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Methods 

Rearing of Anopheles stephensi 

 We sourced a long-standing colony (~40 years) of An. stephensi mosquitoes from Pennsylvania State 

University which were originally obtained from the Walter Reed Army Institute of Research (Silver Spring, 

MD, USA). The An. stephensi colony was consistently held at standard insectary conditions (27°C ± 0.5°C, 

80% ± 5% relative humidity, and a 12L:12D photoperiod) prior to starting the adult life history experiment. We 

hatched and transferred 110 larvae to plastic trays (6 Qt., 12.4 cm x 34.6 cm x 21.0 cm) containing 500 mL of 

distilled water and maintained on a daily regimen of 100 mg ground TetraMin fish flakes. To ensure age-

matched individuals were used in the life table experiment, only pupae present on day 9 post-hatch (peak pupal 

stage) were collected and placed into adult cages. Any pupae remaining after 24 hr were removed. We provided 

adult mosquitoes with a solution of 5% dextrose and 0.05% para-amino benzoic acid (PABA) upon emergence. 

Given the extended duration of these experiments (~60 days), multiple blood donors were used throughout each 

replicate. For colony maintenance, An. stephensi were fed whole human blood (O+, healthy male < 30 years, 

Interstate Blood Bank, TN, USA).  

Statistical analyses (expanded) 

All statistical analyses were performed using R (version 3.4.1) (1). We used generalized linear mixed 

models (GLMM) R package <lme4::glmer() (2) > to estimate the effects of temperature, mosquito age, and 

their interaction on the proportion of females that imbibed blood on a given day (i.e., the number of females that 
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took a blood meal on a given day out of the total number of females alive on that day for each temperature 

treatment) and the mean daily egg production (i.e., the number of eggs laid on a given day divided by the total 

number of females alive on that day in a given temperature treatment). Temperature, age, and their interaction 

were included as fixed effects. Both linear and non-linear terms for temperature and age were included as 

continuous variables that were scaled and centered. Random factors initially included block, blood donor, and 

individual as categorical variables. We used minimum Akaike information criterion (AIC) values (3) to 

compare and select our final models (SI_Table 1, SI_Table 2, SI_Table 3).  

We also used a Log-rank test with R package <survival::survdiff() (4)> on Kaplan-Meier estimates to 

determine if survivorship differed with temperature. Lastly, to determine if the daily survival rate changed 

across the lifespan of the mosquito, we fit a variety of survival distributions, which allow either for a constant 

(exponential) or variable daily mortality rate (log-normal, gamma, Gompertz, and Weibull) with R package 

<flexsurv (5)> to the Kaplan-Meier estimates. AIC values were used to choose between the candidate models. 

In addition, survival distributions were fit to the Kaplan-Meier estimates from each temperature treatment 

independently to confirm the best-fitting survival distribution did not vary with temperature (SI_Table 4).  

Derivation of relative R0(T) models 

 The Ross-Macdonald expression is commonly used to represent R0, the basic reproductive number, or the 

number of secondary cases expected to arise from a primary infection given a fully susceptible population 

(SI_Equation 1) (6).  

𝑅0 = √
𝑀𝑎2𝑏𝑐𝑒−𝜇𝐸𝐼𝑃

𝑁𝑟𝜇
  (SI_Equation 1) 

R0 is composed of parameters for vector abundance, M, human host abundance, N, the vector biting rate, a, 

vector competence, bc, or the product of the proportion of vectors that become infected (b) and the proportion 

of human hosts that become infected (c), the vector daily mortality rate, µ, human recovery rate, r, and the 

extrinsic incubation period of the pathogen (EIP). In accordance with previous studies, we incorporate how 

these traits are affected by temperature. First, as previously (7), the effect of temperature (T) and rainfall (R) on 

mosquito density (M) was accounted for by including temperature-sensitivity to mosquito life history traits such 



as per capita birth rate (λ), per capita death rate (µ), daily survival probability of larval (pL), larval development 

time (τL) and the effect of rainfall on as per capita birth rate (λ), daily survival probabilities of eggs (pE), larvae 

(pL), and pupae (pP) as shown in SI_Equation 2. 

𝑀(𝑅, 𝑇) =
𝜆(𝑅,𝑇)

𝜇(𝑇)
 ;  𝜆(𝑅, 𝑇) = 𝐵𝑝𝐸(𝑅)𝑝𝐿(𝑅)𝑝𝐿(𝑇)𝑝𝑝(𝑅)/(𝜏𝐸 +  𝜏𝐿(𝑇) + 𝜏𝑃)    (SI_Equation 2) 

In the above expression (SI_Equation 2), Parham and Michael 2010 (7) defined B to be the number of 

eggs laid per adult per oviposition, pE, pL, and pP as the daily survival probabilities of eggs, larvae and pupae 

and τE, τL, and τP as the durations of each of these stages. They assumed B to be independent of environmental 

conditions, development times in each stage to be dependent on temperature only if there was sufficient rainfall 

to sustain development, and independent effects of temperature and rainfall on the daily survival probability of 

larvae.  

Later in (8) and subsequent work (9-13), the dependence of mosquito density (M) on rainfall was 

dropped, because this relationship is likely to be context-dependent; all time periods were expressed as daily 

rates; and fecundity in (7) was interpreted to represent total egg production of an individual female adult (B) as 

opposed to the number of eggs laid per adult per oviposition. Further, as data characterizing daily survival 

probabilities and development times across temperature for each immature stage are scarce, the products of the 

daily survival probability and the sum of the development times for each stage were replaced with composite 

traits (pEA and τEA) representing the entire process. Thus, EIP is replaced with the reciprocal of the pathogen 

development rate (PDR), and τEA is replaced with the reciprocal of the mosquito development rate (MDR). 

