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Phylogenetic profiling is a computational method to predict genes involved in the same
biological process by identifying protein families which tend to be jointly lost or retained
across the tree of life. Phylogenetic profiling has customarily been more widely used
with prokaryotes than eukaryotes, because the method is thought to require many
diverse genomes. There are now many eukaryotic genomes available, but these are
considerably larger, and typical phylogenetic profiling methods require at least
quadratic time as a function of the number of genes. We introduce a fast, scalable
phylogenetic profiling approach entitled HogProf, which leverages hierarchical
orthologous groups for the construction of large profiles and locality-sensitive hashing
for efficient retrieval of similar profiles. We show that the approach outperforms
Enhanced Phylogenetic Tree, a phylogeny-based method, and use the tool to
reconstruct networks and query for interactors of the kinetochore complex as well as
conserved proteins involved in sexual reproduction: Hap2, Spo11 and Gex1. HogProf
enables large-scale phylogenetic profiling across the three domains of life, and will be
useful to predict biological pathways among the hundreds of thousands of eukaryotic
species that will become available in the coming few years. HogProf is available at
https://github.com/DessimozLab/HogProf .
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In my opinion phylogenetic profiles are one those methods that are intensively researched and developed by
computational biologists but relatively poorly utilized by molecular biologist - some notable exceptions of course
excluded. The reasons for this relative lack of utilization are many many fold, as also discussed in this manuscript. |
sincerely hope that this manuscript will help to close this gap. | do have some comments perhaps not so much on the
novel proposed methodology, as more on the way in which the results are introduced and contextualized.

RESPONSE: We thank the reviewer for their supportive and constructive assessment.

The introduction introduces the initial lack of genome diversity of eukaryotes as one of the issues in adopting
phylogenetic profiles for eukaryotes, and then introduces OMA and the HOGs as a nice orthology database with
“2000 cellular organisms”. However it is not mentioned how many (and how diverse) eukaryotes OMA contains. It is
my impression that the amount and diversity of eukaryotes in OMA is a minority in these 2000 organisms. | think it
would be more transparent if the authors explicitly mention the amount (and “diversity”) of eukaryotic organisms in
OMA.

RESPONSE: We now provide the number and distribution of eukaryotic species in the introduction.

The introduction seems to suggest that phylogenetic profiles for many orthology databases are currently not offered.
This is not completely true. The STRING-DB still allows phylogenetic profile searches not just on normalized
‘homology” (by default) but also on orthologs groups (although this option is somewhat hidden).

RESPONSE: We now cite STRING-DB and the phylogenetic profiling method they use to construct their
profiles and detect coevolution. Also, we now mention the difference in approach (“Although this approach
captures information on the distribution of extant distances, it does not reconstitute the evolutionary history
of protein families and may lack information relative to duplication and loss events. Furthermore, as we show
in the Methods section, the truncated Singular Value Decomposition approach does not scale well beyond a
few genomes at a time.”).

The introduction argues that the main reason that phylogenetic profiles are not used as much in eukaryotes as they
could is speed of similarity computation. Perhaps this is indeed going to be a problem in the near future, but as
general assertion | am not entirely convinced this statement is fully true. In our work we have so far been easily able
on our local (admittedly beefy) workstations to successfully compute phylogenetic profile similarity for large eukaryotic
data sets. Perhaps this point could be more made strongly if the present manuscript would include a smart
implementation of jaccard of profile similarities on simple OMA/HOG presence/absence profile and show that indeed
how/where the computational bottleneck is. (or perhaps the manuscript already present such an analysis and |
missed it).

RESPONSE: We have added a figure (new Figure 6) illustrating the much better scaling properties of
MinHash based data structures. This shows the utility of our approach in the current research context where
the number of genomes is growing exponentially.

| think that the orthology database and the method of phylogenetic profile searching are not strictly necessarily
connected. The introduced MinHash search method seems to need an orthology that allows a species tree to be
annotated with duplications and losses. Such data are available elsewhere. Most easily they should be extractable
from the PANTHER database. But also EGGNOG is hierarchical and they could perhaps also be retrieved from
numerous ENSEMBL compara genome subsets. | think it would strengthen the message of applicability of this
method if it would be applied to other orthology datasets.



RESPONSE: The methods section has been reworked to more clearly describe the different steps of the
pipeline as well as the inputs and outputs of each step. We now explicitly mention the possibility of using
other sources of orthology data as input using other databases, for instance by converting gene trees to
OrthoXML using tools such as ETE (“pyHam can also be used to infer enhanced phylogenies for other
datasets available in OrthoXML format such as ENSEMBL (Zerbino et al. 2018) or with data generated from
phylogenetic trees such as those found in PANTHER (Mi et al. 2017) through the use of the function
etree2orthoxml() in the tree analysis package ETE3 (Huerta-Cepas, Serra, and Bork 2016).”) We thank the
reviewer for noting this important point and now we think our method applicability is clear and accessible to
the reader.

For evaluating potential novel connections to kinetochore it appears the proteins detailed in Table 2 exemplify
another problem with finding wide-spread utilization of phylogenetic profiles by molecular biologists. So I reached out
via the bioRXxiv version of this article to a molecular biologist somewhat familiar with the kinetochore. It seems that the
co-evolution of APC12 with CDC26 is a spurious orthology/identifier problem as CDC26 is a synonym of APC12 and
reference [29] used as evidence still using the old nomenclature for APC12. The co-evolution of KNL1 with TACC3 is
asserted to bind to the kinetochore but insofar as they understand the literature this is not the case and reference [30]
is also not showing that. Some very indirect linkage of TACCS3 to kinetochore function is known to the extent that
TACC3 is microtubule-associated and seems to be stabilizing the spindle, but that does not qualify as being part of
the well defined set of complexes that make up the kinetochore. The other links were seen as not specific enough to
be relevant for a molecular biologists but | guess this dismissal by experimentalist is more a Gene Ontology versus
real biology problem than something inherent to phylogenetic profiles.

RESPONSE: Thank you again for your detailed critique and consideration of our conclusions regarding the
molecular biology of the kinetochore. Indeed we overlooked the equivalence between cdc26 and apc12 and
some of the returned results may not be directly physically bound to the kinetochore complex. We have
revised this section to make this clear.

In the discussion, potential expansions of this method to account for neofunctionalization after duplications are
mentioned. This is indeed one of those cool and difficult things on thinking about phylogenetic profiles and the
evolution of function. When discussing this possible extension of the method it could be worth to add another citation
to an already extensive citation list. Because this paper: doi: 10.1016/j.celrep.2015.01.025 from Tobias Meyer already
makes phylogenetic profile searches where the neofunctionalization is explicitly taken into account.

RESPONSE: Yes, this method does address this concept explicitly. We have added the citation and mention
this study in the text.

Reviewer #2:

Dear Authors. Please see some of my comments on the annotated pdf attached. Although you have presented a
study with potential relevance in bioinformatics and computational biology, | consider that the ms needs heavy
revisions to accomplish the criteria for publication in the Journal.

RESPONSE: We thank the reviewer for the detailed feedback, which greatly helped us to improve the
organisation and clarity of the manuscript. Throughout, we have reformulated, shortened and also deleted
much of the redundant expositions, mainly in the results section, as suggested. We also added citations as
per your suggestions.



The methods section has now been rewritten to make the steps of the pipeline, as well as the input and
output of each step, more explicit.

As per your suggestions we have moved material explaining the construction of the pipeline from the results
sections to the introduction and shortened it, removing redundancy.
Font sizes have been corrected throughout the manuscript for consistency.

The figure showing the ROC characteristics of the various profiling methods has been revised to include a
clearer legend.

Figure legends and table descriptions have also been shortened throughout the manuscript.
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Abstract

Phylogenetic profiling is a computational method to predict genes involved in the same
biological process by identifying protein families which tend to be jointly lost or retained across
the tree of life. Phylogenetic profiling has customarily been more widely used with prokaryotes
than eukaryotes, because the method is thought to require many diverse genomes. There are
now many eukaryotic genomes available, but these are considerably larger, and typical
phylogenetic profiling methods require at least quadratic time as a function of the number of

genes. We introduce a fast, scalable phylogenetic profiling approach entitled HogProf, which
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leverages hierarchical orthologous groups for the construction of large profiles and locality-
sensitive hashing for efficient retrieval of similar profiles. We show that the approach outperforms
Enhanced Phylogenetic Tree, a phylogeny-based method, and use the tool to reconstruct
networks and query for interactors of the kinetochore complex as well as conserved proteins
involved in sexual reproduction: Hap2, Spol11 and Gex1. HogProf enables large-scale
phylogenetic profiling across the three domains of life, and will be useful to predict biological
pathways among the hundreds of thousands of eukaryotic species that will become available in

the coming few years. HogProf is available at https://github.com/DessimozLab/HogProf.

Introduction

The NCBI Sequence Read Archive (SRA) contains 1.6x10' nucleotide bases of data and the quantity
of sequenced organisms keeps growing exponentially. To make sense of all of this new genomic
information, annotation pipelines need to overcome speed and accuracy barriers. Even in a well-
studied model organism such as Arabidopsis thaliana, nearly a quarter of all genes are not
annotated with an informative gene ontology term (Skunca, Altenhoff, and Dessimoz 2012; "TAIR
- Portals - Genome Snapshot” n.d.). One way to infer the function of a gene product is to analyse
the biological network it is involved in. Using guilt by association strategies it is possible to infer

function based on physical or regulatory interactors. Unfortunately, biological network inference
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is mostly limited to model organisms and genome scale data is only available through the use of

noisy high-throughput experiments.

To ascribe biological functions to these new sequences, most of which originate from non-model
organisms, computational methods are essential (reviewed in Cozzetto and Jones 2017). Among
the computational function prediction techniques that leverage the existing body of experimental
data, one important but still underutilised approach in eukaryotes is phylogenetic profiling
(Pellegrini et al. 1999). positively correlated patterns of gene gains and losses across the tree of

life are suggestive of genes involved in the same biological pathways.

Phylogenetic profiling has been more commonly performed on prokaryotic genomes than on
eukaryotic ones. Perhaps due to the relative paucity of eukaryotic genomes in the 2000s, earlier
benchmarking studies observed poorer performance in retrieving known interactions with
eukaryotes than with Prokaryotes (Snitkin et al. 2006; Jothi, Przytycka, and Aravind 2007; Ruano-
Rubio, Poch, and Thompson 2009). The situation today is considerably different; the GOLD
database (Mukherjee et al. 2017) tracks over 6000 eukaryotic genomes. Multiple successful
applications of phylogenetic profiling in eukaryotes have been published in recent years. For
example, they have been used to infer small RNA pathway genes (Tabach et al. 2013), the
kinetochore network (van Hooff et al. 2017), ciliary genes (Nevers et al. 2017), or homologous

recombination repair genes (Sherill-Rofe et al. 2019).

Large-scale phylogenetic profiling with complex eukaryotic genomes is computationally
challenging since most state-of-the-art phylogenetic profiling methods typically scale at least

quadratically with the number of gene families and linearly with the number of genomes. As a
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result, most mainstream phylogenomic databases, such as Ensembl (Zerbino et al. 2018), EggNOG
(Huerta-Cepas et al. 2016), OrthoDB (Zdobnov et al. 2017), or OMA (Altenhoff et al. 2018) do not
provide phylogenetic profiles. One available resource is STRING (Szklarczyk et al. 2017), a protein
interaction focused database which integrates multiple channels of evidence to support each
interaction. The links between profiles STRING offers are obtained using SVD-phy (Franceschini et
al. 2016) which represents profiles as bit-score distances between all proteins present in a given
proteome and their closest homologues in all of the genomes included in the analysis.
Dimensionality reduction is applied to the matrix to remove signal coming from the species tree
and the profiles are clustered to infer interactions. In STRING, this is implemented with their set
of 2031 organisms for which profile distance matrices are precalculated and incorporated into
their network inference pipeline. Although this approach captures information on the distribution
of extant distances, it does not reconstitute the evolutionary history of protein families and may
lack information relative to duplication and loss events. Furthermore, as we show in the Method’s
section, the truncated Singular Value Decomposition approach does not scale well beyond a few

genomes at a time.

