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Supplemental Material for sMRT: Multi-Resident
Tracking in Smart Homes with Sensor

Vectorization

F

1 NOMENCLATURE

q Number of sensors in the smart home

si ith sensor in the smart home

zi The vector representation of i-th sensor in the
measurement space

c Window size for calculating sensor vectors

m The dimension of measurement space

r Resident identifier or track identifier

x The state vector of a single resident

X , Xk Finite set of resident state vectors (at time step
k)

X Single resident state vector space

z The vector representation of a sensor measure-
ment

Z , Zk Finite set of sensor observation (at time step k)

nZ The number of active sensors in the sensor
observation Z

N
(k)
r The number of residents who enter the smart

home at time step k

R
(k)
i The ith resident who enter the smart home at

time k

Dk(x) The multi-resident PHD at time step k

w
(i)
k The weight of the ith Gaussian component in

the multi-resident PHD Dk(x)

m
(i)
k The mean vector of the ith Gaussian component

in the multi-resident PHD Dk(x)

P
(i)
k The covariance matrix of the ith Gaussian com-

ponent in the multi-resident PHD Dk(x)

J The number of Gaussian components in a
Gaussian mixture.

F The linear multiplier of constant velocity dy-
namic model

Q The covariance matrix of the linear Gaussian
dynamic model

H The linear multiplier of the measurement
model

R The covariance matrix of the linear Gaussian
measurement model

∫
S f(X)δX Set integral on region S

Im Identity matrix of size m

λc Poisson event rate of the clutter process

c(z) Spatial distribution of the false alarms

x, xk m×1 vector representing the location of
a point target in the measurement space
(at time step k)

v, vk m×1 vector representing the velocity of
a point target

NR Number of residents in the multi-
resident smart home dataset

D Number of sensor events in the multi-
resident smart home dataset

2 CONSTANT VELOCITY MODEL

Let us consider a point target maneuvering in a m-
dimensional measurement space Z . The state vector of
each target is a (2m + 1) × 1 vector x =

[
xT vT r

]T
,

where x is an m × 1 vector representing the location of the
target in the measurement space Z , v is an m × 1 vector
representing the velocity of the resident in the space, and
r is an integer representing the target identifier. Based on
the constant velocity assumption, the velocity of the target
remains constant, and the location of the target at the next
time step k + 1, xk+1, can be calculated according to (1). In
(1), t is the virtual time span of each step.

xk+1 = xk + vkt (1)

Thus, in matrix format, the target state xk+1 can be
calculated as a linear function of the target state at previous
time step xk, as shown in

xk+1 =

xk+1

vk+1

r

 =

Im Imt 0
0 Im 0
0 0 1

xkvk
r

 = F · xk. (2)

However, in real-world applications, due to various en-
vironmental noise, an additive error term is introduced to
model such errors. With a m × 1 vector w denoting the
error of actual target velocity in the space with respect to
the assumed constant velocity in the previous target state,
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the state update function (4) can be derived by solving the
physical dynamic equation as shown in (3).

∂x

∂t
=

[
0 Im
0 0

] [
x
v

]
+

[
0
Im

]
w (3)

xk+1 = F · xk +G ·w (4)

In (4), F represents the linear motion multiplier, as
shown in (5), and G represents the linear error multiplier,
as shown in (6).

F =

Im Imt 0
0 Im 0
0 0 1

 (5)

G =

[
1
2 t

2Im
Im

]
(6)

3 GM-PHD FILTER

We start by considering a single-target scenario, where one
target is present in the space. At each time step, a single
sensor observation is acquired. The dynamic model of the
target is presented in the form of a conditional probability
density f(x|x′), which predicts the next state of the target,
x, based on its current state, x′. The measurement model is
also formulated as a conditional probability density, f(z|x),
representing the likelihood of a sensor observation z given
the target state x. Provided with the probability distribution
of target state fk−1(x) at time k−1, the target state probabil-
ity distribution at time step k, fk(x), can be calculated using
probability theory’s chain rule and Bayes’ rule according to
Equations 7 and 8.

fk|k−1(x) =
∫
f(x|x′)fk−1(x′)dx′ (7)

fk(x) =
f(z|x)fk|k−1(x)∫
f(z|x′)fk|k−1(x′)dx′

(8)

Equation 7 represents the predictor that generates the
target state probability density, fk|k−1(x), based on the
target state at time step k−1 and the dynamic model. Equa-
tion 8, representing the corrector, updates the probability
density generated by the predictor so that the likelihood of
the sensor observation at time step k is maximized. If the
dynamic model and the measurement model are both linear
and take the form of Gaussian distributions, the single target
Bayes filter can be reduced to the traditional Kalman filter
[1]. Otherwise, sequential Monte Carlo sampling methods,
also known as particle filters, can be used to numerically
solve both equations [2].