Further, as data for B were unavailable, B was substituted with the expression; B = EFD/µ, where EFD is the 

daily egg production per female and was made to be temperature-dependent (SI_Equation 3, SI_Equation 4).  

𝑀(𝑇) =
𝜆(𝑇)

𝜇(𝑇)
 ;  𝜆(𝑇) =

𝐵(𝑇)𝑝𝐸𝐴(𝑇)

𝜏𝐸𝐴(𝑇)
= 𝐵(𝑇)𝑝𝐸𝐴(𝑇)𝑀𝐷𝑅(𝑇) =  

𝐸𝐹𝐷(𝑇)𝑝𝐸𝐴(𝑇)𝑀𝐷𝑅(𝑇)

𝜇(𝑇)
 (SI_Equation 3) 

SI_Equation 4 is the same formulation used for R0(T)estimated (Eq. 1) in the main text. In Eq. 1 a, µ, and 

EFD are marked with an * to denote that the data used to parameterize these traits are estimated (as is 

commonly done in these models) and do not represent the definitions stated above. For example, biting rate, a, 



is often approximated by using the inverse of the time to the first oviposition instead of directly measuring the 

number of bites an individual takes in a defined time period. 

𝑀 =
𝐸𝐹𝐷∗(𝑇)𝑝𝐸𝐴(𝑇)𝑀𝐷𝑅(𝑇)

𝜇∗(𝑇)2  ;  𝑅0 = √
𝑀𝑎∗(𝑇)2𝑏𝑐(𝑇)𝑒−𝜇/𝑃𝐷𝑅(𝑇)

𝑁𝑟𝜇∗(𝑇)
  

Simplified     𝑅0 = √
𝐸𝐹𝐷∗(𝑇)𝑝𝐸𝐴(𝑇)𝑀𝐷𝑅(𝑇)𝑎∗(𝑇)2𝑏𝑐(𝑇)𝑒−𝜇/𝑃𝐷𝑅(𝑇)

𝑁𝑟𝜇∗(𝑇)3
         (SI_Equation 4) 

 To derive the expression for R0(T)lifetime (Eq. 2) in the main text, we first represented all µ terms with 

lifespan (lf; 1/ µ). Next, as we directly measured lf, biting rate (a), and the total egg production of an individual 

female (B), the * from these parameters was removed in the expression, and B was back substituted in place of 

EFD/µ. Finally, to account for the effects of age-variable mortality rates in the proportion of mosquitoes 

surviving the latency period, ϒ is substituted for exp[-µ(T)/PDR(T)]. The temperature-trait relationship for the 

proportion of mosquitoes surviving the latency period, ϒ(T), is calculated from the Bayesian fit of the 

proportion of mosquitoes alive (taken from the Gompertz fits to survivorship from each experimental replicate) 

upon completion of the predicted extrinsic incubation period (PDR50(T)-1 or the amount of days to reach 50% of 

maximum infectiousness in a mosquito population) of P. falciparum at each temperature (14). 

𝑅0(𝑇)𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒 = √
𝑎(𝑇)2𝑏𝑐(𝑇)ϒ(𝑇)𝐵(𝑇)𝑝𝐸𝐴(𝑇)𝑀𝐷𝑅(𝑇)𝑙𝑓(𝑇)2

𝑁𝑟
 (Eq. 2) 

As we do not include values for host-specific traits such as N or r, and assume these traits are 

temperature-independent, our static R0 expression is a relative metric of temperature suitability for transmission 

as opposed to the traditional interpretation of R0 as a metric of disease invasion into a fully susceptible 

population. Further, absolute values of R0 additionally depend on location-specific factors such as breeding 

habitat availability, vector biting preference, host availability, disease control efforts, intra- and inter- species 

interactions, along with additional abiotic factors. Thus, the relative R0 framework is adopted, and the 

relationship between relative R0 and temperature is used to evaluate the impact of model parameterization on 

the thermal suitability for P. falciparum transmission by An. stephensi mosquitoes.  

Fitting thermal responses in a Bayesian framework 



To predict the thermal limits (Tmin, Tmax) and optimum (Topt) for each parameter, we used Bayesian 

inference to fit either a symmetric (quadratic; -c(T-Tmin)(T-Tmax)) or an asymmetric (Briere; cT(T-Tmin)(Tmax-

T)1/2) unimodal non-linear function to each trait versus temperature (T, in degrees Celsius) as in Johnson et al. 

2015 (10). Note the parameter c is a fit parameter that controls the shape of each respective function. These 

functions were further restricted to be non-negative. That is, all traits are assumed to be zero if T < Tmin or T > 

Tmax). We assumed that data are distributed as truncated normal distributions with the means for each block and 

temperature described by either the quadratic or Briere function as above. We selected the best-fitting functional 

form for the mean between quadratic or Briere using the Deviance Information Criterion (DIC) (15)(SI_Table 

6). We chose to fit thermal responses to the data means across individuals for each replicate as opposed to the 

raw individual data due to 1) the data exhibiting extreme non-normality for some traits (e.g., lifetime egg 

production, estimated daily eggs, and lifespan) and thus 2) to ensure compliance with the central limit theorem 

(CLT) when fitting truncated normal distributions. Developing methodology to account for the non-normal 

distributions associated with observing individual level data is a key research gap to refine predictions of 

thermal suitability of transmission events and is an area of future work.  