To construct profiles representing groups of homologues, some pipelines resort to all-vs-all
sequence similarity searches to derive orthologous groups and only count binary presence or
absence of a member of each group in a limited number of genomes (Ta, Koskinen, and Holm
2011; Kensche et al. 2008) or forgo this step altogether and ignore the evolutionary history of
each protein family, relying instead on co-occurrence in extant genomes (Niu et al. 2017). Other
tree-based methods infer the underlying evolutionary history from the presence of extant

homologues (Li et al. 2014).
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Here, we introduce a scalable approach which combines the efficient generation of phylogeny-

aware profiles from hierarchical orthologous groups with ultrafast retrieval of similar profiles using

locality sensitive hashirﬂA scalable phylogenetic profiling method using locality-sensitive hashing |

K and hierarchical orthologous groupsj\

Most phylogenetic profiling methods consist of two steps: creating a profile for each homologous

or orthologous group, and comparing profiles. When they were first implemented, profiles were
constructed as binary vectors of presence and absence across species (Pellegrini et al. 1999). Since
then, variants have been proposed, which take continuous values (van Hooff et al. 2017)—such as
alignment scores with the gene of a reference species (Sherill-Rofe et al. 2019)—or which count
the number of paralogs present in each species. Yet other variants convey the number of events

on branches of the species tree (Ruano-Rubio, Poch, and Thompson 2009).

In our pipeline, we leveraged the already existing OMA orthology inference algorithm to provide
the input data to create our profiles. The OMA database describes the orthology relationships
among all protein coding genes of currently 2288 cellular organisms (1674 bacteria, 152 archaea,
and 462 eukaryotes). Within eukaryotes, OMA includes 188 animals, 135 fungi, 57 plants, and 82
protists and has been benchmarked and integrated with other proteomic and genomic resources
(Altenhoff et al. 2018). One core object of this database is the Hierarchical Orthologous Group
(HOG) (Altenhoff et al. 2013). Each HOG contains all of the descendants of a single ancestor gene.
When a gene is duplicated during its evolution, the paralogous genes and the descendants of the
orthologue are contained in separate subhogs which describe their lineage back to their single

ancestor gene (hence the hierarchical descriptor).
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We captured the evolutionary history of each HOG in enhanced phylogenies and encoded them
in probabilistic data structures (Fig. 1). These are used to compile searchable databases to allow
for the retrieval of coevolving HOGs with similar evolutionary histories and compare the similarity
of two HOGs. The two major components of the pipeline that are responsible for constructing the
enhanced phylogenies and calculating probabilistic data structures to represent them are pyHam
(Train et al. 2018) and Datasketch ("Datasketch: Big Data Looks Small — Datasketch 1.0.0
Documentation” n.d.), respectively.%ﬁmmmmm
Methods—seetion. The combination of these two tools now allows for the main innovation of our
pipeline: the efficient exploration and clustering of profiles to study known and novel biological

networks.

Currently, existing profiling pipelines are limited with respect to the computational power required
to cluster profiles using their respective distance metrics. Due to this bottleneck, profiling efforts
are typically focused on reconstructing pathways with known interactors using existing annotations
and evidence rather than being used as an exploratory tool to search for new interactors and

reconstituting completely unknown networks.
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Fig. 1. Diagram summarizing the different steps of the pipeline to generate the LSH

Forest and hash signatures for each HOG. The labelled phylogenetic trees generated by

pyHam are converted into phylogenetic profiles and used to generate a weighted MinHash

signature with Datasketch. The hash signatures are inserted into the LSH Forest and stored in

an HDF5 file.
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The tool we have gggpthleverages the properties of MinHash signatures to allow for the selection
of clade subsets and for clade weightings in the construction of profiles and make it possible to
build profiles with the complete set of genomes contained in OMA. We show that the method
outperforms other phylogeny-based methods (Ta, Koskinen, and Holm 2011; Glazko and
Mushegian 2004; Ranea et al. 2007), and illustrate its usefulness by retrieving biologically relevant
results for several genes of interest. Because the method is unaffected by the number of genomes
included and scales logarithmically with the number of hierarchical orthologous groups added, it
will efficiently perform with the exponentially growing number of genomes as they become

available.

The «code wused to generate the results in this manuscript are available at

https://github.com/DessimozLab/HogProf.

Results

In the following sections we first compare our profiling distance metric against other profile
distances in order to characterize the Jaccard hash estimation’s precision and recall characteristics.
Following this quantification, we show our pipeline’'s capacity in reconstituting a well known
interaction network as well as augmenting it with more putative interactors using its search
functionality. Finally, to illustrate a typical use case of our tool, we explore a poorly characterized

network.
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Accuracy of predicted phylogenetic profiles in an empirical benchmark

We compared the performance of our profiling metric to existing profile distances using
benchmarking data available in Ta et a/ (2011). In that benchmark, the true positive protein-
protein interactions (PPIs) were constructed using data available from CORUM (Giurgiu et al. 2018)
and the MIPS (Mewes et al. 2004) databases for the human and yeast interaction datasets. True
negatives were constructed by mixing proteins known to be involved in different complexes. The
dataset is balanced with 50% positive and 50% negative samples. Using their Uniprot identifiers,
these interaction pairs were mapped to their respective HOGs and their profiles were compared
using the hash based Jaccard score estimate. The comparison below shows HogProf alongside
other profiling distance metrics that are considerably more computationally intensive, including
the Enhanced Phylogenetic Tree (EPT) metric shown in Ta et al (2011). Yet, our approach
outperformed these previous methods, yielding the highest Area Under the Curve for both yeast

and human datasets (Figure 2, Table 1).
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Yeast PPl prediction ROC curve Human PPI prediction ROC curve

True positive rate
True positive rate

Ta et al. 2011

—— Enhanced phylogenetic tree
Occurence Euclidean

——— Occurence Pearson

—— Binary Pearson

—— Minhash Jaccard HogProf

08 1.0 0.0 0.2 08 1.0

0.4 0.6 0.4 0.6
False positive rate False positive rate

Fig. 2. ROC curves for all profiling methods. a. Yeast protein-protein interactions. Our method
(MinHash Jaccard HogProf), performs best overall, but when high precision is required,
Enhanced phylogenetic Tree (Ta, Koskinen, and Holm 2011) is still slightly more accurate. b.
Human protein-protein interactions. Jaccard Hash HogProf performs better than all metrics
overall but again, when high precision is required, EPT score is still slightly more accurate. Binary
Pearson refers to a distance using binary vectors and Pearson correlation described in (Glazko
and Mushegian 2004). Occurence Euclidean and Occurence Pearson refer to the occurence

profiles with Euclidean distance and Pearson correlation as described in (Ranea et al. 2007).

Table 1. AUC values for Profiling distance metrics.

Metric AUC Yeast AUC Human

Jaccard Hash 0.6634 0.6155
EPT 0.6104 0.5875
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BIN PS 0.5840 0.5463
OCCED 0.5829 0.5268
OCC PS 0.6028 0.5714

Recovery of a canonical network: the kinetochore network

To further validate our profiling approach on a known biological network, we used our pipeline
to replicate previous work shown in van Hooff et al. (2017). Their analysis focuses on the
evolutionary dynamics of the kinetochore complex, a microtubule organizing structure that was
present in the last eukaryotic common ancestor (LECA) and has undergone many modifications
throughout evolution in each eukaryotic clade where it is found. Its modular organization has
allowed for clade-specific additions or deletions of modules to the core complex which remains
relatively stable. This modular organisation and clade-specific emergence of certain parts of the

complex make it an ideal target for phylogenetic profiling analysis.

We show that our MinHash signature comparisons are also capable of recovering the kinetochore
complex organisation. After considering just the HOGs for the families used in van Hooff et al.
(van Hooff et al. 2017), we augmented their set of profiles using LSH Forest (Bawa, Condie, and
Ganesan 2005) to retrieve interactors that may also be involved in the kinetochore (and the also
included anaphase promoting complex (APC)) networks which have not been cataloged by these
authors. Using the Gene Ontology (GO) terms (Ashburner et al. 2000) of all proteins returned in
our searches for novel interactors, we were able to identify proteins with specific functions we

would expect to be related to our network of interest.
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In their work, van Hooff et al. (van Hooff et al. 2017) used pairwise Pearson correlation coefficients
between the presence and absence vectors of the various kinetochore components to recompose
the organisation of the complex. Their profiles were constructed using the proteomes of a
manually selected set of 90 organisms with manually curated profiles corresponding to each
component of the complex. After establishing a distance kernel, they clustered the profiles and
were able to recover known sub-components of the complex using just evolutionary information.
Using our hash-based Jaccard distance metric in an all-vs-all comparison between the HOGs
corresponding to each of these protein families, we were also able to recover the main modules
of the kinetochore complex with a similar organisation to the one defined by van Hooff et al. The
color clustering in Figure 3 corresponds to their original manual definition of these different
subcomplex modules. We observe that the distance matrices generated by each profiling approach
are correlated (with Spearman correlation of 0.268 (p < 1e-100) and Pearson correlation of 0.364
(p < 1e-100) ) and are recovering similar evolutionary signals despite their construction using

different methods.
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Fig. 3. Recovery of kinetochore and APC complexes. After mapping each of the protein
families presented in Van Hooff et al. (van Hooff et al. 2017) to their corresponding HOG, a
distance matrix was constructed by comparing the Jaccard hash distance between profiles using

HogProf. Name colors in the rows and columns of the matrix correspond to the kinetochore
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and APC subcomplex components as defined manually using literature sources (van Hooff et

al. 2017).

The All-vs-All comparison of the profiles revealed several well defined clusters in both studies
including the Dam-Dad-Spc19 and CenP subcomplexes. Unlike the Van Hoof er al. approach,
HogProf profiles were constructed alongside all other HOGs in OMA and were not curated before
being compared. With only the initial information of which proteins were in the complex, we
mapped them to their corresponding OMA HOGs and, with this example, demonstrated the ability
to reconstruct any network of interest or construct putative networks using the search functionality
of our pipeline with minimal computing time. It should be noted that the quality of the OMA
HOGs used to construct the enhanced phylogenies and hash signatures directly influences our

ability to recover complex organisation.

To illustrate the utility of the search functionality of our tool, we used the profiles known to be
associated with the kinetochore complex to search for other interactors. All HOGs corresponding
to the protein families used to analyse the kinetochore evolutionary dynamics in van Hooff et al.
(van Hooff et al. 2017) were used as queries against an LSH Forest containing all HOGs in OMA.
By performing an all-vs-all comparison of the minhash signatures of the queries and returned
results, a Jaccard distance matrix was generated showing potential functional modules associated

with each known component of the kinetochore and APC complexes.
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Fig. 4. Putative novel components of the kinetochore and APC complexes. The profiles

associated with all HOGs mapping to known kinetochore components shown in Figure 3 were
used to search the LSH Forest and retrieve the top 10 closest coevolving HOGs resulting in a
list of 871 HOGs including the queries from the original complexes. The Jaccard distance matrix

is shown between the hash signatures of all query and result HOGs. UPGMA clustering was
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applied to the distance matrix rows and columns. Labelled rows and columns correspond to
profiles from the starting kinetochore dataset (van Hooff et al. 2017). A cutoff hierarchical
clustering distance of 1.3 was manually chosen (blue lines) to limit the maximum cluster size to
less than 50 HOGs. This cutoff resulted in a total of 142 clusters of HOGs used for GO
enrichment to identify functional modules. The coloring of the protein family names to the

right and below the matrix is identical to the complex related coloring shown in Figure 3.

