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Supplementary Methods 

 

Details of SPREAD Model used in the current study 

In this study, we adapted the original SPREAD pipeline (technical details can be found in [1]) for 

subject-specific analysis. The statistical model for this approach is represented as follows 

 𝔻𝑡𝑖 = 𝛷(𝑧𝑖) + 𝛽(𝑧𝑖) ⋅ 𝐼{𝑡 = 𝑝𝑜𝑠𝑡} + 𝜖𝑡𝑖  for 𝑖 = 1, … , 𝐼 and 𝑡 = 𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡. 
  (1) 

Here 𝔻𝑡𝑖  is a set of tensor-derived parameters (e.g., the FA map used in this study) for a subject 

measured at the pre- or post-scan. 𝑧𝑖 represents the 3-dimensional spatial coordinate vector for 

the 𝑖𝑡ℎ voxel, 𝑖 = 1,2, … , 𝐼. The pre-season image (i.e., 𝔻𝑝𝑟𝑒,𝑖), is modeled as a continuous 

spatial function 𝛷(𝑧𝑖) superimposed on unknown measurement errors 𝜖𝑡𝑖  with joint-distribution 

function 𝐹𝜖(⋅). This joint-distribution function does not need to be normal and we only assume it 

to be invariant under temporal permutation. 𝐼{𝑡 = 𝑝𝑜𝑠𝑡} is the indicator function of the post-

scan, and the difference between pre- and post-season images, 𝛽(𝑧𝑖), is also modeled as a 

continuous spatial function.  

 

Spatial Regression: 
The fitted FA maps were defined as 

 𝐹𝐴𝑡𝑖
(𝑘)

=
∑ 𝐾ℎ

𝐼
𝑗=1 (𝑧𝑖−𝑧𝑗)𝐹𝐴𝑡𝑖

∑ 𝐾ℎ
𝐼
𝑗=1 (𝑧𝑖−𝑧𝑗)

. 

  (2) 

where 𝑧𝑖, 𝑧𝑗 are 3-dimensional coordinate vectors associated with the 𝑖𝑡ℎ and 𝑗𝑡ℎ  voxel, 𝐾ℎ(⋅) is 

a kernel function and ℎ is a tuning parameter which controls its bandwidth. In this study, 𝐾ℎ(⋅) is 

the standard Gaussian Kernel function and ℎ is the full width at half maximum (FWHM). The 

relationship between FWHM and the standard deviation of the Gaussian distribution is ℎ =

2√2𝑙𝑛2𝜎 ≈ 2.35𝜎 voxels. The temporal differences were summarized by the statistic defined as 

𝛥𝐹𝐴𝑖
(𝑘)

= |𝐹𝐴𝑝𝑜𝑠𝑡,𝑖
(𝑘)

− 𝐹𝐴𝑝𝑟𝑒,𝑖
(𝑘)

|. 

 

Hypothesis testing: 
The null hypothesis is 𝐻𝑖0: 𝛽(𝑧𝑖) = 0, i.e. no significant difference between pre- and post-scan 

images at the 𝑖𝑡ℎ voxel. Under the assumption that 𝐹𝜖(⋅) is invariant for temporal permutation, 

permuting the time label of the observation would not affect the distribution function of 𝐹𝐴𝑡𝑖 if 

𝛽(𝑧𝑖) = 0. Therefore, under the null hypothesis, the detected abnormal region can be defined as 

the set of voxels at which 𝐻𝑖0 is rejected by a permutation-based test. Specifically, we randomly 

permute the time label (pre and post) of each voxel, and refit the spatial regression model (2). 

The fitted values and the summary of temporal differences are labeled as 𝐹𝐴𝑡𝑖
(𝑘)

 and 𝛥𝐹𝐴𝑖
(𝑘)

, 

respectively, for 𝑘 = 1,2, … , 𝐾 permutations. We define the permutation-based p-value for the 

𝑖𝑡ℎ voxel as 𝑝𝑖 =
1

𝐾
∑ 𝐼(𝛥𝐹𝐴𝑖

(𝑘)
≥ 𝛥𝐹𝐴𝑖

(0)
)𝐾

𝑘=1 . Due to the large number of hypotheses (voxels) to 

be tested, we must use a suitable multiple testing procedure to control for overall type I error. 