 For each parameter in the mean function (i.e., c, Tmin, Tmax) and the variance of the truncated normal 

distribution, we assumed relatively uninformative uniform priors that restrict the range of parameters to 

biologically meaningful values.  More specifically, we first fit curves with uninformative priors restricted to 

biologically informed ranges (T0 ~ uniform (0, 24), Tm ~ uniform (25, 45), c ~ uniform (0, 1)) , followed by 

informative priors derived from traits estimated in a previous study (10) (assuming a gamma distribution over 

each component trait). A direct comparison of each temperature-trait response using either uninformative or 

informative priors is provided to illustrate the influence of informative priors on our trait fits presented in the 

main text (SI_Figure 1). No fit with informative priors was conducted for lifetime egg production (B) 

(SI_Figure 1C) as Johnson et al. 2015 (10) did not fit this trait and thus appropriate priors did not exist. 

Further, we choose to use the fit using uninformative priors for estimated daily eggs (EFD*) as informative 

priors altered the thermal response outside the observed data and drastically increased the credible intervals. 



This is likely associated with the large uncertainty associated with the prior fit observed in Johnson et al. 2015 

(9, 10).   

Models were fitted in R using JAGS/rjag (16, 17) , which implements Markov Chain Monte Carlo 

(MCMC). For details of the specific algorithm see (16) (17). For each thermal trait, posterior draws for the 

parameters were obtained from three concurrent Moarkv chains. In each chain, a 5,000-step burn-in phase was 

followed by 20,000 samples of the stationary chain, for a total of 60,000 posterior samples. These samples were 

then thinned by saving every eighth sample, in order to further reduce autocorrelation in the chain and to reduce 

computation in the following analyses.  

We also defined temperature-trait responses for mosquito and parasite traits not directly measured in this 

study to assess the impact incorporating multiple trait thermal responses from a single mosquito species (An. 

stephensi), rather than aggregated from several different mosquito species, has on relative R0(T). An. stephensi 

data from (18) and (14) were used to construct temperature-trait relationships for mosquito development rate 

(MDR), probability of egg to adult survival (pEA), P. falciparum development rate (PDR) and vector competence 

(bc) (SI_Figure 1G-J). In contrast, for the Multi-species estimated model we used the thermal relationships 

defined in (10). 

Mapping seasonal transmission range 

 We generated maps depicting the number of months an area is predicted to be thermally suitable for 

transmission of human malaria (P. falciparum) to illustrate the potential impact differences in the thermal 

breadth among our relative R0(T) models have across a relevant landscape. We were primarily interested in 

comparing the area predicted to be thermally suitable for P. falciparum transmission year-round between our 

two An. stephensi relative R0(T) models incorporating either estimated or observed lifetime trait values across 

the current distribution of An. stephensi. However, we also draw comparisons between our An. stephensi models 

(An. stephensi estimated and lifetime) and a previously derived relative R0(T) model (Multi-species estimated), 

which aggregates trait data from multiple mosquito and parasite species intended to describe P. falciparum 

transmission in the An. gambiae system. This latter comparison serves to illustrate the potential differences in 

temperature suitability among vectors. Using the posterior median model output, we calculated R0(T) values at 



0.2˚C increments, at a 0.01 level accuracy of model output, rescaled the R0(T) values from 0-1, and plotted 

transmission suitability where R0(T) >0 as in Tesla et al. 2018 (11). Using the GADM global administrative 

boundaries data we estimated the land area with year-round thermal suitability within countries that span the 

current range for An. stephensi: India, Pakistan, Sri Lanka, Qatar, United Arab Emirates, and Oman (19).  

Sensitivity and uncertainty analyses on An. stephensi R0(T) models 

 To determine if R0(T) formulation (Eq. 1 versus Eq. 2) affected the sensitivity and uncertainty of R0 to 

trait parameters, we performed two types of sensitivity analyses and an uncertainty analysis on our two An. 

stephensi R0(T) models. For a similar analysis on the Multi-species estimated model see (10). Specifically, our 

An. stephensi lifetime model contains one less µ term due to the substitution of lifetime egg production (B) for 

EFD/µ and allows age-dependent daily mortality in the proportion of mosquitoes surviving the latency period 

(ϒ). First, to illustrate the degree to which a small change in trait x affects R0 at a given temperature (T), a model 

derivative (dR0/dx) was divided by R0 for each trait x, to give dR0/ (R0 dx) or the standardized sensitivity of R0 to 

trait x across all temperatures. Second, to demonstrate the impact of temperature sensitivity of a given trait x on 

R0, relative R0(T) was calculated with each trait held at a constant value and allowing the other parameters to 

vary with temperature. Finally, we estimated the uncertainty in R0 introduced through uncertainty in each 

temperature-trait relationship. To do this we calculated R0(T) by allowing each trait x to assume its full posterior 

distribution x(T) while setting all other traits to their posterior median thermal responses. Then, we calculated 

the width of the 95% credible interval on R0 at each temperature to estimate the partial uncertainty with respect 

to x. To determine the full uncertainty in relative R0(T), the width of the 95% credible interval of R0 at each 

temperature was calculated by allowing all parameters to assume their full posterior distribution. We then 

divided partial uncertainty for each trait by full uncertainty to estimate the proportion of total uncertainty in 

relative R0 that is driven by each trait x at each temperature T. 