To verify that the results returned by our search were not spurious, we performed GO enrichment
analysis of the returned HOGs that were not part of the original set of queries but appeared to
be coevolving closely with known kinetochore components. Given the incomplete nature of GO
annotations (“open world assumption”, Dessimoz, Skunca, and Thomas 2013), many of these
proteins may actually be involved in the kinetochore interaction network but this biological
function could be still undiscovered. However, even with this limitation, salient annotations
relevant to the kinetochore network were returned in the search results (Table 2 and
Supplementary Data 1). The identifiers of all protein sequences contained in the HOGs returned
by the search results were compiled and the GO enrichment of each cluster shown in Figure 4
was calculated using the OMA annotation corpus as a background. The enrichment results were
manually parsed and salient annotations related to HOGs were selected to be reviewed further in
the associated literature to check for the association of the search result with the query HOG

(Table 2).

Table 2. Manually curated biologically relevant search results for interactors coevolving
with van Hooff et al’s kinetochore and APC selected protein families (van Hooff et al.

2017). Protein families returned within clusters containing query HOGs are listed with their
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pertinent annotation and literature. This is a non-exhaustive summary of some selected

results. The full enrichment results are available as Supplementary Data 1.

Cluster Result GO Term Citation

APC1 CFAP157  GO:0035082 axoneme assembly (Weidemann et al. 2016)

APC12 C2CD3 GO:0061511 centriole elongation (Thauvin-Robinet et al.
2014)

CenpQ ESCO2 GO:0007059 chromosome segregation (Lu et al. 2017)

KNL1 TACC3 GO:0007091 metaphase/anaphase transition (Cheeseman et al. 2013)

of mitotic cell cycle

For instance, our search identified TACC3, which is known to be part of a structural stabilizer of
kinetochore microtubules tension although it does not directly interact with the kinetochore
complex (Cheeseman et al. 2013). ESCO2, a cohesin N-acetyltransferase needed for proper
chromosome segregation during meiosis also plays a role in kinetochore-microtubule attachments
regulation during meiosis (Lu et al. 2017). While these results are certainly promising, many of the
unannotated proteins returned by our search likely contain more regulatory, metabolic and

physical interactors which may prove to be interesting experimental targets.

Search for a novel network

Typical research use cases for profiling often involve uncharacterized protein families acting within
poorly studied neworks. In this section we present search results for three HOGs known to be
involved in the processes of meiosis, syngamy and karyogamy. Despite the ubiquitous nature of

sex and its probable presence in LECA (Speijer, LukeS, and Elias 2015), the protein networks
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involved in each part of these processes have limited experimental data available, even in model
organisms. Some key protein families involved in each step are known to have evolutionary
patterns indicating an ancestral sequence in the LECA with subsequent modifications and losses
(Speijer, Lukes, and Elias 2015). The three following sections detail the returned results of the
phylogenetic profiling pipeline with the Hap2, Gex1 and Spo11 families which all share this
evolutionary pattern and are known to be critical for the process of gamete fusion, nuclear fusion
and meiotic recombination, respectively. The proteins contained in the top 100 HOGs returned by
the LSH Forest were analyzed for GO enrichment using all OMA annotations as a background.
Due to the presence of biases in the GO annotation corpus (Altenhoff et al. 2012) we have also
chosen to show the number of proteins annotated with each biological process selected from the

enrichment out of the total number of annotated proteins.

Query with Hap2

The Hap2 protein family has been shown to catalyze gamete membrane fusion in many eukaryotic
clades and shares structural homology with viral and somatic membrane fusion proteins (Liu et
al. 2008; Valansi et al. 2017; Fédry et al. 2017; Feng, Dong, and Springer 2018). A subset of the
GO enrichment of the search results for the top 100 coevolving HOGs are shown below in Table

3.
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Table 3. Manually curated biologically relevant enriched GO terms from returned results.

The query sequence Hap2 is UniProt entry F4JP36 with OMA identifier ARATH26614 belonging

to OMA HOG:0406399. The full enrichment results are available in the Supplementary Data 2.

Term Biological process P-value N-proteins
GO:0006338  chromatin remodeling 9.72e-54 61/3426
GO:0048653  anther development 1.69e-35 17/3426
GO:0009793  embryo development ending in seed 2.88e-13 15/3426

dormancy
GO:0051301  cell division 6.88e-16 5/3426

One particular family of interest which was returned in our search results is already characterized

in angiosperms: LFR or leaf and flower related (Wang et al. 2012). This protein family is required

for the development of reproductive structures in flowers and serves as a master regulator of the

expression of many reproduction related genes, but its role in lower eukaryotes remains

undescribed despite its broad evolutionary conservation.

Query with Gex1

The nuclear fusion protein Gex1 is present in many of the same clades as Hap2, with a similar

spotty pattern of absence across eukaryotes and a phylogeny indicating a vertical descent from

LECA (Ning et al. 2013). A subset of the GO enrichment of the search results for the top 100

coevolving HOGs are shown below in Table 4.

Table 4. Manually curated biologically relevant enriched GO terms from returned results.

The query sequence Gex1 is UniProt identifier Q681K7 with OMA identifier ARATH38809
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belonging to OMA HOG:0416115. The full enrichment results are available as Supplementary

Data 3.
GO Term P-value N-Proteins

GO:0042753 positive regulation of circadian 2.12e-285 113/2685
rhythm
GO:0048364 root development 7.81e-125 70/2685
GO:0051726 regulation of cell cycle 1.22e-92 99/2685
G0:0000712 resolution of meiotic recombination 1.65e-47 26/2685
intermediates
GO:0007140 male meiotic nuclear division 1.19e-39 26/2685
GO:0009553 embryo sac development 1.43e-28 17/2685
G0:0022619 generative cell differentiation 3.59e-18 5/2685

Gex1 has been shown to be involved in gamete development and embryogenesis (Alandete-Saez
et al. 2011) and therefore GO terms 0022619 and 0009553 are applied to this protein. Thus
proteins that HogProf identified as co-evolving with Gex1 and sharing these GO terms can be

considered potential Gex1 interactors.

One search result of particular interest is a protein family which goes by the lyrical name of parting
dancers (PTD). PTD belongs to a family that has been characterized in Arabidopsis thaliana and
budding and fission yeast, and is known to be required in reciprocal homologous recombination
during meiosis (Wijeratne et al. 2006). Our search shows that Gex1 co-evolved closely with PTD,
a protein known to be involved in preparing genetic material for its eventual merger with another

cell's nucleus.
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Query with Spo11

The Spo11 helicase is involved in meiosis by catalyzing DNA double stranded breaks (DSBs)
triggering homologous recombination. Spo11 is highly conserved throughout eukaryotes and
homologues are present in almost all clades (Keeney, Giroux, and Kleckner 1997). A subset of the
GO enrichment of the search results for the top 100 coevolving HOGs are shown below in Table

5.

Table 5. Manually curated biologically relevant enriched GO terms from returned results.
The query sequence Spo11-1 is UniProt identifier QIM4A2 with OMA identifier ARATH19148

belonging to OMA HOG:0605395. The full enrichment results are available in Supplementary

Data 4.

GO Term P-value N-Proteins
GO:0000737 DNA catabolic process, endonucleolytic 0.00e+00 415/20562
G0:0043137 DNA replication, removal of RNA primer 0.00e+00 353/20562
GO0:0006275 regulation of DNA replication 0.00e+00 552/20562
GO0:0006302 double-strand break repair 8.11e-242 285/20562
GO0:0007292 female gamete generation 2.71e-184 136/20562
GO0:0022414 reproductive process 1.66e-93 127/20562

It is encouraging to find that Spo11, the trigger of meiotic DSBs, has co-evolved with other families
involved in the inverse process of repairing the DSBs and finishing the process of recombination
(Table 5). Other identified HOGs contain annotations such as gamete generation and reproduction
also focusing on processes that result in cellular commitment to a gamete cell fate through
meiosis. Proliferating cell nuclear antigen or PCNA (Strzalka and Ziemienowicz 2011) was also

retrieved by our search. This ubiquitous protein family is an auxiliary scaffold protein to the DNA
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polymerase and recruits other interactors to the polymerase complex to repair damaged DNA,

making it an interesting candidate for a potential physical interactor with Spo11.

A broader search for the reproductive network

A more in-depth treatment of the evolutionary conservation of gamete cell fate commitment and
mating is available in previous publications (Malik et al. 2007; Loidl 2016; Speijer, Lukes, and Elias
2015; Ning et al. 2013; Schurko and Logsdon 2008; Niklas, Cobb, and Kutschera 2014; Goodenough
and Heitman 2014). Using these sources, a list of broadly conserved protein families known to be
involved in sexual reproduction were compiled to be used as HOG queries to the LSH Forest to
retrieve the top 10 closest coevolving HOGs. The hash signatures of the queries and results were

compiled and used in an all-vs-all comparison to generate a Jaccard distance matrix.
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Fig. 5. HogProf's reproductive network. A list of proteins known to be involved in sexual
reproduction was compiled and mapped to OMA HOGs. These queries were used to search for
the 20 closest coevolving HOGs in an LSH forest containing all HOGs in OMA. A Jaccard kernel
was generated by performing an All vs All comparison of the Hash signatures of search results

and queries. UPGMA clustering was performed on the rows and columns of the kernel. A cutoff
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distance of .995 ( blue lines ) was manually chosen to limit cluster sizes to less than 50 HOGs.
This generated a total of 215 clusters of HOGs. Names for queries are shown with

Saccharomyces cerevisiae gene names (apart from Hap2 which is not present in fungi ).

The all-vs-all comparison of the Jaccard distances between these returned HOGs reveals clusters
of putative interactors co-evolving closely with specific parts of the sexual reproduction network.
Manual analysis of GO enrichment results revealed several sexual reproduction-related proteins
which are summarized in Table 6. In addition to annotated protein sequences and HOGs, many

unannotated, coevolving HOGs were found.

Particularly for biological processes as complex and evolutionarily diverse as sexual reproduction,
GO annotations are, unsurprisingly, incomplete. Fortunately, our profiling approach is successful
in identifying protein families with similar evolutionary patterns that have already been
characterised and are directly relevant to sexual reproduction (Table 6). By considering the
uncharacterized or poorly characterized families at the sequence and structure level, we may be
able to predict their functions and reconstitute their local interactome. Our ultimate goal is to
guide /n vivo experiments to test and characterize these targets within the broader context of

eukaryotic sexual reproduction.

Table 6. Manually curated biologically relevant putative interactors from sexual
reproduction search results. Protein families within clusters containing query HOGs are listed
with their pertinent annotation and literature. GO enrichment results of clusters containing one
or more queries were analyzed manually. Full enrichment results are available in the

Supplementary Data 5.

