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Supplementary	material	

Pipeline	summary	

The	pipeline	we	apply	here	is	described	by	Schrider	et	al	(2013,	2016),	available	at:	
https://github.com/andrewkern/poolDiffCNV	

We	apply	the	Python	scripts	by	Schrider	et	al.	with	some	alterations,	with	the	aim	of	clustering	
and	analysing	tandem	duplications	and	deletions	(collectively,	Copy-Number	Variants,	CNVs)	in	
a	similar	manner	such	that	their	frequencies	are	more	directly	comparable.	These	scripts	are	
available	on	our	Git	repository:	https://gitlab.mbb.univ-montp2.fr/khalid/poolcnvcomp	

We	alter	the	Python	scripts	for	Step	1	to	read	.bam	files.	We	replace	Step	2	scripts	with	a	new	
clustering	algorithm.	The	distanceCutoff	parameter	is	altered	in	Step	3	and	Step	4	is	altered	to	
read	.bam	files.	The	pipeline	is	otherwise	the	same.	Bash	scripts,	available	on	our	GitLab	
repository,	were	used	in	downstream	analyses.	

Another	notable	difference	between	the	pipeline	used	by	Schrider	et	al	and	our	analysis	is	that	
we	perform	two	“tests”,	each	consisting	of	two	comparisons.	In	the	“Focal	Test”	we	conduct	
two	comparisons	of	Choosy	and	Non-Choosy	populations.	In	the	“Control	Test”	we	conduct	two	
comparisons	within	behavioural	classes	(Choosy	1	vs	Choosy	2;	Non-Choosy	1	vs	Non-Choosy	2).	

The	Basic	idea	of	CNV	detection	is	as	follows:	

Illumina	sequencing	produces	read-pairs:	two	nucleotide	sequences	(each	100-bp	long	in	our	
case),	one	read	in	the	5’→3’direction	and	the	other	read	5’←3’.	That	is,	the	read-pair	has	an	
inverted	orientation.	If	a	tandem	duplication	occurs,	a	read-pair	that	spans	the	end	of	the	first	
copy	and	the	beginning	of	the	second	will	not	be	mapped	to	the	reference	in	the	correct	
orientation;	the	read-pair	orientation	is	everted	(5’←3’	and	5’→3’;	Supplementary	Figure	S1).	
Therefore,	clusters	of	everted	read-pairs	can	be	used	to	identify	tandem	duplications	and	read-
depth	information	can	be	used	to	validate	duplication	events	(Cooper,	Zerr,	Kidd,	Eichler,	&	
Nickerson,	2008;	Guan	&	Sung,	2016;	Schrider	et	al.,	2013).	If	a	deletion	occurs	in	a	given	pool	
relative	to	the	reference	genome,	the	insert	size	will	be	greater	than	expected	when	mapped	to	
a	reference	genome	(Supplementary	Figure	S2).	Just	as	with	duplications,	there	will	be	a	
significant	difference	in	read	depth	at	the	putative	deletion	locus	between	the	pool	and	a	pool	
in	which	the	deletion	is	absent.	Note	that	we	use	the	terms	“duplication”	and	“deletion”	only	in	
relation	to	the	reference	genome	assembly	GRCm38,	because	copy	number	variation	is	
detected	through	the	comparison	of	pooled	DNA	sequences	to	the	reference.	“Discordant”	
refers	to	everted	or	distant	read	pairs	collectively.	

	

	

	



	

	

	

	

	

	

	

	

	

Supplementary	Figure	S1	
Letters	represent	a	sequence	of	pseudo-nucleotides.	Reads	1	and	2	belong	to	the	same	read-
pair	(i.e.	insert),	which	typically	map	in	an	inverted	orientation.	A	read-pair	spanning	a	
duplicated	region	will	map	to	the	reference	in	an	everted	orientation.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Supplementary	Figure	S2	
A	read-pair	spanning	a	deleted	region	will	have	an	extreme	insert	size	relative	to	other	read-
pairs	when	mapped	to	a	reference.	These	figures	are	adapted	from	Figure	3a	by	Cooper	et	al.	
(2008).	

	



Step	1:	Identify	distant	and	everted	read-pairs	

We	first	identify	distant	reads.	For	each	pool	and	for	each	of	20	chromosomes	(19	autosomes	
and	X;	insufficient	coverage	could	be	achieved	for	Y),	we	subset	inserts	that	exceeded	the	
parameter	insertSizeCutoff,	which	represents	the	upper	first	percentile	of	the	insert	size	
distribution	for	each	respective	pool.	For	Step	1d	we	apply	Schrider’s	findEvertedInserts.py	

Similarly,	Step1	for	everted	reads	(Step	1e)	was	applied	using	the	findEvertedInserts.py	script	
from	Schrider	et	al	(2013),	altered	to	read	.bam	files.	