The situation gets more complicated when there are
multiple targets to track and the number of targets is un-
known. In this case, the states of all targets in the space are
modeled as a set X = x1, . . . ,xn ∈ F(X ) where F(X )
represents the collection of all finite subsets of the state
space X . Since the number of elements n in the set X is
a random variable in Z+

0 , the set X is called a random finite
set (RFS). Building on the finite set statistics (FISST) [3],
Mahler [1] has shwon that a multi-target probability density
function f(X) can be defined for the RFS X and propagated

similarly to the single-target Bayes filter shown in Figure 1.
The equations for the predictor and the corrector filter are
shown in Equations 9 and 10, respectively.

fk|k−1(X) =

∫
f(X|X ′)fk−1(X ′)dX ′ (9)

fk(X) =
f(Zk|X)fk|k−1(X)∫

f(Zk|X ′)fk|k−1(X ′)δX ′
(10)

Equation 9 mirrors (7) by replacing the single target
state variable x with the multi-target state set X , and the
vector integral with a set integral. The multi-target dynamic
model, represented by the conditional probability f(X|X ′),
predicts the state distribution of all targets given the states
of all targets at previous steps. In addition to the dynamics
of persisting targets (i.e., the existing residents still in the
space), the multi-target dynamic model must also consider
the birth of a new target (i.e., a resident entering the space
or becoming active) and the death of an existing target (i.e.,
a resident leaving the space or becoming inactive). The term
Zk = {z(k)1 , . . . , z

(k)

n
(k)
Z

} ∈ F(Z) in (10) is a set of n(k)Z

sensor observations taken at time step k. The multi-target
measurement model, fk(Z|X), represents the probability
density of a set of sensor observations, Z , when the states of
all residents in the space is characterized by the set X . The
multi-target measurement model encapsulates the informa-
tion about the likelihood of the sensor observations being
triggered by the existing targets in the space (i.e., an existing
resident triggering a sensor), the possibility that an existing
target fails to be detected by any sensor (i.e., an “active”
resident moving to a location not covered by any sensor),
and the cases where some sensor observations belong to
the clutter process due to sensor failures or communication
errors.

The major challenge of the multi-target Bayes filter is
the exponential growth of the computational complexity
during the numerical calculation of the set integrals and
multi-target probability density in Equations 9 and 10 when
the cardinality of X increases. To reduce the computational
complexity, Mahler [4] proposed a PHD filter that prop-
agates the first-order moment, or probability hypothesis
density (PHD), instead. Thus, both the predictor and the
corrector equation can be solved in polynomial time us-
ing sequential Monte Carlo sampling methods. To further
simplify the computation of the PHD filter, Vo and Ma
[5] proposed the GM-PHD filter, which is a closed-form
solution of the PHD filter where each PHD is represented
using Gaussian mixtures.

The PHD of an RFS X , denoted D(x) (x ∈ X ), parame-
terized by a multi-target probability density function f(X),
is a probability density function whose integral on any
region S of the state space X (S ⊆ X ) equals the expected
number of targets,N(S), in the region S [1]. Mathematically,
the PHD is defined as shown in (11), or equivalently in (12).∫

S
D(x)dx = N(S) =

∫
|X ∩ S| · f(X)δX (11)

D(x) =

∫
f({x} ∪W )δW (12)
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Fig. 1. The propagation pipeline of single-target Bayes filter, multi-target Bayes filter and PHD filter.
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Fig. 2. The propagation of multi-target PHD in a GM-PHD filter implemented in sMRT to solve the multi-resident tracking problem.

Figure 2 illustrates the PHD filter propagation pipeline
adapted to the context of multi-resident tracking. The PHD
propagation equation of the predictor and corrector can be
derived if the following assumptions are true.

• Each target (resident) evolves and generates sensor
observations independently of the others. Thus, we
can predict the state of each resident independently
using the dynamic model characterized by the condi-
tional probability distribution f(x|x′). Similarly, we
can also estimate the likelihood of a sensor observa-
tion triggered by some resident in the space indepen-
dently using the measurement model characterized
by the conditional probability distribution f(z|x).

• The clutter process is a Poisson point process (PPP) and
is independent of target-originated measurements.
The number of sensor observations that are not as-
sociated with any resident in the smart home at any
given time step follows a Poisson distribution with
parameter λc, while each false alarm follows a spatial
distribution c(z) (z ∈ Z).

• The distribution of resident states governed by PHD

Dk(x) at any time step k is Poisson.
• At every time step, an existing resident may leave

the home or become “inactive”. The probability of an
existing resident still being “active” in the following
time step is characterized by the target survival prob-
ability ps. Similarly, we can use the target detection
probability pd to characterize an “active” resident
who fails to be detected by any sensor. In order to
derive the PHD filter equations, both the survival
probability ps and the detection probability pd are
constant and independent of resident states.