Results 

Model formulation affects the sensitivity and uncertainty of relative R0(T) to trait parameters 



We conducted two types of sensitivity and an uncertainty analysis to determine if the differences in 

R0(T) formulations between the An. stephensi lifetime and An. stephensi estimated models affected the relative 

sensitivity and uncertainty of R0 to different trait parameters. Differences in model formulation did alter the 

thermal sensitivity of R0 to each trait parameter as well as which traits contributed most to uncertainty in R0 

across the thermal spectrum (SI_Figure 2, SI_Figure 3). However, direct comparison of the relative sensitivity 

and uncertainty of a given trait between R0 models should be interpreted cautiously, as traits are not equally 

represented between models. R0(T) was sensitive to lifespan (lf) and biting rate (a) in both An. stephensi models; 

however, the An. stephensi lifetime model exhibited less sensitivity to lifespan (lf) than the An. stephensi 

estimated model (An. stephensi lifetime; SI_Figure 2B,C & An. stephensi estimated; SI_Figure 2B,C). Much 

of our An. stephensi lifetime model uncertainty was attributed to lifetime egg production (B, across all 

temperatures), followed by vector competence (bc; cool temperatures), and lifespan (lf, warm temperatures) 

(SI_Figure 2D). In contrast, uncertainty around the temperature-trait relationship that contributed the largest 

proportion of uncertainty in the An. stephensi estimated model was from estimated (lf*) at temperatures greater 

than 25°C and estimated biting rate (a*, at intermediate to cooler temperatures),  (SI_Figure 3D). Estimated 

daily fecundity (EFD*, across all temperatures below 30 oC) also contributed to a fair amount of uncertainty in 

our An. stephensi estimated model (SI_Figure 3D). 

 

Discussion 

Study limitations 

Several methodological choices made throughout this study likely influenced the outcome of this 

experiment. First, we measured mosquito life history traits at constant temperatures. Mosquitoes and their 

pathogens live in thermally fluctuating environments and life history trait values derived at constant 

temperatures often differ from those measured under temperature fluctuation (18, 20, 21). However, it is not 

feasible to directly measure trait performance for all possible permutations of temperature fluctuations a 

mosquito could encounter, while the characterization of temperature-trait responses at constant temperatures is 

tractable. Second, all larvae were reared at the same standard temperature (27oC) and not at the temperature 



adult females were eventually held in order to meet the data inclusion criteria outlined in Mordecai et al 2013 

(8, 10). These inclusion criteria were adopted to isolate the effects of temperature on adult mosquito traits from 

carry-over effects of larval rearing temperature. Yet, numerous studies across different mosquito genera have 

shown the importance of carry-over effects of larval environments on aspects of adult life history (e.g., body 

size, survival, reproduction, biting rates, and vector competence) (22). Third, adult mosquitoes were not 

provided sugar during this experiment. Nutrition treatments can affect adult female life history such as biting 

rate, fecundity, and survival (23-26). However, the extent of sugar feeding of An. stephensi in highly urbanized 

centers is unknown. Fourth, these experiments were conducted with a laboratory strain of An. stephensi due to 

the logistical difficulties of acquiring field-based An. stephensi from malaria endemic regions. Evidence from 

other ectotherm and dipteran systems, including mosquitoes, suggests thermal adaptation does occur to local 

environments (27-31). In addition to the possibility of local adaptation, there is also substantial evidence across 

different mosquito genera that the ability to acquire and transmit pathogens can also vary across mosquito 

populations (32-34). Thus, wild populations of An. stephensi could have different temperature-trait responses 

and predicted environmental suitability for P. falciparum transmission than characterized in this study (35, 36). 

However, limited evidence comparing thermal performance in long standing colonies to recently field derived 

colonies suggests the thermal performance characterized from laboratory colonies might be reasonable 

reflections of thermal performance in the field for some mosquito species, though more work is needed across a 

diversity of systems to confirm this (36). For example, a recent study found mosquitoes from the wild and a 

laboratory colony of An. stephensi to have similar Plasmodium vivax infection rates (37), although this study 

did not compare infection rates across different temperatures. Finally, in our current study we measure trait data 

from uninfected adult An. stephensi mosquitoes. It is difficult to comment on how our data will vary from 

infected mosquitoes in the field as the presence or absence of life history trade-offs in Plasmodium infected 

Anopheline mosquitoes is controversial, and the interaction of trait responses (i.e., vector competence, biting 

rates, lifetime egg production) with temperature and age of exposure have not yet been characterized.   



Tables 

Supplementary Table 1: Generalized linear mixed models (GLMMs) for proportion imbibed blood 

Proportion imbibed blood 

Model (Intercept) Tscale Dscale 
Dscale: 

Tscale 
I(Dscale^2) I(Tscale^2) I(Dscale^3) 

I(Dscale^3)

: Tscale 

I(Dscale^3): 