	

Step	2:	Cluster	distant	and	everted	read-pairs	within	pools	to	identify	deletions	and	tandem	
duplications	

Multiple	discordant	read-pairs	caused	by	a	CNV	event	will	map	to	the	same	location,	so	nearby	
discordant	reads	need	to	be	clustered	to	distinguish	distinct	CNV	events	from	singleton	
discordant	read-pairs.	Rather	than	using	the	.py	script	developed	by	Schrider	et	al.	(2013),	we	
implemented	a	similar	but	faster	approach	(Supplementary	Figure	S3).	

	

Supplementary	Figure	S3	
A	cartoon	of	two	read-pairs	(inserts),	labelled	1	and	2,	caused	by	the	same	deletion	event.	Each	
insert	consists	of	a	left	(L)	and	a	right	(R)	read,	with	known	start	(S)	and	end	(E)	coordinates.	The	
insert	size	is	the	distance	from	LS	to	RS.	Adjacent	distant	reads	of	similar	size	indicate	the	same	
deletion	event.	Therefore,	as	in	Schrider	et	al.	(2013),	two	adjacent	read-pairs	assigned	to	the	
same	deletion	event	must	not	differ	in	size	more	than	the	parameter	insertSizeDiffCutoff.	
Where	SD	indicates	standard	deviation,	this	parameter	is	2[SD(insert	size)]	for	a	given	pool.	
Unlike	Schrider	et	al.	(2013),	we	then	simply	apply	the	rule	LS2	<	RS1	for	any	read-pairs	
belonging	to	the	same	cluster,	given	that	inserts	are	sorted	by	start	position.	This	is	because	the	
deletion	must	occur	between	LE1	and	RE1.	We	also	require	that	deletions	size	is	between	50	bp	
and	10	kb,	and	that	each	deletion	is	supported	by	at	least	5	read-pairs.	

	



Step	3:	Match	corresponding	CNVs	between	pools	and	calcualte	the	nornalised	number	of	
supporting	read-pairs	in	each	pool	

The	first	criterion	to	identify	differentiated	CNVs	between	two	populations	is	the	difference	
between	the	number	of	read-pairs	supporting	a	mutation	in	each	population,	used	as	proxy	for	
allele	frequency	difference.	In	order	to	compare	CNV	events	across	pools,	clusters	must	be	
matched	to	corresponding	CNV	events	across	pools.	Clusters	are	considered	part	of	the	same	
event	if	their	coordinates	are	within	a	distance,	distanceCutoff,	from	one	another	when	two	
pools	are	compared.	We	set	the	distanceCutoff	parameter	to	equal	half	the	mean	of	the	two	
CNVs	being	compared.	Apart	from	redefining	distanceCutoff,	we	use	the	script	written	by	
Schrider	et	al.	(2013;	‘combineDistantClustersAccrossPools.py’).	This	step	therefore	reports	
whether	each	polymorphism	present	in	one	sample	is	present	in	the	other,	and	also	reports	the	
number	of	read-pairs	supporting	the	event	in	each	population.	The	number	of	supporting	read-
pairs	is	normalised	by	the	empirical	read	depth	in	each	pool	to	account	for	inter-pool	
differences	in	depth.	

	

Step	4:	Calculate	relative	read	depth	differences	

The	second	criterion	to	identify	deletions	that	differ	in	frequency	between	two	populations	is	
the	read-depth	difference	between	two	populations.	In	Step	4,	for	each	deletion	event	and	
duplication	event	we	calculate	the	read	depth	for	each	of	the	populations	being	compared.	The	
ratio	of	these	depths	is	then	calculated	for	a	given	population	comparison.	For	this	calculation	
we	ignore	masked	regions	of	the	genome	that	are	highly	repetitive.	We	apply	a	variation	of	
countReadPairsInCNV.py	altered	such	that	it	can	read	.bam	files	using	PySam.	The	masked	
regions	.bed	file	was	accessed	via:	https://genome.ucsc.edu/cgi-bin/hgTables	

	

Step	4.5:	Append	additional	allele	frequency	information	to	each	duplication	and	deletion	
event	

In	order	to	know	whether	the	read	depth	ratio	is	significantly	different	between	pools,	we	
compared	observed	read	depth	ratios	to	an	empirical	distribution.	The	empirical	distribution	
was	generated	by	measuring	read	depth	ratios	for	many	regions	that	belong	to	a	specific	size	
class.	Each	observed	CNV	event	was	assigned	to	a	size	class.	Each	size	class	has	a	known	upper	
95%	threshold	and	lower	5%	threshold	for	the	expected	difference	in	read	depth,	based	on	
empirical	sampling	of	the	data.	CNVs	that	exceed	the	upper	or	lower	thresholds	are	labelled.	

