubio, Poch, and Thompson 2009). The situation today is considerably different; the GOLD 

database [7](Mukherjee et al. 2017) tracks over 6000 eukaryotic genomes. Multiple successful 

applications of phylogenetic profiling in eukaryotes have been published in recent years, e.g.. For 

example, they have been used to infer small RNA pathway genes [8],(Tabach et al. 2013), the 

kinetochore network [9],(van Hooff et al. 2017), ciliary genes [10],(Nevers et al. 2017), or 

homologous recombination repair genes [11].(Sherill-Rofe et al. 2019).  

Still, largeLarge-scale phylogenetic profiling with eukaryotes remains complex eukaryotic genomes 

is computationally challenging, because eukaryotic genomes are larger and more complex than 

their prokaryotic counterparts, and because since most state-of-the-art phylogenetic profiling 
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methods typically scale at least quadratically with the number of gene families and linearly with 

the number of genomes. As a result, most mainstream phylogenomic databases, such as Ensembl 

[12],(Zerbino et al. 2018), EggNOG [13],(Huerta-Cepas et al. 2016), OrthoDB [14],(Zdobnov et al. 

2017), or OMA [15](Altenhoff et al. 2018) do not provide phylogenetic profiles. 

 One available resource is STRING (Szklarczyk et al. 2017), a protein interaction focused database 

which integrates multiple channels of evidence to support each interaction. The inference of 

phylogeneticlinks between profiles STRING offers are obtained using large datasets is challenging. 

SomeSVD-phy (Franceschini et al. 2016) which represents profiles as bit-score distances between 

all proteins present in a given proteome and their closest homologues in all of the genomes 

included in the analysis. Dimensionality reduction is applied to the matrix to remove signal coming 

from the species tree and the profiles are clustered to infer interactions. In STRING, this is 

implemented with their set of 2031 organisms for which profile distance matrices are precalculated 

and incorporated into their network inference pipeline. Although this approach captures 

information on the distribution of extant distances, it does not reconstitute the evolutionary history 

of protein families and may lack information relative to duplication and loss events. Furthermore, 

as we show in the Methods section, the truncated Singular Value Decomposition approach does 

not scale well beyond a few genomes at a time.  

To construct profiles representing groups of homologues, some pipelines resort to all-vs-all 

sequence similarity searches to derive orthologous groups and only count binary presence or 

absence of a member of each group in a limited number of genomes [16,17](Ta, Koskinen, and 

Holm 2011; Kensche et al. 2008) or forgo this step altogether and ignore the evolutionary history 

of each group of homologuesprotein family, relying instead on co-occurrence in extant genomes 
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[18].(Niu et al. 2017). Other tree-based methods infer the underlying evolutionary history from the 

presence of extant homologues [19]. In our pipeline, we leveraged the already existing OMA 

orthology inference algorithm, which has been benchmarked and integrates with other proteomic 

and genomic resources [15]. The OMA database describes the orthology relationships among all 

protein coding genes of over 2000 cellular organisms. One core object of this database is the 

Hierarchical Orthologous Group (HOG) [20].(Li et al. 2014).  Each HOG contains all of the 

descendants of a single ancestor gene. When a gene is duplicated during its evolution, the 

paralogous genes and the descendants of the orthologue are contained in separate subhogs 

which describe their lineage back to their single ancestor gene (hence the hierarchical descriptor). 

A brief introductory video tutorial on HOGs is available at https://youtu.be/5p5x5gxzhZA. 

Here, we introduce a scalable approach which combines the efficient generation of phylogeny-

aware profiles from hierarchical orthologous groups with ultrafast retrieval of similar profiles using 

locality sensitive hashing. Furthermore, the approach leverages the properties of minhash 

signatures to allow for the selection of clade subsets and for clade weightings in the construction 

of profiles. The improvements in performance of our method make it possible to build profiles 

for the over 2000 genomes contained in OMA. We show that the method is as accurate as a state-

of-the-art phylogeny-based method, and illustrate its usefulness by retrieving biologically relevant 

results for several genes of interest. Because the method is unaffected by the number of genomes 

included and scales logarithmically with the number of hierarchical orthologous groups added, it 

will efficiently perform with the exponentially growing number of eukaryotic genomes. 

All of the code used to produce the results shown in this manuscript can be downloaded at 

https://github.com/DessimozLab/HogProf. 
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Results 

In the following sections we first compare our profiling distance metric against other profile 

distances in order to characterize the JaccaUd haVh eVWimaWionĜV SUeciVion and Uecall chaUacWeUiVWicV. 

FolloZing WhiV TXanWificaWion, Ze VhoZ oXU SiSelineĜV caSaciW\ in UeconVWiWXWing a Zell knoZn 

interaction network as well as augmenting it with more putative interactors using its search 

functionality. Finally, to illustrate a typical use case of our tool, we explore a poorly characterized 

network. 

A scalable phylogenetic profiling method using locality-sensitive hashing and hierarchical 

orthologous groups 

Most phylogenetic profiling methods consist of two steps: creating a profile for each homologous 

or orthologous group, and comparing profiles. When they were first implemented, profiles were 

constructed as binary vectors of presence and absence across species [3].(Pellegrini et al. 1999). 

Since then, variants have been proposed, which take continuous values [9]Ę(van Hooff et al. 

2017)Ęsuch as alignment scores with the gene of a reference species [11]Ę(Sherill-Rofe et al. 

2019)Ęor which count the number of paralogs present in each species. Yet other variants convey 

the number of events on branches of the species tree [6]. However, all approaches are limited 

with respect to the computational power required to cluster profiles using their respective distance 

metrics. Due to this computational cost, profiling efforts are typically focused on reconstructing 

pathways with known interactors using existing annotations and evidence rather than being used 
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as an exploratory tool to search for new interactors and reconstituting completely unknown 

networks.(Ruano-Rubio, Poch, and Thompson 2009).  

In our pipeline, we leveraged the already existing OMA orthology inference algorithm to provide 

the input data to create our profiles. The OMA database describes the orthology relationships 

among all protein coding genes of currently 2288 cellular organisms (1674 bacteria, 152 archaea, 

and 462 eukaryotes). Within eukaryotes, OMA includes 188 animals, 135 fungi, 57 plants, and 82 

protists and has been benchmarked and integrated with other proteomic and genomic resources 

(Altenhoff et al. 2018). One core object of this database is the Hierarchical Orthologous Group 

(HOG) (Altenhoff et al. 2013). Each HOG contains all of the descendants of a single ancestor gene. 