I(Tscale^2) 
df LogLik AICc ΔAICc 

m17 -0.399 0.450 0.276 NA NA -0.203 -0.133 NA -0.052 7 -1612.83 3239.845 NA 

m13 -0.436 0.437 0.296 -0.071 NA -0.159 -0.183 NA NA 7 -1616.97 3248.127 8.282 

m16 -0.437 0.464 0.303 NA NA -0.145 -0.184 -0.019 NA 7 -1618.52 3251.215 11.37 

m20 -0.417 0.423 NA NA NA -0.224 -0.026 NA -0.059 6 -1621.16 3254.45 14.605 

m12 -0.513 0.452 -0.025 -0.041 0.060 -0.154 NA NA NA 7 -1633.98 3282.152 42.307 

m15 -0.548 0.499 0.356 NA NA NA -0.181 0.021 NA 6 -1636.96 3286.055 46.21 

m14 -0.548 0.498 0.358 0.030 NA NA -0.183 NA NA 6 -1637.44 3287.024 47.179 

m11 -0.634 0.514 0.0415 0.061 0.074 NA NA NA NA 6 -1653.12 3318.366 78.521 

m6 -0.579 0.498 0.0184 0.035 NA NA NA NA NA 5 -1656.13 3322.349 82.504 

m4 -0.585 0.495 0.012 0.026 NA NA NA NA NA 6 -1655.89 3323.91 84.065 

m1 -0.608 0.468 NA NA NA NA NA NA NA 3 -1665.59 3337.212 97.367 

m3 -0.583 0.486 0.051 0.010 NA NA NA NA NA 5 -1663.62 3337.329 97.484 

m5 -0.583 0.486 0.051 0.010 NA NA NA NA NA 5 -1663.62 3337.329 97.484 

m9 -0.583 0.455 0.051 NA NA NA NA NA NA 3 -1671.26 3348.558 108.713 

m10 -0.571 0.483 0.0582 0.039 NA NA NA NA NA 4 -1670.3 3348.67 108.825 

m7 -0.604 0.441 NA NA NA NA NA NA NA 2 -1673.39 3350.794 110.949 

m18 -0.263 NA NA NA NA -0.334 -0.047 NA -0.133 5 -1742.39 3494.874 255.029 

m19 -0.262 NA 0.006 NA NA -0.334 -0.049 NA -0.133 6 -1742.38 3496.905 257.06 

m2 -0.444 NA -0.059 NA NA NA NA NA NA 3 -1839.31 3684.655 444.81 

m8 -0.646 NA -0.095 NA NA NA NA NA NA 2 -1891.59 3787.205 547.36 

List of all GLMM models compared for selection of best-fitting values as determined by minimum corrected 

Akaike Information Criterion (AICc) and log-likelihood (LogLik) values generated in R. Models are ordered 

from best-fit to worst fit in table. For each fixed effect term included in the model the coefficient supplied by R 

is listed, if ‘NA” than that term was not included in the model.   



Supplementary Table 2: Generalized linear mixed models (GLMMs) for daily egg production 

Daily egg production 

Model (Intercept) Dscale Tscale 
Dscale : 

Tscale 
I(Dscale^2) I(Tscale^2) 

I(Dscale^2) : 

I(Tscale^2) 
I(Dscale^3) 

I(Dscale^3) : 

I(Tscale^2) 

I(Dscale^2): 

Tscale 
df LogLik AICc ΔAICc 

m19 2.673 0.327 0.369 -0.324 -0.502 -0.240 NA NA NA NA 8 -1532.94 3082.113 NA 

m13 2.624 0.312 0.366 -0.351 -0.456 -0.187 -0.057 NA NA NA 9 -1532.779 3083.85 1.737 

m14 2.469 0.368 0.395 -0.200 -0.484 NA NA NA NA NA 7 -1537.196 3088.573 6.46 

m18 2.469 0.368 0.395 -0.200 -0.484 NA NA NA NA NA 7 -1537.196 3088.573 6.46 

m10 2.465 0.362 0.421 NA -0.408 NA NA NA NA NA 6 -1540.273 3092.681 10.568 

m17 2.465 0.362 0.421 NA -0.408 NA NA NA NA NA 6 -1540.273 3092.681 10.568 

m12 2.531 0.348 0.422 NA -0.394 -0.083 NA NA NA NA 7 -1539.577 3093.335 11.222 

m22 2.645 0.356 0.418 NA -0.498 -0.206 0.107 NA NA NA 8 -1538.847 3093.926 11.813 

m24 2.528 0.364 0.382 NA -0.386 -0.085 NA NA NA 0.044 8 -1539.441 3095.115 13.002 

m21 2.235 0.343 0.461 NA NA -0.091 NA -0.160 0.096 NA 8 -1548.162 3112.557 30.444 

m15 2.259 0.180 0.361 -0.162 NA -0.209 NA NA NA NA 7 -1549.189 3112.559 30.446 

m11 2.237 0.209 0.387 NA NA -0.134 NA NA NA NA 6 -1550.62 3113.376 31.263 

m20 2.280 0.316 0.360 -0.169 NA -0.213 NA -0.088 NA NA 8 -1548.693 3113.619 31.506 

m8 2.112 0.226 0.390 NA NA NA NA NA NA NA 5 -1552.301 3114.699 32.586 

m16 2.126 0.335 0.391 NA NA NA NA -0.069 NA NA 6 -1551.989 3116.114 34.001 

m4 2.098 0.222 0.385 -0.044 NA NA NA NA NA NA 6 -1552.173 3116.481 34.368 

m5 2.098 0.222 0.385 -0.044 NA NA NA NA NA NA 6 -1552.173 3116.481 34.368 

m9 2.098 0.222 0.385 -0.044 NA NA NA NA NA NA 6 -1552.173 3116.481 34.368 

m1 2.098 0.222 0.385 -0.044 NA NA NA NA NA NA 7 -1552.173 3118.527 36.414 

m2 2.128 NA 0.308 NA NA NA NA NA NA NA 4 -1555.895 3119.854 37.741 

m6 2.128 NA 0.308 NA NA NA NA NA NA NA 4 -1555.895 3119.854 37.741 

m23 2.731 NA NA NA -0.465 -0.267 0.128 NA NA NA 6 -1556.472 3125.079 42.966 

m7 2.167 0.057 NA NA NA NA NA NA NA NA 4 -1564.466 3136.996 54.883 

m3 2.167 0.057 NA NA NA NA NA NA NA NA 4 -1564.466 3136.996 54.883 

List of all GLMM models compared for selection of best-fitting values as determined by minimum corrected 