Cluster Result GO Term Citation
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G0:0030915 Smc5-Smc6 complex (Zelkowski et al.
2019)
G0:0000767 cell morphogenesis (Rajavel et al. 1999)

involved in conjugation

G0:0031011 Ino80 complex (Serber et al. 2016;
Bao and Shen 2011)

GO:0000321 re-entry into mitotic cell (Leza and Elion 1999;

cycle after pheromone arrest van Werven et al.
2012)

This example related to the ancestral sexual reproduction network illustrates the utility of the LSH

Forest search functionality and OMA resources in exploratory characterization of poorly described

networks. The interactions presented above ( Table 6 ) only represent our limited effort to manually

review literature to highlight potentially credible interactions detected by our pipeline. Again, as

was the case with our kinetochore and APC related searches, several interactions might not appear

obvious on their face. For example, SPC72 and MID2 are both involved in meiotic processes but

localized to different parts of the cell ( centriole and plasma membrane, respectively). However, it

has been shown that microtubule organization and membrane integrity sensing pathways do show

interaction during gamete maturation (Gordon et al. 2006).

Discussion

We introduced a scalable system for phylogenetic profiling from hierarchical orthologous groups.

The ROC and AUC values shown using an empirical benchmark

o o> 11> Sectun )

indicates that the MinHash Jaccard score estimate between profiles has slightly better performance

than previous tree and vector based metrics, while also being much faster to compute. This is

remarkable in that one typically expects a trade-off between speed and accuracy, which does not
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appear to be the case here. We hypothesise that the error introduced by the MinHash
approximation is compensated by the inclusion of an unprecedented amount of genomes and

taxonomic nodes in the labelled phylogenies used to construct the profiles.

Furthermore, while our MinHash-derived Jaccard estimates are able to capture some of the
differences between interacting and non-interacting HOGs, Mmﬂcﬂqtheir unique strength
lies in the fast recovery of the top k closest profiles within an LSH Forest. Once these profiles are
recovered, the inference of submodules or network structure can be refined using other,

potentially more compute intensive methods, on this much smaller subset of data.

We have shown that HogProf is able to reconstitute the modular organisation of the kinetochore,
as well as increase the list of protein families interacting within the network with several known
interactors of the kinetochore and the APC. As for the other HOGs returned in these searches, our
results suggest that some are yet unknown interactors involved in aspects of the cell cycle or
ciliary dynamics. Likewise, our attempt at retrieving candidate members of the sexual reproduction

network recapitulated many known interactions, while also suggesting new ones.

The current paradigm for exploring interaction or participation in different biological pathways
across protein families relies heavily on data integration strategies that take into account
heterogenous high-throughput experiments and knowledge found in the literature. Many times,
these datasets only describe the networks in question in one organism at a time. Furthermore,
signaling, metabolic and physical interaction networks are all covered by different types of
experiments and data produced by these systems is located in heterogeneous databases. By

contrast, phylogenetic profiles can potentially uncover all three types of networks from sequencing
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data alone. This was highlighted in our work during retrieval of potential interactors within the
sexual reproduction and kinetochore networks with the retrieval of LFR and CFAP157, respectively.
CFAP157, a cilia and flagella associated protein might be involved in recruitment/regulation of
APC-Cdc20 or ciliary kinases (e.g Nek1), both known to mediate APC regulation of ciliary dynamics
(Wang and Kirschner, 2014). In both cases, a regulatory action within the network was the
biological process which involved both the query and retrieved HOGs, not a physical interaction.
The advances put forward by our new methodology and the property of retrieving entire networks
and not just physical interactions opens the possibility of performing comparative profiling on an
unprecedented scale and lays the groundwork for integrative modeling of the interplay between

PPI, regulation and metabolic networks in a more holistic way.

Further work remains to be done on tuning the profile construction with the appropriate weights
at each taxonomic level, as well as constructing profiles for subfamiles arising from duplications
which may undergo neofunctionalization, a theme which has been previously explored in
phylogenetic profiling efforts relying on far fewer genomes (Dey et al. 2015). Downstream
processing of the explicit representation of the data, as opposed to the the hash signature, can
also be designed using more computationally intensive methods to detect interactions on smaller

subsets of profiles after using the LSH as a first search.

The phylogenetic profiling pipeline presented in this work will be integrated into OMA web-based
services. Meanwhile, it is already available on Github as a standalone package

( https://github.com/DessimozLab/HogProf).

Methods
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The following section details the creation of phylogenetic profiles using OMA data, their
transformation into MinHash based probabilistic data structures and the tools and libraries used

in the implementation.

Profile construction

To generate large-scale gene phylogenies labelled with speciation, duplication and loss events
(a.k.a. enhanced phylogenies or tree profiles) for each HOG in OMA, we processed input data in
OrthoXML format (Schmitt et al. 2011) with pyHam (Train et al. 2018), using the NCBI taxonomic
tree (Sayers et al. 2010) pruned to contain only the genomes represented in OMA (Altenhoff et
al. 2018). Tree profiles contain a species tree annotated at each taxonomic level with information
on when the last common ancestor gene appeared, where losses and duplications occurred and
the copy number of the gene at each taxonomic level. More information on the pyHam inference
of evolutionary events can be found in (Train et al. 2018). pyHam can also be used to infer
enhanced phylogenies for other datasets available in OrthoXML format such as ENSEMBL (Zerbino
et al. 2018) or with data generated from phylogenetic trees such as those found in PANTHER (Mi
et al. 2017) through the use of the function etree2orthoxml () in the tree analysis package

ETE3 (Huerta-Cepas, Serra, and Bork 2016).

The enhanced phylogeny trees for each HOG are parsed to create a vector representation of the
presence or absence of a homologue at each extant and ancestral node as well as the duplication
or loss events on the branch leading to that node. Each profile vector contains 9345 columns
( corresponding to the 3115 nodes of the taxonomy used and the 3 categories of presence, loss

and duplication ).
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To encode profile vectors as weighted MinHash signatures (Sergey loffe 2010) we used the
Datasketch library (“Datasketch: Big Data Looks Small — Datasketch 1.0.0 Documentation” n.d.).
In this formulation, the Jaccard score between multisets representing profiles can be more heavily
influenced by nodes with a higher weight. The final MinHash signatures used were built with 256

hashing functions.

After transforming HOG profile vectors to their corresponding weighted MinHashes using the
datasketch library, an estimation of the Jaccard distance between profiles can be obtained by
calculating the Hamming distance between their hash signatures (S. loffe 2010). The speed of
comparison and lower bound for accuracy of the estimation of the Jaccard score is set by the
number of hashing functions. The comparison of hash signatures has O(\) time complexity where
N is the number of hash functions used to generate the MinHash signature. Due to this property,
an arbitrary number of elements can be encoded in this signature without slowing down
comparisons. In our use case, this enables the use of an arbitrarily large number of taxa for which
we can consider evolutionary events. Additionally, hardware implementations of hash functions
allow the calculation of hash signatures at rates of giga hashes per second and allow for extremely
fast implementation of this step, placing the bottleneck of the pipeline at the calculation of

enhanced phylogenies.

The weighted MinHash objects for each HOG's enhanced phylogeny were compiled into a
searchable data structure referred to as a Locality Sensitive Hashing Forest (LSH Forest) (Bawa,
Condie, and Ganesan 2005) and their signatures were stored in an HDF5 file. The LSH Forest can
be queried with a hash signature to retrieve the K neighbors with the highest Jaccard similarity to

the query hash. The K closest hashes are retrieved from a B-Tree data structure (Comer 1979).
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This branching tree data structure allows for the querying and dynamic insertion and deletion of

elements in the LSH Forest data structure built upon it with logarithmic time complexity.

The scaling properties of the MinHash data structures when compared to pairwise distance

calculations and hierarchical clustering are shown below in Figure 6.
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Fig. 6. To illustrate the advantageous scaling properties of MinHash data structures, synthetic
profiles of length 100 were generated in the form of binary vectors (0 and 1 equiprobable).
Profiles were then clustered using an explicit calculation of the Jaccard distance, reduced to a
lower dimensionality (5 dimensions) with truncated SVD, normalized and explicitly clustered

using Euclidean distance as in SVD-Phy (Franceschini et al. 2016) or transformed into MinHash
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signatures and inserted into an LSH Forest object as in our method. Orders of magnitude
showing typical use cases for profiling pipelines are shown on the x-axis. Curves were fitted

to each set of timepoints to empirically determine the time complexity of each approach.

Computational resources, data and libraries

Our dataset contains approximately 600,000 HOGs computed from the 2,167 genomes in OMA
(June 2018 release) The main computational bottleneck in our pipeline is the calculation of the
labelled gene trees for each HOG using pyHam. Even with this computation, compiled LSH forest
objects containing the hash signatures of all HOGs' gene trees can be compiled in under 3 hours
(with 10 CPUs but this can scale easily to more cores) with only 2.5 GB of RAM and queried
extremely efficiently (an average of 0.01 seconds over 1000 queries against a database containing
profiles for all HOGs in OMA on an Intel(R) Xeon(R) CPU E5530 @ 2.40 GHz and 2 GB of RAM to
load the LSH database object into memory). This performance makes it possible to provide online
search functionality, which we aim to release in an upcoming web-based version of the OMA
browser. Meanwhile, the compiled profile database can be used for analysis on typical workstations
(note that memory and CPU requirements will depend on the number of hash functions
implemented in the construction of profiles and the filtering of the initial dataset to clades of

interest to the user).

All gene ontology (GO) annotations (encompassing molecular functions, cellular locations, and
biological processes) for HOGs contained in OMA were analyzed with GOATOOLS (Klopfenstein

et al. 2018). To calculate the enrichment of annotations, the results returned by the LSH Forest
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annotations for all protein sequences contained in the HOGs returned by the search were collected

and the entire OMA annotation corpus was used as background.

HDF5 files were compiled with H5PY (ver. 2.9.0). Pandas (ver. 0.24.0) was used for data
manipulation. Labelled phylogenies were manipulated with ETE3 (Huerta-Cepas, Serra, and Bork
2016). Datasketch (ver. 1.0.0) was used to compile weighted MinHashes and LSH Forest data
structures. Plots were generated using matplotlib (ver. 3.0.2). PyHam (ver 1.1.6) was used to

calculate labelled phylogenies for the HOGs in OMA.

Time complexity analysis in Figure 6 was done with the scikit-learn implementation of truncated

SVD (Pedregosa et al. 2011) and scipy (Jones, Oliphant, and Peterson 2001) distance functions.

Pearson and Spearman correlation comparison of distance matrices

Distance matrices between all pairs of profiles in the kinetochore and APC complex protein families
defined in (van Hooff et al. 2017) were compared using the Spearman and Pearson statistical
analysis functions from the the SciPy python package to verify the monotonicity of the scores

between families.
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Supplementary data

o Supplementary Data 1—kineto_augment_goenrich.csv: Contains the results of GO
enrichment analysis done on the results of our search for kinetochore interactors. After
searching with the HOGs corresponding to each of the kinetochore components, the
returned HOGs were clustered according to their jaccard similarity. Using a hierarchical
clustering and a manually defined cutoff the results were separated into discrete clusters.
Each cluster was analyzed using goatools for GO enrichment. Enrichment results for clusters
containing a query gene were recorded in this CSV file.

o Supplementary Data 2—hap_enrich.csv: Contains the goatools output for the GO
enrichment analysis of the top 100 closest coevolving HOGs returned by a query with Hap2.

o Supplementary Data 3—gex_enrich.csv: Contains the goatools output for the GO
enrichment analysis of the top 100 closest coevolving HOGs returned by a query with Gex1.

o Supplementary Data 5—repro_augment_goenrich.csv: Contains the results of GO
enrichment analysis done on the results of our search for sexual reproduction network
interactors. After searching with the HOGs corresponding to each of the manually curated list
of conserved sexual reporduction network components, the returned HOGs were clustered
according to their jaccard similarity. Using a hierarchical clustering and a manually defined
cutoff the results were separated into discrete clusters. Each cluster was analyzed using
goatools for GO enrichment. Enrichment results for clusters containing a query were
recorded in this csv file.

o Supplementary Data 4- repro_hogs.csv: Contains a manually selected set of highly

conserved protein families involved in sexual reproduction.
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Abstract

Phylogenetic profiling is a computational method to predict genes involved in the sam

(]

biological process by identifying protein families which tend to be jointly lost or retained across
the tree of life. Phylogenetic profiling has customarily been more widely used with prokaryotes
than eukaryotes, because the method is thought to require many diverse genomes. There are
now many eukaryotic genomes available, but these are considerably larger, and typical
phylogenetic profiling methods require at least quadratic time erwerse-in-as a function of th%

number of genes. We introduce a fast, scalable phylogenetic profiling approach entitled HogProf,
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which leverages hierarchical orthologous groups for the construction of large profiles and
locality-sensitive hashing for efficient retrieval of similar profiles. We show that the approach
outperforms Enhanced Phylogenetic Tree, a phylogeny-based method, and use the tool to
reconstruct networks and query for interactors of the kinetochore complex as well as conserved
proteins involved in sexual reproduction: Hap2, Spo11 and Gex1. HogProf enables large-scale
phylogenetic profiling across the three domains of life, and will be useful to predict biological
pathways among the hundreds of thousands of eukaryotic species that will become available in

the coming few years. HogProf is available at https://github.com/DessimozLab/HogProf.