When a gene is duplicated during its evolution, the paralogous genes and the descendants of the 

orthologue are contained in separate subhogs which describe their lineage back to their single 

ancestor gene (hence the hierarchical descriptor). In our approach to the problem of profiling, we 

captured the evolutionary history of each HOG in enhanced phylogenies and encode 

We captured the evolutionary history of each HOG in enhanced phylogenies and encoded them 

in probabilistic data structures (Fig. 1). These are used to compile searchable databases to allow 

for the retrieval of coevolving HOGs with similar evolutionary histories and compare the similarity 

of two HOGs. The two major components of the pipeline that are responsible for constructing the 

enhanced phylogenies and calculating probabilistic data structures to represent them are pyHam 

and Datasketch, respectively.(Train et al. 2018) and Datasketch (ęDaWaVkeWch: Big DaWa LookV Small 

Ę DaWaVkeWch 1.0.0 DocXmenWaWionĚ n.d.), respectively. Further details on the implementation are 

provided in the Methods section. The combination of these two tools now allows for the main 
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innovation of our pipeline: the efficient exploration and clustering of profiles to study known and 

novel biological networks. 

Currently, existing profiling pipelines are limited with respect to the computational power required 

to cluster profiles using their respective distance metrics. Due to this bottleneck, profiling efforts 

are typically focused on reconstructing pathways with known interactors using existing annotations 

and evidence rather than being used as an exploratory tool to search for new interactors and 

reconstituting completely unknown networks.  
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Fig. 1. Diagram summarizing the different steps of the pipeline to generate the LSH 

Forest and hash signatures for each HOG. The labelled phylogenetic trees generated by 

pyHam are converted into phylogenetic profiles and used to generate a weighted 

minhashMinHash signature with Datasketch. The hash signatures are inserted into the LSH 

Forest and stored in an HDF5 file.  Formatted: Font: Bold



Scalable Phylogenetic Profiling Using MinHash 11 

 

Formatted: Footer

 

 

The tool we have created leverages the properties of MinHash signatures to allow for the selection 

of clade subsets and for clade weightings in the construction of profiles and make it possible to 

build profiles with the complete set of genomes contained in OMA. We show that the method 

outperforms other phylogeny-based methods (Ta, Koskinen, and Holm 2011; Glazko and 

Mushegian 2004; Ranea et al. 2007), and illustrate its usefulness by retrieving biologically relevant 

results for several genes of interest. Because the method is unaffected by the number of genomes 

included and scales logarithmically with the number of hierarchical orthologous groups added, it 

will efficiently perform with the exponentially growing number of genomes as they become 

available. 

The code used to generate the results in this manuscript are available at 

https://github.com/DessimozLab/HogProf. 

Results 

In the following sections we first compare our profiling distance metric against other profile 

diVWanceV in oUdeU Wo chaUacWeUi]e Whe JaccaUd haVh eVWimaWionĜV SUeciVion and Uecall chaUacWeUiVWicV. 

Following WhiV TXanWificaWion, Ze VhoZ oXU SiSelineĜV caSaciW\ in UeconVWiWXWing a Zell knoZn 

interaction network as well as augmenting it with more putative interactors using its search 

functionality. Finally, to illustrate a typical use case of our tool, we explore a poorly characterized 

network. 
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Accuracy of predicted phylogenetic profiles in an empirical benchmark 

We compared the performance of our profiling metric to existing profile distances using 

benchmarking data available in Ta et al. [16].(2011). In that benchmark, the true positive protein-

protein interactions (PPIs) were constructed using data available from CORUM [21] and the MIPS 

[22](Giurgiu et al. 2018) and the MIPS (Mewes et al. 2004) databases for the human and yeast 

interaction datasets. True negatives were constructed by mixing proteins known to be involved in 

different complexes. The dataset is balanced with 50% positive and 50% negative samples. Using 

their Uniprot identifiers, these interaction pairs were mapped to their respective HOGs and their 

profiles were compared using the hash based Jaccard score estimate. The comparison below 

shows HogProf alongside other profiling distance metrics that are considerably more 

computationally intensive, including the Enhanced Phylogenetic Tree (EPT) metric shown in Ta et 

al. [16].(2011). Yet, our approach outperformed these previous methods, yielding the highest Area 

Under the Curve for both yeast and human datasets (Figure 2, Table 1). 
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Fig. 2. ROC curves for all profiling methods. a. Yeast protein-protein interactions. Jaccard 

Hash and Jaccard Hash Opt perform better than all metricsOur method (MinHash Jaccard 

HogProf), performs best overall, but when high precision is required, EPT scoreEnhanced 

phylogenetic Tree (Ta, Koskinen, and Holm 2011) is still slightly more accurate. b. Human 

protein-protein interactions. Jaccard Hash and Jaccard Hash Opt performHogProf performs 

better than all metrics overall but again, when high precision is required, EPT score is still 

slightly more accurate. In both subfigures, Jaccard hash refers to the profiles containing all 

cladeV ZiWh all ZeighWV foU each eYenW and Wa[onomic leYel VeW Wo 1. ęEPT_VcoUeĚ UefeUV Wo Whe 

Enhanced Phylogenetic Tree metric developed in [16]. ęBin_PVĚBinary Pearson refers to a 

distance using binary vectors and Pearson correlation described in [23].  ęOcc_EdĚ and 

ęOcc_PVĚ(Glazko and Mushegian 2004). Occurence Euclidean and Occurence Pearson refer to 

the occurence profiles with Euclidean distance and Pearson correlation as described in 

[24].(Ranea et al. 2007). 
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Table 1. AUC values for Profiling distance metrics.  

Metric AUC Yeast AUC Human 

Jaccard Hash 0.6634 0.6155 

EPT 0.6104 0.5875 

BIN PS 0.5840 0.5463 

OCC ED 0.5829 0.5268 

OCC PS 0.6028 0.5714 

 

Recovery of a canonical network: the kinetochore network 

To further validate our profiling approach on a known biological network, we used our pipeline 

to replicate previous work shown in van Hooff et al. [9].(2017). Their analysis focuses on the 

evolutionary dynamics of the kinetochore complex, a microtubule organizing structure that was 

present in the last eukaryotic common ancestor (LECA) and has undergone many modifications 

throughout evolution in each eukaryotic clade where it is found. Its modular organization has 

allowed for clade-specific additions or deletions of modules to the core complex which remains 

relatively stable. This modular organisation and clade-specific emergence of certain parts of the 

complex make it an ideal target for phylogenetic profiling analysis.  