Akaike Information Criterion (AICc) and log-likelihood (LogLik) values generated in R. Models are ordered 

from best-fit to worst fit in table. For each fixed effect term included in the model the coefficient supplied by R 

is listed, if ‘NA” than that term was not included in the model.   



 

 

  

Supplemental Table 3: Temperature and day effects on trait values 

Trait 
Model 

type 

Random 

Effects 
Family Fixed Effects Coef. χ² df p 

Proportion 

imbibed 

blood 

GLMM Female 

Binomial 

(link = 

'logit') 

(Intercept) -0.399     

Temperature 0.450 267.882 1 <0.001 

Day 0.276 16.915 1 <0.001 

Temperature2 -0.203 34.840 1 <0.001 

Day3 -0.133 35.202 1 <0.001 

Tempature2 

*Day3 
-0.052 13.293 1 <0.001 

Daily egg 

production 
GLMM Donor 

Gamma  

(link = 

'log') 

(Intercept) 2.673    

Temperature 0.369 38.379 1 <0.001 

Day 0.327 20.046 1 <0.001 

Temperature 

*Day 
-0.324 14.532 1 <0.001 

Temperature2 -0.240 8.911 1 0.003 

Day2 -0.502 35.725 1 <0.001 

Survivorship Survival Block 
Log-rank 

test 
Temperature 

 
220 5 <0.001 

 Distribution Exponential Gamma Gompertz 
Log-

normal 
Weibull 

 AIC 2979 2816 2758 2913 2773 



 

Supplemental Table 4: Survival distribution AIC values by temperature treatment 

Temperature 
Survival Distribution 

Exponential Gamma Gompertz Log-normal Weibull 

16 453 437 431 451 433 

20 451 428 418 439 422 

24 487 438 438 441 436 

28 759 720 693 746 708 

32 447 437 426 456 432 

36 380 346 325 360 336 

 

 

Supplemental Table 5: Source of data included in relative R0(T) models 

Model 
Parameter Source 

  a, B, lf bc, PDR MDR, pEA 

An. stephensia  this study Shapiro et al. 2017 Paaijmans et al. 2013 

multi-speciesb Johnson et al. 2015 Johnson et al. 2015 Johnson et al. 2015 

Parameters: daily biting rate (a), lifetime egg production (B), lifespan (lf), vector competence (bc), 

parasite development rate (PDR), mosquito development rate (MDR), and the probability of egg to 

adult survival (pEA).adenotes R0(T) models describing the thermal suitability of transmission of P. 

falciparum via An. stephensi. bindicates the previous R0(T) model intended to describe the thermal 

suitability of the transmission of P. falciparum via An. gambiae. 

 

  



Supplemental Table 6: Functional forms of thermal responses  

Trait Function DICa Parametersb 

  
   c Tmin Tmax 

biting rate (a) 
Briere -48.794 

0.000175776 3.490979 41.8226 
quadratic -16.295 

estimated biting rate (a*) 
Briere -50.941 

0.00009909 11.75336 43.94362 
quadratic -32.078 

lifespan (lf) 
Briere 100.235 

0.1210401 1.9334458 37.5509388 
quadratic 84.382 

estimated lifespan (lf*) 
Briere 82.377 

0.05050002 1.73644511 37.59197227 
quadratic 60.470 

lifetime egg production 

(B) 

Briere 163.676 
0.3335789 8.9871276 32.9394485 

quadratic 168.165 

estimated daily eggs 

(EFD*) 

Briere 72.796 
0.007258325 8.577127443 39.99476119 

quadratic 84.474 

pathogen development 

rate (PDR) 

Briere -79.868 
0.000054155 9.064107 43.51257 

quadratic -2.843 

vector competence (bc) 
Briere 5.308 

0.003672395 12.11497854 38.13451902 
quadratic -18.244 

prob. egg to adult 

survival (pEA) 

Briere -73.029 
0.00809132 15.35285981 36.95293814 

quadratic -63.677 

mosq. development rate 

(MDR) 

Briere -435.733 
0.000106632 13.36284 35.96712 

quadratic -300.965 

gamma (ϒ) 
Briere 10.859 

0.00317107 8.75713349 43.22849889 
quadratic -21.082 

aDeviance Information Criterian (DIC) were used to select the best-fitting functional form, where a more 

negative value represents a better fit. Model fits were assessed on the fits using uniformative priors. Quadratic 

function; -c(T-Tmin)(T-Tmax) or Briere function; cT(T-Tmin)(Tmax-T)1/2 with T representing temperature in degrees 

Celsius. bParameter values are based on means of MCMC simulations. Functional forms and parameters used in 

the relative R0 expression are bolded.  

