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Supplementary Fig. 1 Thor HyperTRIBE construct was successfully expressed in S2 cells
and induced consistent editing sites.

(A) Schematic presentation of Thor HyperTRIBE DNA construct. (B) The proteins of Hyper
(ADARcd-E488Q-V5) and Thor Hyper (Thor-ADARcd-E488Q-V5) were expressed in S2 cells
after transfection and induction by copper sulfate. The western blot was carried out using
antibody against V5 tag and actin. (C) S2 cells were transfect with mock plasmid or the

plasmid encoding Thor-ADAR-E488Q-V5 (Thor-Hyper). Cells expressing Thor-ADAR-E488Q-V5
were incubated in media with FBS (Normal), without FBS (-FBS), or with rapamycin in addition
to FBS depletion (-FBS +RAPA). Western blot was performed using antibody against phospho-
4E-BP1 Thr37/46 (p-Thor), V5 tag, and actin. (D) The sites identified in Thor hyperTRIBE

in S2 cells are edited to a similar degree between biological repeats. Pearson correlation
coefficients (R) are shown. (E) Left: The consensus sequences of 5’ terminal oligopyrimidine
tract (5’ TOP) are shown. The TOP motif is conserved in Drosophila rp (ribosomal protein) mRNAs.
TOP motif resides from position +1 of the 5’UTR. Right: The consensus sequences of Pyrimidine
Rich Translational Element (PRTE) are shown.
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Supplementary Fig. 2 Ribosome profiling data are high quality and reproducible.

(A) Ribosome protected fragments (RPFs) were enriched between 28-34nt (marked with an asterisk).

S2 cells were treated with 100 nM of rapamycin (RAPA), Torin-1, or DMSO. Cell lysate was treated with
MNase to get RPF and passed through Sephacryl S-400 columns to purify monosomes. RPF was
purified from the flowthrough of the columns. Input RNA was purified from cell lysate without MNase
treatment. RNAs from input and RPF were treated with antarctic phosphatase, then labelled by y-[32P]
ATP at their 5’ends, resolved on a 15% TBE-urea gel and visualized. (B) The length distribution of aligned
sequencing reads from ribosome profiling is shown. (C) Measurements of FPKM are reproducible
between replicates in ribosome profiling. Pearson correlation coefficients (R) are shown for FPKM

(log1g value) of input and RPF between replicates.
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The possible acting mechanism of 4E-BP-mediated translational repression.

Under nutrient rich conditions, the mTOR phosphorylates 4E-BP, which prevents it
from binding to elF4E. Under nutrient restricted conditions, inactivation of mTOR
results in dephosphorylation and 4E-BP activation. Model 1: elF4G and
hypophosphorylated 4E-BP share the same binding site on elF4E, active 4E-BP
blocks the elF4G binding site on elF4E and inhibits elF4F formation and translation.
Model 2: Hypophosphorylated 4E-BP binds to elF4E and subsequently 4E-BP-elF4E
complex is associated with their target mMRNAs. Both hypophosphorylated Larp1 and
4E-BP target PRTE mRNAs to repress their translation.
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