We show that our minhashMinHash signature comparisons are also capable of recovering the 

kinetochore complex organisation. After considering just the HOGs for the families used in 

van Hooff et al. [9],(van Hooff et al. 2017), we augmented their set of profiles using the LSH Forest 

(Bawa, Condie, and Ganesan 2005) to retrieve interactors that may also be involved in the 

kinetochore (and the also included anaphase promoting complex (APC) network)) networks which 
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have not been detectedcataloged by these authors. By using a well-studied network in eukaryotes 

to test the LSH Forest search, we can rely on previous work and annotations to quantify the quality 

of the returned results. Using the Gene Ontology (GO) terms [25](Ashburner et al. 2000) of all 

proteins returned in our searches for novel interactors, we quantify how enriched they are for 

thewere able to identify proteins with specific functions we would expect to be related to our 

network of interest. 

In their work, van Hooff et al. [9](van Hooff et al. 2017) used pairwise Pearson correlation 

coefficients between the presence and absence vectors of the various proteinkinetochore 

components ofto recompose the kinetochore in the 90 organisation of the complex. Their profiles 

were constructed using the proteomes of a manually selected set of 90 organisms as a distance 

metric between awith manually curated set of profiles corresponding to each component of the 

complex. Using this pairwise comparison of all vectorsAfter establishing a distance kernel, they 

clustered the profiles and were able to recover known sub-componenentscomponents of the 

complex using just evolutionary information. Using our hash-based Jaccard distance metric in an 

all-vs-all comparison between the HOGs corresponding to each of these protein families, we were 

also able to recover the main modules of the kinetochore complex with a similar organisation to 

the one defined by van Hooff et al. The color clustering in figureFigure 3 corresponds to their 

original manual definition of these different subcomplex modules based. Despite the vastly 

different methods used in the construction and comparison of the profiles used to recover the 

network in both pipelines, we. We observe that the distance matrices generated by each profiling 

approach are correlated and are recovering similar evolutionary signals, (with Spearman correlation 
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of 0.26268 (p < 1e-100) and Pearson correlation of 0.35364 (p < 1e-100).) ) and are recovering 

similar evolutionary signals despite their construction using different methods. 
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Fig. 3. Recovery of kinetochore and APC complexes. After mapping each of the protein 

families presented in Van Hooff et al. [9](van Hooff et al. 2017) to their corresponding HOG, a 

distance matrix was constructed by comparing the Jaccard hash distance between profiles using 

HogProf. Name colors in the rows and columns of the matrix correspond to the kinetochore 

and APC subcomplex components as defined manually using literature sources in van Hooff et 
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al. All code used to construct the figure is available on the HogProf repository.(van Hooff et al. 

2017).  

 

The All-vs-All comparison of the profiles revealsrevealed several well defined clusters in both 

worksstudies including the Dam-Dad-Spc19 and CenP subcomplexes. However, ourUnlike the Van 

Hoof er al. approach, HogProf profiles were constructed alongside all other HOGs in OMA and 

were not curated before being compared. With only the initial information of which proteins were 

in the complex, we mapped them to their corresponding OMA HOGs and, with this example, 

demonstrated the ability to reconstruct any network of interest or construct putative networks 

using the search functionality of our pipeline with minimal computing time. However, itIt should 

be noted that the quality of the OMA HOGs used to construct the enhanced phylogenies and 

hash signatures directly influences our ability to recover complex organisation. 

To illustrate the utility of the search functionality of our tool, we used the profiles known to be 

associated with the kinetochore complex to search for other interactors. All HOGs corresponding 

to the protein families used to analyse the kinetochore evolutionary dynamics in van Hooff et al. 

[9](van Hooff et al. 2017) were used as queries against an LSH Forest containing all HOGs in OMA. 

By performing an all-vs-all comparison of the minhash signatures of the queries and returned 

results, a Jaccard distance matrix was generated showing potential functional modules associated 

with each known component of the kinetochore and APC complexes. 
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Fig. 4. Putative novel components of the kinetochore and APC complexes. The profiles 

associated with all HOGs mapping to known kinetochore components shown in Figure 3 were 

used to search the LSH Forest and retrieve the top 10 closest coevolving HOGs resulting in a 

list of 871 HOGs including the queries from the original complexes. The Jaccard distance matrix 

is shown between the hash signatures of all query and result HOGs. UPGMA clustering was 
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applied to the distance matrix rows and columns. Labelled rows and columns correspond to 

profiles from the starting kinetochore dataset [9].(van Hooff et al. 2017). A cutoff hierarchical 

clustering distance of 1.3 was manually chosen (blue lines) was used to generatelimit the 

maximum cluster size to less than 50 HOGs. This cutoff resulted in a total of 136142 clusters 

of HOGs used for GO enrichment to identify functional modules. The coloring of the protein 

family names to the right and below the matrix is identical to the complex related coloring 

shown in Figure 3. All code used to construct this figure is available in the HogProf repository. 

 

To verify that the results returned by our search were not spurious, we performed GO enrichment 

analysis of the returned HOGs that were not part of the original set of queries but appeared to 

be coevolving closely with known kinetochore components. Given the incomplete nature of Gene 

Ontology annotations [ęoSen ZoUld aVVXmSWionĚ, 26],GO annotations (ęoSen ZoUld aVVXmSWionĚ, 

DeVVimo], ŅkXnca, and ThomaV 2013), many of these proteins may actually be involved in the 

kinetochore interaction network but this biological function could be still undiscovered. However, 

even with this limitation, salient annotations relevant to the kinetochore network were returned 

in the search results (Table 2 and Supplementary Data 1). The identifiers of all protein sequences 

contained in the HOGs returned by the search results were compiled and the GO enrichment of 

each cluster shown in Figure 4 was calculated using the OMA annotation corpus as a background. 

The enrichment results were manually parsed and salient annotations related to HOGs were 

selected to be reviewed further in the associated literature to check for the association of the 

search result with the query HOG (Table 2). 
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Table 2. Manually curated biologically relevant search results for interactors coevolving 

with van Hooff et al.ğU kiPeVQchQTe aPd APC UelecVed RTQVeiP faOilieU [9]. Notable 

protein(van Hooff et al. 2017). Protein families (Result) returned within clusters containing 

query HOGs (Cluster) are listed with their pertinent annotation and literature. GO 

enrichment results of clusters that contained one or more queries from the original 

kinetochore network were analyzed manually. We searched for literature supporting the 

relevant GO annotations, thereby confirming that the results returned by the LSH were 

associated with kinetochore and APC processes. This is a non-exhaustive summary of some 

selected results. The full enrichment results are available as Supplementary Data 1. 

Cluster Result  GO Term Citation 

APC1 CFAP157 GO:0035082 axoneme assembly     [27](Weidemann et al. 