Introduction

The NCBI Sequence Read Archive (SRA) contains 1.6x10'® nucleotide bases of data and the quantity
of sequenced organisms keeps growing exponentially. To make sense of all of this new genomic
information, annotation pipelines need to overcome speed and accuracy barriers. Even in a well-
studied model organism such as Arabidopsis thaliana, nearly a quarter of all genes are not

annotated with an informative gene ontology term {H:(Skunca, Altenhoff, and Dessimoz 2012,

“TAIR - Portals - Genome Snapshot” n.d.). One way to infer the function of a gene product is to

analyse the biological network it is involved in-and-form-—a-hypethesisbased-en-its. Using guilt by

association strategies it is possible to infer function based on physical or regulatory interactors.
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Unfortunately, biological network inference is mostly limited to model organisms as—weH—anij

genome scale data is only available through the use of noisy high-throughput experiments.

To ascribe biological functions to these new sequences, most of which originate from non-model

organisms, computational methods are essential freviewed-n-2}(reviewed in Cozzetto and Jonep

2017). Among the computational function prediction techniques that leverage the existing bod

of experimental data, one important but still underutilised approach in eukaryotes is phylogenetic

profiling 43%(Pellegrini et al. 7999). positively correlated patterns of gene gains and losses acrosg

the tree of life are suggestive of genes involved in the same biological pathways.

Phylogenetic profiling has been more commonly performed on prokaryotic genomes than on
eukaryotic ones. Perhaps due to the relative paucity of eukaryotic genomes in the 2000s, earlier

benchmarking studies observed poorer performance in retrieving known interactions with

eukaryotes than with Prokaryotes {4—6}:(Snitkin et al. 2006; Jothi, Przytycka, and Aravind 2007%;

Ruano-Rubio, Poch, and Thompson 2009). The situation today is considerably different; the GOLID

database {A(Mukherjee et al. 2017) tracks over 6000 eukaryotic genomes. Multiple successfy

=

applications of phylogenetic profiling in eukaryotes have been published in recent years—e¢-. Fqr

D

example, they have been used to infer small RNA pathway genes {8}(Tabach et al. 2013), the

kinetochore network {9}(van Hooff et al. 2017), ciliary genes {+8}(Nevers et al. 2017), or

homologous recombination repair genes {+H:(Sherill-Rofe et al. 2019).

StillHargelarge-scale phylogenetic profiling with eukaryetes+emains-complex eukaryotic genomep

is computationally challenging—because-eukaryotic-genomes-are-largerand-more—complex—thaf
their—prokaryoticcounterparts—and—beecause since most state-of-the-art phylogenetic profiling

[ Formatted: Footer
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methods typically scale at least quadratically with the number of gene families and linearly with
the number of genomes. As a result, most mainstream phylogenomic databases, such as Ensembl

H2E(Zerbino et al. 2018), EggNOG {43}, (Huerta-Cepas et al. 2016), OrthoDB {#4};(Zdobnov et al.

2017), or OMA f15}(Altenhoff et al. 2018) do not provide phylogenetic profiles.

One available resource is STRING (Szklarczyk et al. 2017), a protein interaction focused database

which integrates multiple channels of evidence to support each interaction. The inference—of

phytegenetielinks between profiles STRING offers are obtained using targe-datasetsischallenging:

SemeSVD-phy (Franceschini et al. 2016) which represents profiles as bit-score distances between

all proteins present in a given proteome and their closest homologues in all of the genomes

included in the analysis. Dimensionality reduction is applied to the matrix to remove signal coming

from the species tree and the profiles are clustered to infer interactions. In STRING, this is

implemented with their set of 2031 organisms for which profile distance matrices are precalculated

and incorporated into their network inference pipeline. Although this approach captures

information on the distribution of extant distances, it does not reconstitute the evolutionary history

of protein families and may lack information relative to duplication and loss events. Furthermore,

as we show in the Methods section, the truncated Singular Value Decomposition approach does

not scale well beyond a few genomes at a time.

To construct profiles representing groups of homologues, some pipelines resort to all-vs-all

sequence similarity searches to derive orthologous groups and only count binary presence or
absence of a member of each group in a limited number of genomes {+6;4#(Ta, Koskinen, and

Holm 2011; Kensche et al. 2008) or forgo this step altogether and ignore the evolutionary history

of each greup-ef-hemeloguesprotein family, relying instead on co-occurrence in extant genomes
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F8E(Niu et al. 2017). Other tree-based methods infer the underlying evolutionary history from th

19

presence of extant homologues [19}—tr—eur—pipeline—weleveraged—thealready—existing—OMp

Here, we introduce a scalable approach which combines the efficient generation of phylogeny-
aware profiles from hierarchical orthologous groups with ultrafast retrieval of similar profiles using

locality sensitive hashing. Furthermere—the—approach—leverages—the—properties—of—minhash

[ Formatted: Footer
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A scalable phylogenetic profiling method using locality-sensitive hashing and hierarchical-

orthologous groups

Most phylogenetic profiling methods consist of two steps: creating a profile for each homologous
or orthologous group, and comparing profiles. When they were first implemented, profiles were

constructed as binary vectors of presence and absence across species {31:(Pellegrini et al. 1999).

Since then, variants have been proposed, which take continuous values {9}—(van Hooff et al.

2017)—such as alignment scores with the gene of a reference species {+H—(Sherill-Rofe et al.

2019)—or which count the number of paralogs present in each species. Yet other variants convey

the number of events on branches of the species tree [6}—Hewever—all-approaches—arelimited

[ Formatted: Normal, Line spacing: single
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nAetweorks:(Ruano-Rubio, Poch, and Thompson 2009).

1

In our pipeline, we leveraged the already existing OMA orthology inference algorithm to provide

the input data to create our profiles. The OMA database describes the orthology relationshipp

among all protein coding genes of currently 2288 cellular organisms (1674 bacteria, 152 archaeg,

and 462 eukaryotes). Within eukaryotes, OMA includes 188 animals, 135 fungi, 57 plants, and 8%

protists and has been benchmarked and integrated with other proteomic and genomic resourcef

(Altenhoff et al. 2018). One core object of this database is the Hierarchical Orthologous Group

(HOG) (Altenhoff et al. 2013). Each HOG contains all of the descendants of a single ancestor geng.

D

When a gene is duplicated during its evolution, the paralogous genes and the descendants of thg

1%

orthologue are contained in separate subhogs which describe their lineage back to their singl¢

ancestor gene (hence the hierarchical descriptor). tr-eurappreach-to-the-problem-of-profiting—w

™

We captured the evolutionary history of each HOG in enhanced phylogenies and encoded them

in probabilistic data structures (Fig. 1). These are used to compile searchable databases to allow
for the retrieval of coevolving HOGs with similar evolutionary histories and compare the similarity
of two HOGs. The two major components of the pipeline that are responsible for constructing the
enhanced phylogenies and calculating probabilistic data structures to represent them are pyHam

and-Datasketehrespectively(Train et al. 2018) and Datasketch (“Datasketch: Big Data Looks Sma|l

— Datasketch 1.0.0 Documentation” n.d.), respectively. Further details on the implementation ar

provided in the Methods section. The combination of these two tools now allows for the main

[ Formatted: Footer




D. Moi et al. 8
innovation of our pipeline: the efficient exploration and clustering of profiles to study known and

novel biological networks.

Currently, existing profiling pipelines are limited with respect to the computational power required

to cluster profiles using their respective distance metrics. Due to this bottleneck, profiling efforts

are typically focused on reconstructing pathways with known interactors using existing annotations

and evidence rather than being used as an exploratory tool to search for new interactors and

reconstituting completely unknown networks.
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Fig. 1. Diagram summarizing the different steps of the pipeline to generate the LSH

Forest and hash signatures for each HOG. The labelled phylogenetic trees generated by

pyHam are converted into phylogenetic profiles and used to generate a weighted

minhashMinHash signature with Datasketch. The hash signatures are inserted into the LSH

Forest and stored in an HDF5 fiIe.A

[ Formatted: Font: Bold




Scalable Phylogenetic Profiling Using MinHash 77

The tool we have created leverages the properties of MinHash signatures to allow for the selectio

h

of clade subsets and for clade weightings in the construction of profiles and make it possible t

build profiles with the complete set of genomes contained in OMA. We show that the metho

outperforms other phylogeny-based methods (Ta, Koskinen, and Holm 2011; Glazko an

i

Mushegian 2004; Ranea et al. 2007), and illustrate its usefulness by retrieving biologically relevan

=3

results for several genes of interest. Because the method is unaffected by the number of genome|

1]

included and scales logarithmically with the number of hierarchical orthologous groups added,

=2

will efficiently perform with the exponentially growing number of genomes as they becom

137

available.

The code used to generate the results in this manuscript are available a

https://github.com/DessimozLab/HogProf.

Results

In the following sections we first compare our profiling distance metric against other profil

14

distances in order to characterize the Jaccard hash estimation’s precision and recall characteristicg.

Following this gquantification, we show our pipeline’s capacity in reconstituting a well know

interaction network as well as augmenting it with more putative interactors using its searc

h

functionality. Finally, to illustrate a typical use case of our tool, we explore a poorly characterize

i

network.
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Accuracy of predicted phylogenetic profiles in an empirical benchmark
We compared the performance of our profiling metric to existing profile distances using

benchmarking data available in Ta et a/. {#61:(2011). In that benchmark, the true positive protein-

protein interactions (PPIs) were constructed using data available from CORUM {2H-ane-the- MRS

22}(Giurgiu et al. 2018) and the MIPS (Mewes et al. 2004) databases for the human and yeast

interaction datasets. True negatives were constructed by mixing proteins known to be involved in
different complexes. The dataset is balanced with 50% positive and 50% negative samples. Using
their Uniprot identifiers, these interaction pairs were mapped to their respective HOGs and their
profiles were compared using the hash based Jaccard score estimate. The comparison below
shows HogProf alongside other profiling distance metrics that are considerably more
computationally intensive, including the Enhanced Phylogenetic Tree (EPT) metric shown in Ta et

al {+61:(2011). Yet, our approach outperformed these previous methods, yielding the highest Area

Under the Curve for both yeast and human datasets (Figure 2, Table 1).