Confirmed	deletions	and	duplications	are	those	for	which	the	read	depth	ratio	is	extreme	in	the	
same	“direction”	as	the	difference	in	the	number	of	supporting	inserts.	For	example,	if	there	is	
a	duplication	in	pool	A,	there	should	be	more	everted	read	pairs	in	A	compared	to	B	and	a	
higher	read	depth	in	A	compared	to	B.	CNVs	that	do	not	conform	to	this	are	labelled	as	“false	
positives.”	

	



Step	5:	Label	CNVs	that	are	divergent	between	Choosy	and	Non-Choosy	populations	

In	the	5th	step	we	subset	the	number	of	putatively	differentiated	deletions	and	tandem	
duplications	between	two	focal	populations	depending	on	the	two	criteria	described	above:	
extreme	read	depth	ratios	and	extreme	differences	in	the	number	of	supporting	inserts.	

	

Step	6:	Subset	CNVs	that	are	highly	differentiated	across	replicate	comparisons.	

Based	on	the	values	assigned	in	Steps	4	and	5,	we	subset	the	positions	of	deletions	that	are	
highly	differentiated	between	Choosy	and	Non-Choosy	populations	and	which	have	overlapping	
positions.	The	same	principle	is	applied	to	the	Control	Test	comparisons.	

For	each	test,	a	distinction	is	made	between	coordinates	that	overlap	perfectly	(“identical	by	
state”;	those	which	have	identical	start	and	end	chromosomal	coordinates),	and	those	that	
overlap	almost-perfectly	(“non-identical	by	state”;	those	which	overlap	and	differ	by	no	more	
than	95%	of	their	mean	size).	

The	bedtools	closest	-d	command	is	used	to	determine	the	extent	of	overlap	between	a	given	
CNV	in	the	first	pool	and	the	closest	CNV	in	the	second	pool.	The	ratio	of	the	two	CNV	sizes	is	
then	calcualted.	If	this	value	is	between	0.95	and	1.05,	the	CNV	is	retained.	If,	additionally,	the	
difference	in	both	the	start	and	end	coordinates	of	the	two	comparisons	is	also	zero,	these	CNV	
are	marked	as	“identical	by	state.”	

Removal	of	CNVs	that	occur	in	both	Control	and	Focal	Tests	at	the	end	of	Step	6	

For	the	group	of	Focal	CNVs	that	are	>95%-similar	in	size	(i.e.	including	those	that	are	“identical	
by	state”),	those	that	intersect	with	the	same	class	of	CNVs	produced	by	Step	6	in	the	Control	
test	are	removed	to	produce	the	final	set	of	consistently	divergent	CNVs	across	replicate	
pairwise	comparisons	of	Choosy	and	Non-Choosy	populations	(see	Supplementary	Tables).	

	

	

	

	

	

	

	

	

	



Supplementary	figures	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Supplementary	Figure	S4a	Number	of	deletions	observed	in	each	population	at	the	completion	
of	step	2.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Supplementary	Figure	S4b	Number	of	tandem	duplications	observed	in	each	population	at	the	
completion	of	step	2.	

	



	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Supplementary	Figure	S5a	Number	of	
significantly	divergent	deletions	between	
each	pairwise	population	comparison	of	the	
Focal	Test	and	of	the	Control	Test.	

Supplementary	Figure	5b	Number	of	
significantly	divergent	tandem	duplications	
between	each	pairwise	population	
comparison	of	the	Focal	Test	and	of	the	
Control	Test.	



	

	

Supplementary	Figure	S6	

Frequency	of	CNVs	showing	(1)	divergence	between	pairs	of	Choosy-Non-Choosy	populations	in	
each	comparison	of	the	Focal	Test,	(2)	consistent	divergence	between	Choosy	and	Non-Choosy	
populations,	and	(3)	copy-number	displacement,	i.e.	choosiness-association.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Supplementary	Figure	S7	Distribution	of	484	Choosy-associated	CNV	compared	to	the	
distribution	of	recombination	hotspots.	

Black	bar	height	(right)	indicates	the	count	of	CNVs	within	each	10	kb	genomic	segment	
(minimum	1,	maximum	5).	Red	bar	height	(left)	indicates	the	count	of	recombination	hotspots	
within	each	10	kb	genomic	segment	(minimum	1,	maximum	5).	Hotspots	were	identified	as	
regions	that	were	within	the	upper	95%	percentile	of	ssDNA	fragments	per	kilobase	per	million	
reported	by	Smagulova	(2016).	
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