2016) 

APC12HOM

RAD 

BRWD1C2C

D3 

GO:0007010 cytoskeleton 

organizationGO:0061511 centriole elongation 

[28](Thauvin-Robinet et al. 

2014) 

CenpQAPC

12 

CDC26ESC

O2 

GO:0007346 regulation of mitotic cell 

cycleGO:0007059 chromosome segregation 

[29](Lu et al. 2017) 

KNL1 TACC3 GO:0007091 metaphase/anaphase transition 

of mitotic cell cycle 

[30](Cheeseman et al. 

2013) 

 

 

For instance, TACC3, a known physical interactor of the kinetochore complex and important 

regulator of the kinetochore tension [30]was found by our search. Another example is CFAP157, 
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a cilia and flagella associated protein which may seem like an unlikely interactor with the APC. 

However,  it has previously been shown that the APC activity regulates ciliary length unstabilizing 

axonemal microtubules [31]. Thus, CFAP157 might be involved in recruitment of APC regulators 

(such as Cdc20) or ciliary kinases (such as Nek1) both known to mediate APC regulation of ciliary 

dynamics [31] .For instance, our search identified TACC3, which is known to be part of a structural 

stabilizer of kinetochore microtubules tension although it does not directly interact with the 

kinetochore complex (Cheeseman et al. 2013). ESCO2, a cohesin N-acetyltransferase needed for 

proper chromosome segregation during meiosis also plays a role in kinetochore-microtubule 

attachments regulation during meiosis (Lu et al. 2017). While these results are certainly promising, 

many of the unannotated proteins returned by our search likely contain more regulatory, 

metabolic and physical interactors which may prove to be interesting experimental targets. The 

diverse types of interactions detected by our pipeline are discussed further in the discussion 

section. 

Search for a novel network 

When studying networks with a lack of annotation and experimental characterization, it is difficult 

to quantify the relevance of retrieved search results. In typicalTypical research use cases 

involvingfor profiling often involve uncharacterized protein families inacting within poorly studied 

neworks, this will often be the case.. In this section we present the search results for three HOG 

queriesHOGs known to be involved in the processes of meiosis, syngamy and karyogamy. These 

three major events occur in almost all sexually reproducing eukaryotes during their reproductive 

cycle. Despite the ubiquitous nature of sex and its probable presence in LECA [32],(SSeijeU, LXkeņ, 

and Eliiņ 2015), the protein networks involved in each part of these processes are very poorly 
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understood andhave limited experimental data is available, even in model organisms. However, 

someSome key protein families involved in these biological processeseach step are known to have 

evolutionary patterns indicating an ancestral sequence in the LECA with subsequent modifications 

and losses [32].(SSeijeU, LXkeņ, and Eliiņ 2015). The three following sections detail the returned 

results of the phylogenetic profiling pipeline with the Hap2, Gex1 and Spo11 families which all 

share this evolutionary pattern and are known to be critical for the process of gamete fusion, 

nuclear fusion and meiotic recombination, respectively. As in section 3.2 we also used GO 

enrichment to quantify the relevance of the returned search results. The proteins contained in the 

top 100 HOGs returned by the LSH Forest were analyzed for GO enrichment using all OMA 

annotations as a background. Due to the presence of biases in the GO annotation corpus 

[33](Altenhoff et al. 2012) we have also chosen to show the number of proteins annotated with 

each biological process selected from the enrichment out of the total number of annotated 

proteins. 

Query with Hap2 

The Hap2 protein family has been shown to catalyze gamete membrane fusion in many eukaryotic 

clades [34,35]. It has a particularly spotty pattern of presence and absence on the taxonomic tree 

despite its phylogeny supporting the hypothesis of vertical descent from LECA. This protein family 

is known to be highly divergent in amino acid sequence despite its conserved fold and shares 

structural homology with viral and somatic membrane fusion proteins [35ė37]. The HOG 

containing Hap2 in OMA only contains the eukaryotic gamete fusion protein subfamily of this 

structural superfamily. Part(LiX eW al. 2008; ValanVi eW al. 2017; FpdU\ eW al. 2017; Feng, Dong, and 
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Springer 2018). A subset of the GO enrichment of the search results for the top 100 coevolving 

HOGs are shown below in tableTable 3. 

 

 

Table 3. Manually curated biologically relevant enriched GO terms from returned results. 

The chosen input proteinquery sequence for  Hap2 is that of UniProt entry F4JP36 and the 

correspondingwith OMA entryidentifier ARATH26614 belonging to OMA HOG:0406399. The full 

enrichment results are available in the Supplementary Data 2. 

Term Biological process P-value N-proteins 

GO:0006338 chromatin remodeling 9.72e-54 61/3426 

GO:0048653 anther development 1.69e-35 17/3426 

GO:0009793 embryo development ending in seed 

dormancy 

2.88e-13 15/3426 

GO:0051301 cell division 6.88e-16 5/3426 

 

Widely conserved sequences not belonging to the Hap2 HOG and found in coevolving HOGs were 

linked to gamete development and reproductive structure development (Table 3) [38,39]. This 

mirrors the initial discovery of Hap2, which was first found in angiosperms and linked to pollen 

tube guidance before the double fertilization event. Since Mendel, extensive work has been carried 

out describing reproductive processes in plants. Therefore, it is expected that the corpus of 

available annotations would be biased for annotations related to plant reproductive processes. 

The Hap2 HOG also appears to be coevolving with HOGs related to chromatin remodeling, an 
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important part of the reproductive process during gamete generation, and also post fusion, after 

the zygote cell is formed. 

One particular family of interest which was returned in our search results is already characterized 

in angiosperms: LFR or leaf and flower related [40].(Wang et al. 2012). This protein family is 

required for the development of reproductive structures in flowers and serves as a master 

regulator of the expression of many reproduction related genes, but its role in lower eukaryotes 

remains undescribed despite its broad evolutionary conservation. E[SeUimenWV WaUgeWing LFRĜV 

potential regulation of Hap2 expression may provide insight into how the fusion process is 

transcriptionally controlled in gametes across many eukaryotes despite their distinct reproductive 

strategies. 

Query with Gex1 

Gex1 has been shown to be involved inThe nuclear fusion (ękaU\ogam\Ě)  andprotein Gex1 is 

present in many of the same clades as Hap2, with a similar spotty pattern of absence across 

eukaryotes and a phylogeny indicating a vertical descent from LECA [41]. (Ning et al. 2013). A 

subset of the GO enrichment of the search results for the top 100 coevolving HOGs shows the 

predictive potential of HogProf (tableare shown below in Table 4).. 

 

Table 4. Manually curated biologically relevant enriched GO terms from returned results. 