Yeast PPI ROC curve Human PPl ROC curve

10 10
o8 os
b 2
© ©
= 06 = 06
(3 (3
2 2
S S
5 5
a 4
[ ® o4
2 2
= —— EPT_score = —— EPT_score
Occ_Ed Occ_Ed
* —— Occ_Ps . —— Occ_Ps
—— Bin_Ps —— Bin_Ps
. —— jaccard_hash . —— jaccard_hash
00 02 04 06 os 10 0o 02 04 (1] os 10
a. False positive rate b . False positive rate
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Yeast PPl prediction ROC curve Human PPl prediction ROC curve

°
£

2

True positive rate
True positive rate

Taetal. 2011

—— Enhanced phylogenetic tree
~—— Occurence Euclidean

—— Occurence Pearson

—— Binary Pearson

~—— Minhash Jaccard HogProf

0.0

08 10 00 02

o o6 ) os
False positive rate False positive rate

Fig. 2. ROC curves for all profiling methods. a. Yeast protein-protein interactions. Jaccarjt

Hash—andJaccard—Hash—Opt—perform—better—than—al-metriesOur method (MinHash Jaccar

HogProf), performs best overall, but when high precision is required, EPF—seereEnhanceql

phylogenetic Tree (Ta, Koskinen, and Holm 2011) is still slightly more accurate. b. Humap

protein-protein interactions. Jaccard Hash andJaccard—Hash—Opt—performHogProf perform

132l

better than all metrics overall but again, when high precision is required, EPT score is still

slightly more accurate. tr—beth—subfiguresJaceard—hash—refers—to—theprofiles—containing—att

W

Enhanced—PhylogeneticTFree—metric—developed—in—{161—Bin-Ps"Binary Pearson refers to
distance using binary vectors and Pearson correlation described in 23} —"OceEd"—anyl

“OeePs"(Glazko and Mushegian 2004). Occurence Euclidean and Occurence Pearson refer tp

the occurence profiles with Euclidean distance and Pearson correlation as described in

{24}.(Ranea et al. 2007).
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Table 1. AUC values for Profiling distance metrics.

Metric AUC Yeast AUC Human < \/Formatted Table
Jaccard Hash 0.6634 06155 | Formatted: Font: 10 pt
EPT 0.6104 0.5875 | Formatted: Font: 10 pt

A

BIN PS 0.5840 05463 | Formatted: Font: 10 pt
OCC ED 0.5829 A05268 ‘ Formatted: Font: 10 pt
OCC PS 0.6028 05714 | Formatted: Font: 10 pt

Recovery of a canonical network: the kinetochore network

To further validate our profiling approach on a known biological network, we used our pipeline
to replicate previous work shown in van Hooff et al. {91:(2017). Their analysis focuses on the
evolutionary dynamics of the kinetochore complex, a microtubule organizing structure that was
present in the last eukaryotic common ancestor (LECA) and has undergone many modifications
throughout evolution in each eukaryotic clade where it is found. Its modular organization has
allowed for clade-specific additions or deletions of modules to the core complex which remains
relatively stable. This modular organisation and clade-specific emergence of certain parts of the

complex make it an ideal target for phylogenetic profiling analysis.

We show that our mirkashMinHash signature comparisons are also capable of recovering the
kinetochore complex organisation. After considering just the HOGs for the families used in

van Hooff et al. {9%(van Hooff et al. 2017), we augmented their set of profiles using the-LSH Forest

(Bawa, Condie, and Ganesan 2005) to retrieve interactors that may also be involved in the

kinetochore (and the also included anaphase promoting complex (APCr-retwerk)) networks which
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have not been detectedcataloged by these authors. By-using-a-well-studied-network-in-eukaryotep

of-the—returned—resulis—Using the Gene Ontology (GO) terms {25}(Ashburner et al. 2000) of a|l

proteins returned in our searches for novel interactors, we guantify-hew—enriched—they—are—fef

thewere able to identify proteins with specific functions we would expect to be related to our

network of interest.

In their work, van Hooff et al. {9}(van Hooff et al. 2017) used pairwise Pearson correlation

coefficients between the presence and absence vectors of the various preteinkinetochor

D

components efto recompose the kiretechore-inthe-96-organisation of the complex. Their profile

121

D

were constructed using the proteomes of a manually selected set of 90 organisms as-a—¢listane

1

metric-between—awith manually curated set-ef-profiles corresponding to each component of the

complex. Ysing—this—pairwise—comparison—ofall-veetersAfter establishing a distance kernel, the

clustered the profiles and were able to recover known sub-cempenenentscomponents of th

™

complex using just evolutionary information. Using our hash-based Jaccard distance metric in an
all-vs-all comparison between the HOGs corresponding to each of these protein families, we were
also able to recover the main modules of the kinetochore complex with a similar organisation to

the one defined by van Hooff et al. The color clustering in figureFigure 3 corresponds to the

=

original manual definition of these different subcomplex modules—based—Bespite—the—vastly

network-in-both-pipelines—we. We observe that the distance matrices generated by each profiling

approach are correlated and-are-recoveringsimilar-evelutionary-signals-(with Spearman correlation
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of 0.26268 (p < 1e-100) and Pearson correlation of 0.35364 (p < 1e-100)) ) and are recovering

similar evolutionary signals despite their construction using different methods.
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Fig. 3. Recovery of kinetochore and APC complexes. After mapping each of the protein

families presented in Van Hooff et al. {3}(van Hooff et al. 2017) to their corresponding HOG, &

distance matrix was constructed by comparing the Jaccard hash distance between profiles using
HogProf. Name colors in the rows and columns of the matrix correspond to the kinetochore

and APC subcomplex components as defined manually using literature sources i
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yv-(van Hooff et al.

The All-vs-All comparison of the profiles revealsrevealed several well defined clusters in both
worksstudies including the Dam-Dad-Spc19 and CenP subcomplexes. Hewever-eurUnlike the Van

Hoof er al. approach, HogProf profiles were constructed alongside all other HOGs in OMA and

were not curated before being compared. With only the initial information of which proteins were
in the complex, we mapped them to their corresponding OMA HOGs and, with this example,
demonstrated the ability to reconstruct any network of interest or construct putative networks
using the search functionality of our pipeline with minimal computing time. Heweveritlt should
be noted that the quality of the OMA HOGs used to construct the enhanced phylogenies and

hash signatures directly influences our ability to recover complex organisation.

To illustrate the utility of the search functionality of our tool, we used the profiles known to be
associated with the kinetochore complex to search for other interactors. All HOGs corresponding
to the protein families used to analyse the kinetochore evolutionary dynamics in van Hooff et al.

fSt(van Hooff et al. 2017) were used as queries against an LSH Forest containing all HOGs in OMA.

By performing an all-vs-all comparison of the minhash signatures of the queries and returned
results, a Jaccard distance matrix was generated showing potential functional modules associated

with each known component of the kinetochore and APC complexes.

\: Formatted: Font: Bold




Scalable Phylogenetic Profiling Using MinHash 79

17— B \ Formatted Table

p ‘\*‘

‘ \‘1\7
\ K

\: Formatted: Footer




D: Moi et al. 20

-10
-08

lros

04
00

02

Apcl0

RINTL

Fig. 4. Putative novel components of the kinetochore and APC complexes. The profiles
associated with all HOGs mapping to known kinetochore components shown in Figure 3 were
used to search the LSH Forest and retrieve the top 10 closest coevolving HOGs resulting in a
list of 871 HOGs including the queries from the original complexes. The Jaccard distance matrix

is shown between the hash signatures of all query and result HOGs. UPGMA clustering was
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applied to the distance matrix rows and columns. Labelled rows and columns correspond to

profiles from the starting kinetochore dataset {91(van Hooff et al. 2017). A cutoff hierarchicgl

clustering distance of 1.3 was manually chosen (blue lines) was—sed—to generatelimit th

maximum cluster size to less than 50 HOGs. This cutoff resulted in a total of 436142 cluste

of HOGs used for GO enrichment to identify functional modules. The coloring of the protein
family names to the right and below the matrix is identical to the complex related coloring

shown in Figure 3.4

To verify that the results returned by our search were not spurious, we performed GO enrichment
analysis of the returned HOGs that were not part of the original set of queries but appeared to

be coevolving closely with known kinetochore components. Given the incomplete nature of Gerf

Ontology-annetations{-open-word-assumption—=261:GO annotations (“open world assumption],

1

Dessimoz, Skunca, and Thomas 2013), many of these proteins may actually be involved in the

kinetochore interaction network but this biological function could be still undiscovered. However,
even with this limitation, salient annotations relevant to the kinetochore network were returned
in the search results (Table 2 and Supplementary Data 1). The identifiers of all protein sequences
contained in the HOGs returned by the search results were compiled and the GO enrichment of
each cluster shown in Figure 4 was calculated using the OMA annotation corpus as a background.
The enrichment results were manually parsed and salient annotations related to HOGs were
selected to be reviewed further in the associated literature to check for the association of the

search result with the query HOG (Table 2).
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Table 2. Manually curated biologically relevant search results for interactors coevolving-
with van Hooff et al's kinetochore and APC selected protein families {9}—Netable

pretein(van Hooff et al. 2017). Protein families {Resutt-returned within clusters containing

query HOGs {Clustery—are listed with their pertinent annotation and literature—GoS

associated-with-kinetochore-and-APCprocesses: This is a non-exhaustive summary of some

selected results. The full enrichment results are available as Supplementary Data 1.

[ Formatted: Indent: Left: 0.5"

Cluster Result GO Term Citation .

APC1 CFAP157  G0:0035082 axoneme assembly A (Weidemann et al.
2016)

APC12HOM BRWBHC2C 60:0067010-¢ytoskeleton {28}(Thauvin-Robinet et al.

RAD D3 oerganizationGO:0061511 centriole elongation 2014)

CenpQARE CDCR6ESC GO:0007346—regulation—of—mitotic—eel29}(Lu et al. 2017) «

2 02
T eyeleGO:0007059 chromosome segregation

KNL1 TACC3 GO:0007091 metaphase/anaphase transition {36}(Cheeseman et al.
of mitotic cell cycle 2013)
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eynarmies{3H-For instance, our search identified TACC3, which is known to be part of a structurs

stabilizer of kinetochore microtubules tension although it does not directly interact with thg

kinetochore complex (Cheeseman et al. 2013). ESCO2, a cohesin N-acetyltransferase needed for

proper chromosome segregation during meiosis also plays a role in kinetochore-microtubulg

attachments regulation during meiosis (Lu et al. 2017). While these results are certainly promising,

many of the unannotated proteins returned by our search likely contain more regulatory,

=Y

metabolic and physical interactors which may prove to be interesting experimental targets.—Fh¢

Search for a novel network

to—quantify—the—relevance—of retrieved—search—results—n—typicalTypical research use casefs

ivelvingfor profiling often involve uncharacterized protein families tracting within poorly studied

neworks—this-witl-eften-be-the—€ase.. In this section we present the-search results for three HO¢:

gueriesHOGs known to be involved in the processes of meiosis, syngamy and karyogamy.—Fhes

™

eyete: Despite the ubiquitous nature of sex and its probable presence in LECA {32} (Speijer, Lukeg,

and Elias 2015), the protein networks involved in each part of these processes are—very—poerly
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understood-andhave limited experimental data is-available, even in model organisms. Hewever;
semeSome key protein families involved in these-bielogical-processeseach step are known to have
evolutionary patterns indicating an ancestral sequence in the LECA with subsequent modifications

and losses {32}(Speijer, Lukes, and Elias 2015). The three following sections detail the returned

results of the phylogenetic profiling pipeline with the Hap2, Gex1 and Spo11 families which all
share this evolutionary pattern and are known to be critical for the process of gamete fusion,
nuclear fusion and meiotic recombination, respectively. As—in—section—32—we—alse—used—-GO
enrichment-to-quantify-therelevance-of thereturned-seareh-results—The proteins contained in the
top 100 HOGs returned by the LSH Forest were analyzed for GO enrichment using all OMA
annotations as a background. Due to the presence of biases in the GO annotation corpus

B3}(Altenhoff et al. 2012) we have also chosen to show the number of proteins annotated with

each biological process selected from the enrichment out of the total number of annotated

proteins.