 



Supplemental Table 7: Thermal thresholds of temperature-trait relationships for lifetime values and estimates 

Trait 
Lifetime 

Values 
Function Thermal threshold (95% CIa) 

    Tmin (°C) Topt (°C) Tmax (°C) Tbreadth (°C)b 

biting rate  

observed 

(a) 
Briere 

3.2 (0.2-6.6) 33.8 (32.2-35.4) 41.8 (39.8-44) 38.6 (33.2-43.8) 

estimated 

(a*) 
11.6 (5.6-17.2) 36.4 (33.2-40) 43 (40-45) 31.4 (22.8-39.4) 

lifespan  

observed 

(lf) 
quadratic 

1.6 (0-4.6) 19.6 (18.4-21.4) 37.6 (35.4-39.6) 36 (30.8-39.6) 

estimated 

(lf*) 
1.4 (0-4.4) 19.6 (18.2-21) 37.8 (35.8-39.6) 31.4 (30.8-39.6) 

lifetime 

egg 

production 

observed 

(B) 
Briere 8.8 (0-17.2) 27.6 (24-30) 33.2 (28.4-36) 24.4 (11.2-36) 

estimated 

(B*) 
Productc 8.4 (0-16.2) 26.8 (25.2-28.6) 39.8 (36.8-44.4) 31.4 (20.6-44.4) 

Thermal threshold values are based on median model outputs. aCI represents the credible interval of Bayesian 

fits. bTbreadth is the range of temperatures that the trait-function is greater than 0 (Tmax-Tmin). 
cProduct references 

that estimated lifetime egg production (B*) was not directly fit to data, but rather is the product of the 

temperature-trait relations for EFD* (Briere function) and lf* (Quadratic function). Data source is from the 

lifetable experiment conducted in this study. 

 

 

  

Supplemental Table 8: Thermal thresholds of relative R0(T) models 

R0(T) model Thermal threshold (95% CI) 

  Tmin (°C) Topt (°C) Tmax (°C) Tbreadth (°C)b 

An. stephensi lifetime 15.6 (14.8-18.6) 27 (26.8-27) 33 (28.6-35.8) 17.4 (10-21) 

An. stephensi estimated 15.6 (14.8-19.2) 27.6 (27.4-27.6) 35.8 (34.6-35.8) 20 (15.4-21) 

Multi-species estimated 19.2 (16.4-23) 25.6 (24.4-26) 32.4 (29.4-34.2) 13.2 (6.4-17.8) 

Thermal threshold values are based on scaled and rounded median model outputs. aCI represents the credible 

interval. bTbreadth is the range of temperatures that R0(T) > 0 (Tmax-Tmin). Thus, any temperature less than the Tmin 

or greater than the Tmax is deemed unsuitable for transmission to occur provided the vector is present. 

 



 

 

 

 

 

 

 

 

Supplemental Table 10: Area thermally suitable for year-round 

transmission 

Country Year-round temperature suitability Area (km2) 

  

An. stephensi  

lifetime 

An. stephensi  

estimated 

Multi-species 

estimated 

India 1,352,222 2,372,906 710,046 

Oman 225,632 299,702 103,645 

Pakistan 51,244 120,634 547 

Qatar 0 11,210 0 

Sri Lanka 65,996 65,991 64,299 

U.A.E. 4,415 79,856 78 

 

  

Supplemental Table 9: Thermal thresholds of Ƴ(T) across relative R0(T) models 

Model Thermal threshold (95% CI) 

  Tmin (°C) Topt (°C) Tmax (°C) Tbreadth (°C)b 

An. stephensi 

lifetime 
8.8 (5.8-11.2) 26 (24.6-27) 43.4 (41.4-45) 34.6 (30.2-39.2) 

An. stephensi 

estimated 
9.7 (9.1-12.9) 28.3 (27.4-29.2) 37.3 (34.6-38) 27.6 (21.7-28.9) 

Multi-species 

estimated 
14 (13-15) 24.8 (23.6-26) 34.4 (33.6-34.8) 20.4 (18.6-21.8) 

Thermal threshold values are based on scaled median model outputs. aCI represents the 

credible interval. bTbreadth is the range of temperatures that Ƴ(T) > 0 (Tmax-Tmin). 



Figures  

Supplemental Figure 1. Direct comparison of uniform to informative priors. Direct comparison on how the 

use of uniform (black) or informative (orange) priors influences the temperature-trait relationship and 95% 

credible intervals for (A) bite rate (a), (B) lifespan (lf), (C) lifetime egg production (B), (D) estimated biting rate 

(a*), (E) estimated lifespan (lf*), (F) estimated daily egg production (EFD*), (G) vector competence (bc), (H) 

parasite development rate (PDR), (I) probability of egg to adult survival (pEA), (J) mosquito development rate 

(MDR), (K) relative R0 (An. stephensi lifetime model), and (L) relative R0 (An. stephensi estimated model). 

Trait thermal performance curves from Johnson et al. 2015 (10) were used as informative priors. No fit with 

informative priors was generated for lifetime egg production (B) in panel C as Johnson et al. 2015 did not 

conduct a fit with data in this form. The uninformative fit for EFD* was used in the informative relative R0 

model for panel L as priors altered the curve shape away from our dataset and increased the credible intervals. 

Of note, the credible intervals (faded regions) describe the uncertainty around the mean value of the trait fit at 

each temperature, and do not represent a predictive interval on the data, which contains additional uncertainty 

due to the inferred normal distribution around the TPC means. 