The input proteinquery sequence chosen for Gex1 is based on the UniProt identifier Q681K7 

and the correspondingwith OMA identifier ARATH38809 belonging to OMA HOG:0416115. The 

full enrichment results are available as Supplementary Data 3. Formatted: Font: Bold
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GO Term P-value N-Proteins 

GO:0042753 positive regulation of circadian 

rhythm 

2.12e-285 113/2685 

GO:0048364 root development 7.81e-125 70/2685 

GO:0051726 regulation of cell cycle 1.22e-92 99/2685  

GO:0000712 resolution of meiotic recombination 

intermediates 

1.65e-47 26/2685 

GO:0007140 male meiotic nuclear division  1.19e-39 26/2685 

GO:0009553 embryo sac development  1.43e-28 17/2685 

GO:0022619 generative cell differentiation 3.59e-18 5/2685 

 

In many sexually reproducing organisms, karyogamy is followed by restarting of the cell cycle. Our 

results strongly suggest that HOGs related to the restarting of the cell cycle have coevolved with 

Gex1 (Table 4). Again we find many angiosperm specific annotations due to the prior work in the 

study of their sexual reproduction. As was the case for Hap2, the taxonomic spread of the HOGs 

found in this search is broader than just angiosperms. Gex1 has alsoGex1 has been shown to be 

involved in gamete development and embryogenesis [42](Alandete-Saez et al. 2011) and therefore 

GO terms 0022619 and 0009553 are applied to this protein. Thus proteins that HogProf identified 

as putativeco-evolving with Gex1 interactorsand sharing these GO terms indicates thecan be 

considered potential relevance of these search resultsGex1 interactors. 

One search result of particular interest is a protein family which goes by the lyrical name of parting 

dancers (PTD). PTD belongs to a family that has been characterized in Arabidopsis thaliana and 

budding and fission yeast, and is known to be required in reciprocal homologous recombination 

induring meiosis and localizes to the nucleus [43].(Wijeratne et al. 2006). Our search shows that 
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Gex1 coevolvedco-evolved closely with PTD, a protein known to be involved in preparing genetic 

maWeUial foU iWV eYenWXal meUgeU ZiWh anoWheU cellĜV nXcleXV. 

Query with Spo11 

The Spo11 is a helicase that has been shown to beis involved in meiosis by catalyzing DNA double 

stranded breaks (DSBs) triggering homologous recombination. Spo11 is highly conserved 

throughout eukaryotes and homologues are present in almost all clades [44]. The(Keeney, Giroux, 

and Kleckner 1997). A subset of the GO enrichment of the search results for the top 100 coevolving 

HOGs are shown below in tableTable 5. 

Table 5. Manually curated biologically relevant enriched GO terms from returned results. 

The chosen input proteinquery sequence  for  Spo11-1 is based on the  UniProt identifier 

Q9M4A2 and the correspondingwith OMA identifier ARATH19148 belonging to OMA 

HOG:0605395. The full enrichment results are available in Supplementary Data 4. 

GO Term P-value N-Proteins 

GO:0000737 DNA catabolic process, endonucleolytic 0.00e+00 415/20562 

GO:0043137 DNA replication, removal of RNA primer 0.00e+00 353/20562 

GO:0006275 regulation of DNA replication  0.00e+00 552/20562 

GO:0006302 double-strand break repair       8.11e-242 285/20562 

GO:0007292 female gamete generation 2.71e-184 136/20562 

GO:0022414 reproductive process  1.66e-93 127/20562 

 

The process of chromosome recombination is one of the crucial steps in the generation of gametes and 

happens during meiotic prophase I when homologous chromosomes are paired and form the synaptonemal 

complex. It is encouraging to find that Spo11, the trigger of meiotic DSBs, has coevolvedco-evolved 

with other families involved in the inverse process of repairing the DSBs and finishing the process 
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of recombination (Table 5). Other identified HOGs contain annotations such as gamete generation 

and reproduction also focusing aton processes that result in cellular commitment to a gamete cell 

fate through meiosis. Proliferating cell nuclear antigen or PCNA [45](Strzalka and Ziemienowicz 

2011) was also retrieved by our search. This ubiquitous protein family is an auxiliary scaffold 

protein to the DNA polymerase and recruits other interactors to the polymerase complex to repair 

damaged DNA, making it an interesting candidate for a potential physical interactor with Spo11. 

In summary, this HogProf search focused on three proteins involved in sexual reproduction yielded a list of 

promising candidate proteins. 

A broader search for the reproductive network 

A more in-depth treatment of the evolutionary conservation of gamete cell fate commitment and 

mating is available in previous publications [32,41,46ė50].(Malik et al. 2007; Loidl 2016; Speijer, 

LXkeņ, and Eliiņ 2015; Ning eW al. 2013; SchXUko and LogVdon 2008; Niklas, Cobb, and Kutschera 

2014; Goodenough and Heitman 2014). Using these sources, a list of broadly conserved protein 

families known to be involved in sexual reproduction were compiled to be used as HOG queries 

to the LSH Forest to retrieve the top 10 closest coevolving HOGs. The hash signatures of the 

queries and results were compiled and used in an all-vs-all comparison to generate a Jaccard 

distance matrix. 
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Fig. 5. HQgPTQfğU TeRTQdWcViXe PeVYQTk. A list of proteins known to be involved in conserved 

sexual reproduction biological processes was compiled and each protein family was mapped 

to its HOG andOMA HOGs. These queries were used to search for the 20 closest coevolving 

HOGs in an LSH forest containing all HOGs in OMA. Each row and column of the Jaccard 

distance matrix corresponds to a HOG containing known sexual reproduction pathway protein 
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families or a HOG returned by the search. A Jaccard distance matrixkernel was generated by 

performing an All vs All comparison of the Hash signatures of thesearch results and queries. 

UPGMA clustering was performed on the rows and columns to organize the HOGs into 

functional modules. The initial set of 121 protein sequences was augmented using the search 

functionality of the LSH by adding the top 20 closest returned HOGs resulting in a total of 2041 

HOGs including the queries.of the kernel. A cutoff distance of .995 ( blue lines ) was 

usedmanually chosen to generatelimit cluster sizes to less than 50 HOGs. This generated a total 

of 215 clusters of HOGs (blue lines). The labels correspond to the names of the proteins used 

to generate the. Names for queries. HOG names are shown correspond to the yeastwith 

Saccharomyces cerevisiae gene names ( apart from Hap2 which is not present in fungi ). This 

nomenclature was chosen due to the large body of work related to the yeast pheromone 

response and mating pathways. The HOGs returned by our search are not labelled on the 

distance matrix. All code used to construct this figures is available on the HogProf repository. 