• At time step k, a PHD, bk(x), representing the target
birth process (i.e., a resident being “active” again
or a new resident entering the home) is injected
into the predictor. The integral of the target birth
PHD, according to the definition of PHD in (11),
equals the expected number of new residents at the
corresponding time step.

With the above assumptions, the equations for the pre-
dictor and corrector in the PHD classifier can be derived
using (9) and (10), respectively. The posterior PHD of the
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predictor, as shown in (13), is the summation of the target
birth PHD, bk(x), and the predicted PHD, Ds,k−1(x), of
all persisting residents. The term Ds,k−1(x) can be calcu-
lated using (14). The posterior PHD of the corrector, as
shown in (15), is composed of two terms. The first term,
(1−pd)Dk|k−1(x), corresponds to the PHD of residents that
are not detected by any sensor. The second term, Dd,k(x), is
the PHD of the detected residents that are corrected by the
sensor observations Z(k) at time step k. The term Dd,k(x)
can be calculated according to (16).

Dk|k−1(x) = bk(x) +Ds,k−1(x) (13)

Ds,k−1(x) =
∫
psf(x|x′)Dk−1(x

′)dx′ (14)

Dk(x) = (1− pd)Dk|k−1(x) +Dd,k(x) (15)

Dd,k(x) =
∑
z∈Zk

pdf(z|x)Dk|k−1(x)

λcc(z) +
∫
pdf(z|x′)Dk|k−1(x′)dx′

(16)

In addition to the assumptions of the PHD filter, the GM-
PHD filter further makes the following assumptions.

• The dynamic model and the measurement model can
be represented as a linear Gaussian model as shown
in Equations 17 and 18.

f(x|x′) = N (x;Fx,Q) (17)

f(z|x) = N (z;Hx,R) (18)

• The intensity of the target birth PHD, bk(x), can be
represented in the form of a Gaussian mixture as
shown in (19), where Jb,k is the number of Gaussian
components in the target birth PHD, and w

(i)
b,k, m(i)

b,k

and P
(i)
b,k are the weight, mean vector and covariance

matrix of the ith Gaussian component in the target
birth PHD.

bk(x) =

Jb,k∑
i=1

w
(i)
b,kN

(
x;m

(i)
b,k,P

(i)
b,k

)
(19)

Suppose that the PHD of resident states at time step k−1
is a Gaussian mixture as shown in

Dk−1(x) =
Jk−1∑
i=1

w
(i)
k−1N

(
x;m

(i)
k−1,P

(i)
k−1

)
. (20)

By substituting (17), (19) and (20) into (13), the posterior
PHD of the predictor can be represented in the form of a
Gaussian mixture as shown in (18).

Dk|k−1(x) =
Jb,k∑
i=1

w
(i)
b,kN

(
x;m

(i)
b,k,P

(i)
b,k

)

+ pd

Jk−1∑
i=1

w
(i)
k−1N

(
x;Fm

(i)
k−1, (Q+ FP

(i)
k−1F

T )
)

(21)

For simplicity, we rewrite the posterior PHD of the
predictor as shown in (22).

Dk|k−1(x) =

Jk|k−1∑
i=1

w
(i)
k|k−1N

(
x;m

(i)
k|k−1,P

(i)
k|k−1

)
. (22)

By substituting (18) and (22) into (15), the posterior PHD
of all residents at time k can be calculated as in

Dk(x) =(1− pd)
Jk|k−1∑
i=1

w
(i)
k|k−1N

(
x;m

(i)
k|k−1,P

(i)
k|k−1

)

+
∑
z∈Zk

Jk|k−1∑
j=1

w
(j)
k (z)N

(
x;m

(j)
k (z),P

(j)
k

)
.

(23)

In (23),

w
(j)
k (z) =

pdw
(j)
k|k−1q

(j)
k (z)

λcc(z) + pd
∑Jk|k−1

i=1 w
(i)
k|k−1q

(i)
k (z)

(24)

q
(j)
k (z) = N

(
z;Hm

(j)
k|k−1,R+HP

(j)
k|k−1H

T
)

(25)

m
(j)
k (z) = m

(j)
k|k−1 +K

(j)
k (z−Hm

(j)
k|k−1) (26)

P
(j)
k = (I−K

(j)
k H)P

(j)
k|k−1 (27)

K
(j)
k = P

(j)
k|k−1H

T (HP
(j)
k|k−1H

T +R)−1 (28)

According to the predictor and the corrector of the GM-
PHD filter as shown in (21) and (23), the number of Gaussian
components in the PHD grows from Jk−1 at time step k− 1
to (Jb,k + Jk−1)|Z(k)| at time step k. To balance compu-
tational complexity with accuracy, a maximum number of
Jmax Gaussian components with the highest weights are
kept and propagated through time.
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