  



Supplemental Figure 2. Histograms of the posterior distributions for the critical thermal thresholds for 

each observed and estimated trait. Histograms of the posterior distribution of the Bayesian fit using a 0.4°C 

bin width of the critical thermal thresholds (Tmin, Topt, and Tmax) between observed lifetime traits (black) and 

estimated lifetime traits (blue) for biting rate (a), lifespan (b), and lifetime egg production (c).  

  



Supplemental Figure 3. Histograms of the posterior distributions for the critical thermal thresholds for 

each relative R0 fit. Histograms of the posterior distribution using a 0.4°C bin width for each relative R0(T) 

model (Multi-species estimated: purple; An. stephensi lifetime: black; An. stephensi estimated: blue) across the 

Tmin (a), Topt (b), and Tmax (c) critical thresholds. 

 

 

  



Supplemental Figure 4. Sensitivity and uncertainty analysis on An. stephensi lifetime R0(T) model. 

Relative R0(T) An. stephensi lifetime model (A) with mean model outputs (solid black line) and 95% credible 

intervals (dashed black lines). Sensitivity analysis based on formula derivatives for An. stephensi lifetime R0(T) 

where for each trait x, dR0/dx was divided by R0, to give dR0/R0dx, or the standardized sensitivity of R0 to a 

parameter x, across all temperatures (B). A second sensitivity analysis based on setting each parameter constant 

across temperature for An. stephensi lifetime where relative R0(T) was calculated with a single trait held 

constant and allowing the other parameters to vary with temperature (C). Uncertainty analysis on An. stephensi 

lifetime (D). For the uncertainty analysis, each trait x was allowed to assume its full posterior distribution x(T), 

while setting all other traits to their posterior median thermal responses and calculating R0. Partial uncertainty 

with respect to trait x is the width of the 95% credible interval on R0(T) at each temperature. Full uncertainty 

was calculated by allowing all parameters to assume their full posterior distribution and calculating the width of 

the 95% credible interval of R0(T) at each temperature. Partial uncertainty for each trait divided by full 

uncertainty of R0(T) gives the proportion of total uncertainty in R0(T) that is driven by each trait x at each 

temperature, T.   



Supplemental Figure 5. Sensitivity and uncertainty analysis on An. stephensi estimated R0(T) model. 

Relative R0(T) An. stephensi estimated model (A) with mean model outputs (solid black line) and 95% credible 

intervals (dashed black lines). Sensitivity analysis based on formula derivatives for An. stephensi estimated 

R0(T) where for each trait x, dR0/dx was divided by R0, to give dR0/R0dx, or the standardized sensitivity of R0 to 

a parameter x, across all temperatures (B). A second sensitivity analysis based on setting each parameter 

constant across temperature for An. stephensi estimated where relative R0(T) was calculated with a single trait 

held constant and allowing the other parameters to vary with temperature (C). Uncertainty analysis on An. 

stephensi estimated (D). For the uncertainty analysis, each trait x was allowed to assume its full posterior 

distribution x(T), while setting all other traits to their posterior median thermal responses and calculating R0. 

Partial uncertainty with respect to trait x is the width of the 95% credible interval on R0(T) at each temperature. 

Full uncertainty was calculated by allowing all parameters to assume their full posterior distribution and 

calculating the width of the 95% credible interval of R0(T) at each temperature. Partial uncertainty for each trait 

divided by full uncertainty of R0(T) gives the proportion of total uncertainty in R0(T) that is driven by each trait x 

at each temperature, T.   



Supplemental Figure 6. Overlay of gamma (Ƴ), the proportion of mosquitoes surviving past the latency 

period used in the relative R0(T) models. The An. stephensi lifetime model incorporates the temperature-trait 

relationship for the parameter gamma, ϒ(T), the proportion of mosquitoes surviving the latency period. We 

generated ϒ(T) for the An. stephensi lifetime model by fitting a quadratic function with Bayesian inference over 

the proportion of mosquitoes alive (taken from the Gompertz fits to survivorship from each experimental 

replicate) upon completion of the predicted extrinsic incubation period (PDR50(T)-1) of P. falciparum at each 

temperature (as fit from the EIP50 values from (14)). ϒ(T) for the An. stephensi and multi-species estimated 

models can be derived indirectly from the following expression: ϒ(T)= exp[-µ*(T)/PDR(T)]. In the An. 

stephensi estimated model µ* was calculated by assuming an exponential function over a truncated portion of 

the Kaplan-Meier survival estimates as specified in (8). In the multi-species estimated model Ƴ(T) was also 

indirectly calculated using the expression ϒ(T)= exp[-µ*(T)/PDR(T)], however, µ*(T) and PDR(T) are from the 

fits generated in Johnson et al. 2015.   



 

Supplemental Figure 7. Thermal responses included in the An. stephensi relative R0(T) models. Thermal 

responses included in the An. stephensi relative R0(T) models. (A) bite rate (a), (B) lifespan (lf), (C) lifetime egg 

production (B), (D) estimated biting rate (a*), (E) estimated lifespan (lf*), (F) estimated daily egg production 

(EFD*), (G) vector competence (bc), (H) parasite development rate (PDR), (I) probability of egg to adult 

survival (pEA), and (J) mosquito development rate (MDR). Traits only included in the An. stephensi lifetime 

model (black; A-C); Traits only included in the An. stephensi estimated model (blue; D-F), or traits included in 

both An. stephensi models (green; G-J). 
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