 

The all-vs-all comparison of the Jaccard distances between these returned HOGs reveals clusters 

of putative interactors coevolvingco-evolving closely with specific parts of the sexual reproduction 

network. The Manual analysis of GO enrichment of sequences within each cluster was analyzed 

manually andresults revealed several annotations related to sexual reproduction were found. 

These-related proteins which are summarized in Table 6 after a manual curation and literature 

review as done in table 2 for the kinetochore search results.. In addition to annotated protein 

sequences and HOGs, many unannotated, coevolving HOGs where found. Again, these may prove 
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to be useful experimental targets to answer open questions on the mechanisms behind sexual 

reproduction. were found. 

Particularly for biological processes as complex and evolutionarily diverse as sexual reproduction, 

Gene OntologyGO annotations are, unsurprisingly, incomplete. Fortunately, our profiling approach 

is successful in identifying protein families with similar evolutionary patterns that have already 

been characterised and are directly relevant to sexual reproduction (Table 6). By considering the 

uncharacterized or poorly characterized families at the sequence and structure level, we may be 

able to predict their functions and reconstitute their local interactome. Our ultimate goal is to 

guide in vivo experiments to test and characterize these targets within the broader context of 

eukaryotic sexual reproduction. 

Table 6. Manually curated biologically relevant putative interactors from sexual 

reproduction search results. Notable proteinProtein families (Result) within clusters containing 

query HOGs (Cluster) are listed with their pertinent annotation and literature. GO enrichment 

results of clusters that containedcontaining one or more queries from our list of queries were 

analyzed manually. We searched for literature associated to the relevant GO annotations 

confirming results returned by the LSH that were associated with sexual reproduction. This is a 

non-exhaustive summary of some salient returned results. The fullFull enrichment results are 

available in the Supplementary Data 5. 

Cluster Result GO Term Citation 

REC8 NSE4 GO:0030915 Smc5-Smc6 complex [51](Zelkowski et al. 

2019) 

SPC72 MID2 GO:0000767 cell morphogenesis 

involved in conjugation 

[52](Rajavel et al. 

1999) 
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SPO71 LES2 GO:0031011 Ino80 complex [53,54](Serber et al. 

2016; Bao and Shen 

2011) 

SHC1, SPO16 POG1 GO:0000321  re-entry into mitotic cell 

cycle after pheromone arrest 

[55,56](Leza and 

Elion 1999; van 

Werven et al. 2012) 

 

This example related to the ancestral sexual reproduction network illustrates the utility of the LSH 

Forest search functionality and OMA resources in exploratory characterization of poorly described 

networks. The interactions presented above in( Table 6 ) only represent our limited effort to 

manually review literature to highlight potentially credible interactions detected by our pipeline. 

Again, as was the case with our kinetochore and APC related searches, several interactions might 

not appear obvious on their face. For example, SPC72 and MID2 are both involved in meiotic 

processes but localized to different parts of the cell (the centriole and theplasma membrane, 

respectively). However, it has been shown that microtubule organization and membrane integrity 

sensing pathways do show interaction during gamete maturation [57]. Others, like the Ino80 

complex related Les2 subunit and SPO71 appear to be directly involved in the biological process 

of DNA remodelling during recombination and it may be easier to imagine their mode of 

interaction and design experiments to probe it.(Gordon et al. 2006).  

 

Discussion 

We introduced a scalable system for phylogenetic profiling from hierarchical orthologous groups. 

The ROC and AUC values shown in the using an empirical benchmark ofin the first section 3.1of 

Results  indicates that the minhashMinHash Jaccard score estimate between profiles is a 
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competitive alternative tohas slightly better performance than previous tree and vector based 

metrics, while also being much faster to compute. This is remarkable in that one typically 

expectexpects a trade-off between speed and accuracy, which does not appear to be the case 

here. We hypothesise that the error introduced by the fast minhashMinHash approximation is 

more than compensated by the inclusion of an unprecedented amount of genomes and taxonomic 

nodes in the labelled phylogenies used to construct the profiles. 

Furthermore, while our minhashMinHash-derived Jaccard estimates are able to capture some of 

the differences between interacting and non-interacting HOGs, as shown above, their unique 

strength lies in the fast recovery of closethe top k closest profiles within an LSH Forest. Once 

these profiles are recovered, the inference of submodules or network structure can be refined 

using other, potentially more compute intensive methods, on this much smaller subset of data. 

Because phylogenetic profiling is not yet broadly used on eukaryotic data, HogProf is largely 

orthogonal to and thus particularly effective combined with existing functional annotations. We 

showed that HogProf wasWe have shown that HogProf is able to reconstitute the modular 

organisation of the kinetochore, as well as increase the list of protein families interacting within 

the network with several known interactors of the kinetochore and the APC. As for the other HOGs 

returned in these searches, our results suggest that some are yet unknown interactors involved in 

aspects of the cell cycle or ciliary dynamics. Likewise, our attempt at retrieving candidate members 

of the sexual reproduction network recapitulated many known interactions, while also suggesting 

new ones.  
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The current paradigm for exploring interaction or participation in different biological pathways 

across protein families relies heavily on data integration strategies that take into account 

heterogenous high-throughput experiments and knowledge found in the literature. Many times, 

these datasets only describe the networks in question in one organism at a time. Furthermore, 

signaling, metabolic and physical interaction networks are all covered by different types of 

experiments and data produced by these systems is located in heterogeneous databases. By 

contrast, phylogenetic profiles can potentially uncover all three types of networks from sequencing 

data alone. This was highlighted in our work during retrieval of potential interactors within the 

sexual reproduction and kinetochore networks with the retrieval of LFR and CFAP157, respectively. 

CFAP157, a cilia and flagella associated protein might be involved in recruitment/regulation of 

APC-Cdc20 or ciliary kinases (e.g Nek1), both known to mediate APC regulation of ciliary dynamics 

(Wang and Kirschner, 2014). In both cases, a regulatory action within the network was the 

biological process which involved both the query and retrieved HOGs, not a physical interaction. 

The advances put forward by our new methodology and the property of retrieving entire networks 

and not just physical interactions opens the possibility of performing comparative profiling on an 

unprecedented scale and lays the groundwork for integrative modeling of the interplay between 

PPI, regulation and metabolic networks in a more holistic way.  

Further work remains to be done on tuning the profile construction with the appropriate weights 

at each taxonomic level, as well as when to constructconstructing profiles for subfamiles arising 

from duplications which may undergo neofunctionalization., a theme which has been previously 

explored in phylogenetic profiling efforts relying on far fewer genomes (Dey et al. 2015). 