Query with Hap2

The Hap2 protein family has been shown to catalyze gamete membrane fusion in many eukaryotic

clades

structural-superfamily—Part(Liu et al. 2008; Valansi et al. 2017; Fédry et al. 2017; Feng, Dong, and
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Springer 2018). A subset of the GO enrichment of the search results for the top 100 coevolving

HOGs are shown below in tableTable 3.

25

Table 3. Manually curated biologically relevant enriched GO terms from returned results.

The chosen-input-proteinquery sequence fer—Hap2 is that-ef-UniProt entry F4JP36

correspondingwith OMA entryidentifier ARATH26614 belonging to OMA HOG:0406399. The full

enrichment results are available in the Supplementary Data 2.

Term Biological process P-value N-proteins
GO:0006338  chromatin remodeling 9.72e-54 61/3426
GO0:0048653  anther development 1.69e-35 17/3426
GO0:0009793  embryo development ending in seed 2.88e-13 15/3426

dormancy
GO:0051301  cell division 6.88e-16 5/3426

A
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One particular family of interest which was returned in our search results is already characterized

in angiosperms: LFR or leaf and flower related {46}:(Wang et al. 2012). This protein family is

required for the development of reproductive structures in flowers and serves as a master

regulator of the expression of many reproduction related genes, but its role in lower eukaryotes

remains undescribed despite its broad evolutionary conservation—Experiments—targeting—EFR's

Query with Gex1
Gexi—hasbeen—shown—tobeinvelved—inThe nuclear fusion karyegamy—andprotein Gex1 is
present in many of the same clades as Hap2, with a similar spotty pattern of absence across

eukaryotes and a phylogeny indicating a vertical descent from LECA {4+—(Ning et al. 2013). A

subset of the GO enrichment of the search results for the top 100 coevolving HOGs shews-the

predictive-petential-of-HogPref-{tableare shown below in Table 4)..

Table 4. Manually curated biologically relevant enriched GO terms from returned results.
The input—preteinquery sequence ehesen—fer-Gex1 is based-en-the-UniProt identifier Q681K7
and-the-correspendingwith OMA identifier ARATH38809 belonging to OMA HOG:0416115. The

full enrichment results are available as Supplementary Data 3.
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GO Term P-value N-Proteins «

GO0:0042753 positive regulation of circadian 2.12e-285 113/2685

rhythm

G0:0048364 root development 7.81e-125 70/2685
G0:0051726 regulation of cell cycle 1.22e-92 99/2685
G0:0000712 resolution of meiotic recombination 1.65e-47 26/2685
intermediates

G0:0007140 male meiotic nuclear division 1.19e-39 26/2685
G0:0009553 embryo sac development 1.43e-28 17/2685
G0:0022619 generative cell differentiation 3.59e-18 5/2685

197

found-in-this—search-is-broader-thanjust-angiosperms—Gext-has-alseGex1 has been shown to b

U

involved in gamete development and embryogenesis {42}(Alandete-Saez et al. 2011) and therefore

GO terms 0022619 and 0009553 are applied to this protein. Thus proteins that HogProf identified

as putativeco-evolving with Gex1 interactorsand sharing these GO terms indicates—thecan b

T

considered potential relevance-of-thesesearch+esultsGex1 interactors.

One search result of particular interest is a protein family which goes by the lyrical name of parting

dancers (PTD). PTD belongs to a family that has been characterized in Arabidopsis thaliana and

budding and fission yeast, and is known to be required in reciprocal homologous recombination

tnduring meiosis and-localizes—to-the-nucleus{43}(Wijeratne et al. 2006). Our search shows that

[ Formatted Table
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Gex1 eeevelvedco-evolved closely with PTD, a protein known to be involved in preparing genetic

material for its eventual merger with another cell’s nucleus.

Query with Spol1

The Spo11 is-a-helicase that-has-been-shown-te-beis involved in meiosis by catalyzing DNA double
stranded breaks (DSBs) triggering homologous recombination. Spo11 is highly conserved
throughout eukaryotes and homologues are present in almost all clades {44}—Fhe(Keeney, Giroux,

and Kleckner 1997). A subset of the GO enrichment of the search results for the top 100 coevolving

HOGs are shown below in takleTable 5.

Table 5. Manually curated biologically relevant enriched GO terms from returned results.
The chosen—input—proteinquery sequence —fer—Spol11-1 is based-en—the—UniProt identifier
QIM4A2 and—the—correspondingwith OMA identifier ARATH19148 belonging to OMA

HOG:0605395. The full enrichment results are available in Supplementary Data 4.

GO Term P-value N-Proteins “
G0:0000737 DNA catabolic process, endonucleolytic 0.00e+00 415/20562
G0:0043137 DNA replication, removal of RNA primer 0.00e+00 353/20562
G0:0006275 regulation of DNA replication 0.00e+00 552/20562
G0:0006302 double-strand break repair 8.11e-242 285/20562
G0:0007292 female gamete generation 2.71e-184 136/20562
G0:0022414 reproductive process 1.66e-93 127/20562

eomplex-|t is encouraging to find that Spo11, the trigger of meiotic DSBs, has eoevolredco-evolved

with other families involved in the inverse process of repairing the DSBs and finishing the process
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of recombination (Table 5); Other identified HOGs contain annotations such as gamete generatio
and reproduction also focusing aton processes that result in cellular commitment to a gamete ce

fate through meiosis. Proliferating cell nuclear antigen or PCNA {45}(Strzalka and Ziemienowid|

2011) was also retrieved by our search. This ubiquitous protein family is an auxiliary scaffol

protein to the DNA polymerase and recruits other interactors to the polymerase complex to repai

damaged DNA, making it an interesting candidate for a potential physical interactor with Spo11

A broader search for the reproductive network

A more in-depth treatment of the evolutionary conservation of gamete cell fate commitment an

=

mating is available in previous publications {324+46-56x(Malik et al. 2007; Loidl 2016; Speije

[ Formatted: Font: 11 pt

[ Formatted: Font: 11 pt

[Formatted: Font: 11 pt

Formatted:

Font:

11 pt

Font:

11 pt

Formatted:

Font:

11 pt

Luke$, and Elia$ 2015; Ning et al. 2013; Schurko and Logsdon 2008; Niklas, Cobb, and Kutscher

&l

2014; Goodenough and Heitman 2014). Using these sources, a list of broadly conserved protei

a

families known to be involved in sexual reproduction were compiled to be used as HOG querie
to the LSH Forest to retrieve the top 10 closest coevolving HOGs. The hash signatures of th
queries and results were compiled and used in an all-vs-all comparison to generate a Jaccar

distance matrixA.
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Fig. 5. HogProf's reproductive network. A list of proteins known to be involved in conservedt

sexual reproduction bielegical-processes-was compiled and each—proetein—family—was-mapped

to #sHOG-anrdOMA HOGs. These queries were used to search for the 20 closest coevolvin

HOGs in an LSH forest containing all HOGs in OMA. Each—+row-and—column—of-the Jaccarf
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famities—eraHOGreturnred-by-the-search—A Jaccard distance—matrixkernel was generated by

performing an All vs All comparison of the Hash signatures of thesearch results and queries.

UPGMA clustering was performed on the rows and columns te—erganize—theHOGs—inte

HOGs—ineluding—the—queries:of the kernel. A cutoff distance of .995 ( blue lines ) was

usedmanually chosen to gereratelimit cluster sizes to less than 50 HOGs. This generated a total

of 215 clusters of HOGs-(blue-lines). The labels correspond-to-the names-of the proteins-used
to—generate—the. Names for queries—HOG—rames are shown eerrespend—te—the—yeastwith

Saccharomyces cerevisiae gene names (-apart from Hap2 which is not present in fungi ).—Fhis

The all-vs-all comparison of the Jaccard distances between these returned HOGs reveals clusters
of putative interactors eoevelvingco-evolving closely with specific parts of the sexual reproduction

network. Fhe-Manual analysis of GO enrichment ef-seguences—within—each—€lister-was—analyzed

randally—andresults revealed several anpnetations—related—te—sexual reproduction—were—found:

Fhese-related proteins which are summarized in Table 6—after—a—manual-curation—and-literature

review—as—dene—in-table 2for-thekinetochore—search—results.. In addition to annotated protein

sequences and HOGs, many unannotated, coevolving HOGs where-found-Again-these-may-prove
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reproduetion—were found.

Particularly for biological processes as complex and evolutionarily diverse as sexual reproduction,

Gene-OntologyGO annotations are, unsurprisingly, incomplete. Fortunately, our profiling approach

is successful in identifying protein families with similar evolutionary patterns that have already
been characterised and are directly relevant to sexual reproduction (Table 6). By considering the
uncharacterized or poorly characterized families at the sequence and structure level, we may be
able to predict their functions and reconstitute their local interactome. Our ultimate goal is to
guide /n vivo experiments to test and characterize these targets within the broader context of

eukaryotic sexual reproduction,

Table 6. Manually curated biologically relevant putative interactors from sexual

reproduction search results. NetableproteinProtein families {Resuts-within clusters containing

query HOGs {Clustery-are listed with their pertinent annotation and literature. GO enrichment

results of clusters that-centainedcontaining one or more queries frem-ourtist-ef-gueries-werg
analyzed manually. We—searched—forliterature—associated—teo—the—relevant—-GO—annotations

1

nen-exhaustivesummary—of some—salientreturned—results—Fhe—fullFull enrichment results arg

available in the Supplementary Data 5.
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Cluster Result GO Term Citation “
REC8 NSE4 G0:0030915 Smc5-Smc6 complex f5H(Zelkowski et al.
2019)
SPC72 MID2 G0:0000767 cell morphogenesis f52}(Rajavel et al.
involved in conjugation 1999)
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SPOT71 LES2 G0:0031011 Ino80 complex 53:541(Serber et al.
2016; Bao and Shen
2011)
SHC1, SPO16 POG1 G0:0000321 re-entry into mitotic cell ~ 55:56}(Leza and
cycle after pheromone arrest Elion 1999; van

Werven et al. 2012)

This example related to the ancestral sexual reproduction network illustrates the utility of the LSH
Forest search functionality and OMA resources in exploratory characterization of poorly described
networks. The interactions presented above in( Table 6 ) only represent our limited effort to
manually review literature to highlight potentially credible interactions detected by our pipeline.
Again, as was the case with our kinetochore and APC related searches, several interactions might
not appear obvious on their face. For example, SPC72 and MID2 are both involved in meiotic
processes but localized to different parts of the cell (the centriole and theplasma membrane,

respectively). However, it has been shown that microtubule organization and membrane integrity

sensing pathways do show interaction during gamete maturation {5/4—Others—ike—the+ne80

thteraction-and-design-experiments—to-probe-it:(Gordon et al. 2006).

ADiscussion «

We introduced a scalable system for phylogenetic profiling from hierarchical orthologous groups.

The ROC and AUC values shown in-the-using an empirical benchmark efin the first section 3-+of

Results indicates that the mirkhaskMinHash Jaccard score estimate between profiles is—a
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competitive—alternative—tehas slightly better performance than previous tree and vector based

metrics, while also being much faster to compute. This is remarkable in that one typically

D

expectexpects a trade-off between speed and accuracy, which does not appear to be the case
here. We hypothesise that the error introduced by the fast—mirhaskMinHash approximation is

rere-than compensated by the inclusion of an unprecedented amount of genomes and taxonomit

nodes in the labelled phylogenies used to construct the profiles.