Downstream processing of the explicit representation of the data, as opposed to the the hash 
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signature, can also be designed using more computationally intensive methods to detect 

interactions on smaller subsets of profiles after using the LSH as a first search. 

The phylogenetic profiling pipeline presented in this work will be integrated into OMA web-based 

services. Meanwhile, it is already available on Github as a standalone package. 

( https://github.com/DessimozLab/HogProf). 

Methods 

The following section details the creation of phylogenetic profiles using OMA data, their 

transformation into minhashMinHash based probabilistic data structures and the technical details 

oftools and libraries used in the implementation. 

Profile construction 

To generate large-scale gene phylogenies labelled with speciation, duplication and loss events 

(a.k.a. enhanced phylogenies or tree profiles) for each HOG in OMA, we processed input data in 

OrthoXML format [58](Schmitt et al. 2011) with pyHam [59],(Train et al. 2018), using the NCBI 

taxonomic tree [60](Sayers et al. 2010) pruned to contain only the genomes represented in OMA 

[15].(Altenhoff et al. 2018). Tree profiles contain a species tree annotated at each taxonomic level 

with information on when the last common ancestor gene appeared, where losses and duplications 

occurred and the copy number of the gene at each taxonomic level. More information on the 

pyHam inference of evolutionary events can be found in [59].(Train et al. 2018). pyHam can also 

be used to infer enhanced phylogenies for other datasets available in OrthoXML format such as 

ENSEMBL (Zerbino et al. 2018) or with data generated from phylogenetic trees such as those 
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found in PANTHER (Mi et al. 2017) through the use of the function etree2orthoxml() in the 

tree analysis package ETE3 (Huerta-Cepas, Serra, and Bork 2016). 

Using this gene treeThe enhanced phylogeny trees for each HOG are parsed to create a vector 

representation of the HOG, a multiset for presence, loss  or absence of a homologue at each 

extant and ancestral node as well as the duplication at each taxonomic level is compiled into a 

vector representation. In this representation each column corresponds to an evolutionary event 

or presence of a gene at a specific taxonomic levelor loss events on the branch leading to that 

node. Each profile vector contains 9345 columns ( corresponding to the 3115 nodes of the 

taxonomy used and the weight in the column corresponds to the weight (or importance) given to 

each node of the taxonomic tree for that class of events (3 categories of presence, loss and 

duplication ).  

To encode profile vectors as weighted MinHash signatures (Sergey Ioffe 2010) we used the 

Datasketch library (ęDaWaVkeWch: Big DaWa LookV Small Ę DaWaVkeWch 1.0.0 DocXmenWaWionĚ 

n.d.).Fig. 1). In this formulation, the Jaccard score between multisets [61] representing profiles 

willcan be more heavily influenced by nodes with a higher weight. In this manuscript only profiles 

with binary vectors are considered; the optimization of weighting and other refinements of the 

profiling pipeline will be the subject of future publications.The final MinHash signatures used were 

built with 256 hashing functions.  

Profile construction with Weighted Minhashing and Database construction using LSH 

Forest 
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Historically, distance metrics between profiles have fallen into two categories: tree-based and 

vector-based metrics [6,17]. Comparing all-vs-all profiles to define a distance matrix using metrics 

detailed in other phylogenetic profiling approaches, such as mutual information, Hamming 

distance or tree-aware methods [6,18,62ė64], scales quadratically with the number of profiles. The 

time it takes to calculate profiles and a distance between two profiles typically scales poorly with 

the number of genomes considered, especially with tree-based methods. These computations are 

not practical when comparing the labelled phylogenies produced by pyHam for all HOGs in OMA, 

even with high performance computing. 

Several studies have established the Jaccard similarity [65] between two profiles of presence and 

absence patterns across extant genomes as a valid phylogenetic profiling distance metric, which 

is able to capture an evolutionary signal closely related to shared protein functions [18,66,67]. This 

profile distance metric integrates well with the available algorithms and data structures available 

in the Datasketch library [68]. These data structures are built around minhashing techniques to 

retrieve similar sets of elements in sublinear time and allow a user to efficiently search the profile 

space without explicitly calculating the distance matrix between all profiles, as well as approximate 

the Jaccard similarity between profiles, by comparing hash signatures. Using these data structures 

to represent and search for the phylogenetic profiles effectively removes the necessity for an all-

vs-all comparison. 

Minhashing techniques were devised to measure the similarity of documents and search for similar 

documents within large datasets containing billions of elements [69ė71]. A document can either 

be encoded as a set of unique words that occur within it or as a multiset representing the number 

of occurrences of each unique word. When dealing with sets where the total number of unique 
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elements is unknown before processing all sets, it is preferable to encode them using the minhash 

algorithm, which allows the hash signature of the set to be updated as new unique elements are 

added without prior knowledge of all possible elements. When the total set of unique elements 

(e.g. all of the possible words in a corpus of documents or all of the taxa present in the species 

tree) is known, it is possible to use a minhash signature to represent the number of times each 

type of element occurs in a multiset of all possible elements. This representation is known as a 

weighted minhash and, depending on the dataset, may be more precise in retrieving relevant 

hash signatures (e.g. a document that mentions a specific word many times). The mathematical 

principles underpinning weighted minhashing and locality sensitive hashing forest algorithms and 

their implementation are described in earlier papers [61,72,73]. 

After transforming HOG profile vectors to their corresponding weighted minhashesMinHashes 

using the datasketch library, an estimation of the Jaccard distance between profiles can be 

obtained by calculating the Hamming distance between their hash signatures [61].(S. Ioffe 2010). 

The speed of comparison and lower bound for accuracy of the estimation of the Jaccard score is 

set by the number of hashing functions. The comparison of hash signatures has O(N) time 

complexity where N is the number of hash functions used to generate the minhashMinHash 

signature. Due to this property, an arbitrary number of elements can be encoded in this signature 

without slowing down comparisons. In our use case, this enables the use of an arbitrarily large 

number of taxa for which we can consider evolutionary events. With other metrics, such as Pearson 

correlation between vectors, the profile comparison between vectors scales linearly with the 

number or genomes or taxa considered in the best case scenario. In more complicated tree-based 

methods, these comparisons can be much more costlyAdditionally, hardware implementations of 



Scalable Phylogenetic Profiling Using MinHash 41 

 

Formatted: Footer

hash functions allow the calculation of hash signatures at rates of giga hashes per second and 

allow for extremely fast implementation of this step, placing the bottleneck of the pipeline at the 

calculation of enhanced phylogenies. 