Furthermore, while our mirkashMinHash-derived Jaccard estimates are able to capture some df

the differences between interacting and non-interacting HOGs, as shown above, their unique

D

strength lies in the fast recovery of elesethe top k closest profiles within an LSH Forest. Once

these profiles are recovered, the inference of submodules or network structure can be refined

using other, potentially more compute intensive methods, on this much smaller subset of data.

sheowed—that-HegProf—wasWe have shown that HogProf is able to reconstitute the modular

organisation of the kinetochore, as well as increase the list of protein families interacting within
the network with several known interactors of the kinetochore and the APC. As for the other HOGs
returned in these searches, our results suggest that some are yet unknown interactors involved in
aspects of the cell cycle or ciliary dynamics. Likewise, our attempt at retrieving candidate members
of the sexual reproduction network recapitulated many known interactions, while also suggesting

new ones.
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The current paradigm for exploring interaction or participation in different biological pathways
across protein families relies heavily on data integration strategies that take into account
heterogenous high-throughput experiments and knowledge found in the literature. Many times,
these datasets only describe the networks in question in one organism at a time. Furthermore,
signaling, metabolic and physical interaction networks are all covered by different types of
experiments and data produced by these systems is located in heterogeneous databases. By
contrast, phylogenetic profiles can potentially uncover all three types of networks from sequencing
data alone. This was highlighted in our work during retrieval of potential interactors within the
sexual reproduction and kinetochore networks with the retrieval of LFR and CFAP157, respectively.

CFAP157, a cilia and flagella associated protein might be involved in recruitment/regulation of

APC-Cdc20 or ciliary kinases (e.g Nek1), both known to mediate APC regulation of ciliary dynamics

(Wang and Kirschner, 2014). In both cases, a regulatory action within the network was the

biological process which involved both the query and retrieved HOGs, not a physical interaction.
The advances put forward by our new methodology and the property of retrieving entire networks
and not just physical interactions opens the possibility of performing comparative profiling on an
unprecedented scale and lays the groundwork for integrative modeling of the interplay between

PPI, regulation and metabolic networks in a more holistic way.

Further work remains to be done on tuning the profile construction with the appropriate weights
at each taxonomic level, as well as when—te—censtructconstructing profiles for subfamiles arising

from duplications which may undergo neofunctionalization:, a theme which has been previously

explored in phylogenetic profiling efforts relying on far fewer genomes (Dey et al. 2015).

Downstream processing of the explicit representation of the data, as opposed to the the hash
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signature, can also be designed using more computationally intensive methods to detect

interactions on smaller subsets of profiles after using the LSH as a first search.

The phylogenetic profiling pipeline presented in this work will be integrated into OMA web-based
services. Meanwhile, it is already available on Github as a standalone package-

( https://github.com/DessimozLab/HogProf).

Methods

The following section details the creation of phylogenetic profiles using OMA data, their
transformation into mirkaskMinHash based probabilistic data structures and the

eftools and libraries used in the implementation.

Profile construction

To generate large-scale gene phylogenies labelled with speciation, duplication and loss events
(a.k.a. enhanced phylogenies or tree profiles) for each HOG in OMA, we processed input data in

OrthoXML format {58}(Schmitt et al. 2011) with pyHam {59%(Train et al. 2018), using the NCBI

taxonomic tree {601(Sayers et al. 2010) pruned to contain only the genomes represented in OM

F5E(Altenhoff et al. 2018). Tree profiles contain a species tree annotated at each taxonomic level

with information on when the last common ancestor gene appeared, where losses and duplications
occurred and the copy number of the gene at each taxonomic level. More information on the

pyHam inference of evolutionary events can be found in {59}(Train et al. 2018). pyHam can alsp

be used to infer enhanced phylogenies for other datasets available in OrthoXML format such ap

ENSEMBL (Zerbino et al. 2018) or with data generated from phylogenetic trees such as thosg
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found in PANTHER (Mi et al. 2017) through the use of the function etree2orthoxml () in the

tree analysis package ETE3 (Huerta-Cepas, Serra, and Bork 2016).

Using-this—gene—treeThe enhanced phylogeny trees for each HOG are parsed to create a vector

representation of the HOG —a—multisetfor-presence—ess— or absence of a homologue at each

extant and ancestral node as well as the duplication at-each—taxenemictevelHs—<ompiled-inte—a

oer-presence—ofa—geneataspecific-taxonemictevelor loss events on the branch leading to that

node. Each profile vector contains 9345 columns ( corresponding to the 3115 nodes of the

taxonomy used and the wei
each—node—of-thetaxonomic—treeforthat€lass—ofevents{3 categories of presence, loss and

duplication ).

To encode profile vectors as weighted MinHash signatures (Sergey loffe 2010) we used the

Datasketch library (“Datasketch: Big Data Looks Small — Datasketch 1.0.0 Documentation”

n.d.)Fig=1: In this formulation, the Jaccard score between multisets {6+}-representing profiles

—

willcan be more heavily influenced by nodes with a higher weight. ta-this-manuseript-only-profiles

profilingpipeline-willbe-the-subject-of future-publications:The final MinHash signatures used were

built with 256 hashing functions.
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After transforming HOG profile vectors to their corresponding weighted mirhashesMinHashes
using the datasketch library, an estimation of the Jaccard distance between profiles can be
obtained by calculating the Hamming distance between their hash signatures {6+(S. loffe 2010).
The speed of comparison and lower bound for accuracy of the estimation of the Jaccard score is
set by the number of hashing functions. The comparison of hash signatures has O(A) time
complexity where N is the number of hash functions used to generate the mirkaskMinHash
signature. Due to this property, an arbitrary number of elements can be encoded in this signature
without slowing down comparisons. In our use case, this enables the use of an arbitrarily large

number of taxa for which we can consider evolutionary events. With-ethermetriessuch-asPearsen

rethodsthese-comparisons—can-be-much-more-costiyAdditionally, hardware implementations of
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hash functions allow the calculation of hash signatures at rates of giga hashes per second ang

12

allow for extremely fast implementation of this step, placing the bottleneck of the pipeline at the

calculation of enhanced phylogenies.

Weighted—minhashThe weighted MinHash objects ean—alse—-be—used-to—compilefor each HOG/

TOY

enhanced phylogeny were compiled into a searchable data structure referred to as a Locality

Sensitive Hashing Forest (LSH Forest) {#2}:(Bawa, Condie, and Ganesan 2005) and their signaturef

were stored in an HDF5 file. The LSH Forest can be queried with a hash signature to retrieve the

K neighbors with the highest Jaccard similarity to the query hash. The K closest hashes are
retrieved from a B-Tree data structure {74}(Comer 1979). This branching tree data structure allows

for the querying and dynamic insertion; and deletion ard-guerying-of elements in the LSH Forest

data structure built upon it at-erders—of-magnitude—faster—than—previous—profiling—efforis—As

The scaling properties of the MinHash data structures when compared to pairwise distancg

calculations and hierarchical clustering are shown below in Figure 6.
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propertional-to-the-nrumber-of HOGsalready—in—the-datasetsynthetic profiles of length 100

were generated in the form of binary vectors (0 and the-rumber-ef HOGs-added-whereas-in

HOGs—already—in—the—dataset] equiprobable). Profiles were then clustered using an explicit

calculation of the Jaccard distance, reduced to a lower dimensionality (5 dimensions) with

truncated SVD, normalized and fnrearly—with—the—number—ef-HOGs—added—Query—time

eomplexity—nexplicitly clustered using Euclidean distance as in SVD-Phy (Franceschini et al.
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2016) or transformed into MinHash signatures and inserted into an LSH Forest object as ip

our method. Orders of magnitude showing typical prefiling—appreaches—is—heavilypenatized

==

12

the-databasex-axis. Curves were fitted to each set of timepoints to empirically determine the

time complexity of each approach.

Orthelegy

Computational resources, data and seftware-libraries sed

Our dataset contains approximately 600,000 HOGs computed from the 2,167 genomes in OMA
(June 2018 release) The main computational bottleneck in our pipeline is the calculation of the
labelled gene trees for each HOG using pyHam. Even with this computation, compiled LSH forest
objects containing the hash signatures of all HOGs' gene trees can be compiled in under 3 hours
(with 10 CPUs but this can scale easily to more cores) with only 2.5 GB of RAM and queried
extremely efficiently (an average of 0.01 seconds over 1000 queries against a database containing
profiles for all HOGs in OMA on an Intel(R) Xeon(R) CPU E5530 @ 2.40 GHz and 2 GB of RAM to
load the LSH database object into memory). This performance makes it possible to provide online
search functionality, which we aim to release in an upcoming web-based version of the OMA
browser. Meanwhile, the compiled profile database can be used for analysis on typical workstations

(note that memory and CPU requirements will depend on the number of hash functions
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implemented in the construction of profiles and the filtering of the initial dataset to clades of

interest to the user).

All gene ontology (GO) annotations (encompassing molecular functions, cellular locations, and
biological processes) for HOGs contained in OMA were analyzed with GOATOOLS

#5E(Klopfenstein et al. 2018). To calculate the enrichment of annotations, the results returned by

the LSH Forest annotations for all protein sequences contained in the HOGs returned by the

search were collected and the entire OMA annotation corpus was used as background.

HDF5 files were compiled with HS5PY (ver. 2.9.0). Pandas (ver. 0.24.0) was used for data

manipulation. Labelled phylogenies were manipulated with ete3ETE3 {76}(Huerta-Cepas, Serra,

and Bork 2016). Datasketch (ver. 1.0.0) was used to compile weighted minkashesMinHashes and
LSH Forest data structures. Plots were generated using matplotlib (ver. 3.0.2). PyHam (ver 1.1.6)

was used to calculate labelled phylogenies for the HOGs in OMA.

Time complexity analysis in Figure 6 was done with the scikit-learn implementation of truncated

SVD (Pedregosa et al. 2011) and scipy (Jones, Oliphant, and Peterson 2001) distance functions.

Pearson and Spearman correlation comparison of distance matrices

Distance matrices between all pairs of profiles in the kinetochore and APC complex protein families

defined in {9}(van Hooff et al. 2017) were compared using the Spearman and Pearson statistical

analysis functions from the the SciPy python package to verify the monotonicity of the scores

between families.
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Supplementary data

o Supplementary Data 1—kineto _augment_goenrich.csv: Contains the results of GO

enrichment analysis done on the results of our search for kinetochore interactors. After

searching with the HOGs corresponding to each of the kinetochore components, the

returned HOGs were clustered according to their jaccard similarity. Using a hierarchical

clustering and a manually defined cutoff the results were separated into discrete clusters.

Each cluster was analyzed using goatools for GO enrichment. Enrichment results for clusterg

containing a query gene were recorded in this CSV file.

o Supplementary Data 2—hap enrich.csv: Contains the goatools output for the GO

enrichment analysis of the top 100 closest coevolving HOGs returned by a query with Hap2.

o Supplementary Data 3—gex enrich.csv: Contains the goatools output for the GO

enrichment analysis of the top 100 closest coevolving HOGs returned by a query with Gex1.

o Supplementary Data 5—repro_augment_goenrich.csv: Contains the results of GO A

enrichment analysis done on the results of our search for sexual reproduction network

interactors. After searching with the HOGs corresponding to each of the manually curated ligt

of conserved sexual reporduction network components, the returned HOGs were clustered

according to their jaccard similarity. Using a hierarchical clustering and a manually defined

cutoff the results were separated into discrete clusters. Each cluster was analyzed using
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goatools for GO enrichment. Enrichment results for clusters containing a query were
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