Weighted minhashThe weighted MinHash objects can also be used to compilefoU each HOGĜV 

enhanced phylogeny were compiled into a searchable data structure referred to as a Locality 

Sensitive Hashing Forest (LSH Forest) [72].(Bawa, Condie, and Ganesan 2005) and their signatures 

were stored in an HDF5 file. The LSH Forest can be queried with a hash signature to retrieve the 

K neighbors with the highest Jaccard similarity to the query hash. The K closest hashes are 

retrieved from a B-Tree data structure [74].(Comer 1979). This branching tree data structure allows 

for the querying and dynamic insertion, and deletion and querying of elements in the LSH Forest 

data structure built upon it at orders of magnitude faster than previous profiling efforts. As 

previously mentioned, calculating linkages between all groups in non-probabilistic data structures 

requires an all-vs-all comparison of profiles which scales quadratically with the number of profiles 

in the dataset and can easily become computationally prohibitive. This penalty also applies 

whenever new genomes or taxonomic levels are added to the input matrix and the linkages must 

be recalculated. In the case of the LSH Forest, hash signatures of HOGs containing the new 

genome can be deleted and replaced in the database with a logarithmic time complexity. 

The scaling properties of the MinHash data structures when compared to pairwise distance 

calculations and hierarchical clustering are shown below in Figure 6. 
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Fig.  that scales logarithmically with the number of HOGs in the dataset. In non-probabilistic6. 

To illustrate the advantageous scaling properties of MinHash data structures, whenever a new 

HOG is added to an existing input matrix and linkages are recalculated, the penalty is linearly 

proportional to the number of HOGs already in the datasetsynthetic profiles of length 100 

were generated in the form of binary vectors (0 and the number of HOGs added whereas in 

the case of the LSH Forest, the time complexity scales logarithmically with the number of 

HOGs already in the dataset1 equiprobable). Profiles were then clustered using an explicit 

calculation of the Jaccard distance, reduced to a lower dimensionality (5 dimensions) with 

truncated SVD, normalized and linearly with the number of HOGs added. Query time 

complexity inexplicitly clustered using Euclidean distance as in SVD-Phy (Franceschini et al. 
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2016) or transformed into MinHash signatures and inserted into an LSH Forest object as in 

our method. Orders of magnitude showing typical profiling approaches is heavily penalized 

for the number of orthologous groups and genomes included in the analysis whereas HogProf 

is unaffected by the number of genomes included (since it is only dependentuse cases for 

profiling pipelines are shown on the number of hash functions used to generate the weighted 

minhash signature of HOGs) and scales logarithmically with the number of HOGs added to 

the database.x-axis. Curves were fitted to each set of timepoints to empirically determine the 

time complexity of each approach.  

Orthology 

Computational resources, data and software libraries used 

Our dataset contains approximately 600,000 HOGs computed from the 2,167 genomes in OMA 

(June 2018 release) The main computational bottleneck in our pipeline is the calculation of the 

labelled gene trees for each HOG using pyHam. Even with this computation, compiled LSH forest 

objecWV conWaining Whe haVh VignaWXUeV of all HOGVĜ gene WUeeV can be comSiled in under 3 hours 

(with 10 CPUs but this can scale easily to more cores) with only 2.5 GB of RAM and queried 

extremely efficiently (an average of 0.01 seconds over 1000 queries against a database containing 

profiles for all HOGs in OMA on an Intel(R) Xeon(R) CPU E5530 @ 2.40 GHz and 2 GB of RAM to 

load the LSH database object into memory). This performance makes it possible to provide online 

search functionality, which we aim to release in an upcoming web-based version of the OMA 

browser. Meanwhile, the compiled profile database can be used for analysis on typical workstations 

(note that memory and CPU requirements will depend on the number of hash functions 
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implemented in the construction of profiles and the filtering of the initial dataset to clades of 

interest to the user). 

All gene ontology (GO) annotations (encompassing molecular functions, cellular locations, and 

biological processes) for HOGs contained in OMA were analyzed with GOATOOLS 

[75].(Klopfenstein et al. 2018). To calculate the enrichment of annotations, the results returned by 

the LSH Forest annotations for all protein sequences contained in the HOGs returned by the 

search were collected and the entire OMA annotation corpus was used as background.  

HDF5 files were compiled with H5PY (ver. 2.9.0). Pandas (ver. 0.24.0) was used for data 

manipulation. Labelled phylogenies were manipulated with ete3ETE3 [76].(Huerta-Cepas, Serra, 

and Bork 2016). Datasketch (ver. 1.0.0) was used to compile weighted minhashesMinHashes and 

LSH Forest data structures. Plots were generated using matplotlib (ver. 3.0.2). PyHam (ver 1.1.6) 

was used to calculate labelled phylogenies for the HOGs in OMA.  

Time complexity analysis in Figure 6 was done with the scikit-learn implementation of truncated 

SVD (Pedregosa et al. 2011) and scipy (Jones, Oliphant, and Peterson 2001) distance functions. 

Pearson and Spearman correlation comparison of distance matrices 

Distance matrices between all pairs of profiles in the kinetochore and APC complex protein families 

defined in [9](van Hooff et al. 2017) were compared using the Spearman and Pearson statistical 

analysis functions from the the SciPy python package to verify the monotonicity of the scores 

between families. 
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Supplementary data 

x Supplementary Data 1—kineto_augment_goenrich.csv: Contains the results of GO 

enrichment analysis done on the results of our search for kinetochore interactors. After 

searching with the HOGs corresponding to each of the kinetochore components, the 

returned HOGs were clustered according to their jaccard similarity. Using a hierarchical 

clustering and a manually defined cutoff the results were separated into discrete clusters. 

Each cluster was analyzed using goatools for GO enrichment. Enrichment results for clusters 

containing a query gene were recorded in this CSV file. 

x Supplementary Data 2—hap_enrich.csv: Contains the goatools output for the GO 

enrichment analysis of the top 100 closest coevolving HOGs returned by a query with Hap2. 

x Supplementary Data 3—gex_enrich.csv: Contains the goatools output for the GO 

enrichment analysis of the top 100 closest coevolving HOGs returned by a query with Gex1.  

x Supplementary Data 5—repro_augment_goenrich.csv: Contains the results of GO 

enrichment analysis done on the results of our search for sexual reproduction network 

interactors. After searching with the HOGs corresponding to each of the manually curated list 

of conserved sexual reporduction network components, the returned HOGs were clustered 

according to their jaccard similarity. Using a hierarchical clustering and a manually defined 

cutoff the results were separated into discrete clusters. Each cluster was analyzed using 
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goatools for GO enrichment. Enrichment results for clusters containing a query were 

recorded in this csv file. 
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