Two MTPs are used in this study: the Benjamini-Hochberg procedure and the Westfall and 

Young procedure. The first one controls the false discovery rate and the latter controls for 

family-wise error rate. Both procedures are consistent under positive quadrant correlation and 

known to work well with permutation-based inferences. 



Functional norms: 
In this study, we developed several global statistics based on functional norms to summarize the 

overall temporal changes in DTI images. Recall that after the spatial regression, FA (or other 

DTI derived quantities such as MD) maps for the 𝑠th individual before and after the football 

season are represented as real valued spatial functions 𝐹𝐴𝑠,𝑝𝑟𝑒
(0)

(𝒛) and 𝐹𝐴𝑠,𝑝𝑜𝑠𝑡
(0)

(𝒛), respectively. 

Due to the smoothing nature of the Nadaraya-Watson kernel regression and the fact that they are 

defined on compact domains (the dimensions of the brain images are finite), both 𝐹𝐴𝑠,𝑝𝑟𝑒
(0)

(𝒛) and 

𝐹𝐴𝑠,𝑝𝑜𝑠𝑡
(0)

(𝒛) are smooth and bounded, which implies that they are members of functional spaces 

𝐿𝑝(Ω, 𝑩, dλ), where Ω ⊂ 𝑹3 is the image domain, 𝑩 is the Borel 𝜎-algebra, and dλ is the 

Lebesgue measure. The 𝐿𝑝  norm is a generalization of Euclidean length to functional spaces, 

which can be defined as follows 

‖𝑓‖𝑝 ≔ (∫ |𝑓(𝒛)|𝑝dλ
Ω

)

1
𝑝

,      1 ≤ 𝑝 < ∞.  

As a generalization, it is customary to define the 𝐿∞ norm as the essential supremum of a spatial 

function as follows 

‖𝑓‖∞ ≔ inf{𝐶 ≥ 0: |𝑓(𝒛)|, for 𝑎. 𝑒. 𝒛 ∈ 𝑹3}. 

More details of the 𝐿𝑝  spaces and 𝐿𝑝  norms can be found in most functional analysis textbooks, 

such as [2]. 

Meta-analysis:  
We conducted a meta-analysis based on a novel robust p-value combination test based on the 

Beta-distribution. Our objective was to combine p-value maps of all 28 contact athletes into a 

single group-level p-value map, and then select common change regions based on this single 

map. 

Arguably, the most classical p-value combination method is Fisher's p-value combination test, 

which can be described as follows, 

𝑄𝑖: = −2 ∑ ln

𝑁

𝑛=1

𝑝𝑛𝑖 ,   𝑄 ∼ 𝜒2𝑁
2 , 𝑃𝑖 ≔ 1 − 𝐹

𝜒2𝑁
2 (𝑄𝑖). 

Here 𝑝𝑛𝑖, 𝑛 = 1,2, … 𝑁 represent the p-value of voxel 𝑖 for the nth subject, 𝐹
𝜒2𝑁

2 (𝑄𝑖) is the 

distribution function of Chi-squared distribution 𝜒2𝑁
2 , and 𝑃𝑖 is the combined p-value which 

follows a uniform distribution on (0,1) under the null hypothesis. However, Fisher's p-value 

combination test is not suitable in the context of permutation test due to the granularity of 

permutation p-values. It's obvious that one assumption for Fisher's p-value combination test is 

that all 𝑝𝑖s must be positive, so that ln 𝑝𝑛𝑖 is well defined. For permutation tests, 𝑝𝑖s may be 

exactly zero because we cannot use infinitely many permutations, which breaks this assumption. 

Furthermore, this test is not robust to occasional outliers in the sample, because very small 𝑝𝑛𝑖s 

have disproportionately large impact on the combined p-value: one extremely small 𝑝𝑛𝑖  (possibly 

due to outliers in the data) can lead to the overall significance, even if all other subjects are not 

significant. 



As an alternative, we proposed the following robust p-value combination test based on the 

median p-value map, denoted by med(𝒑𝒊), where 𝒑𝒊 is the vector of 𝑝𝑛𝑖s pooled from all subjects. 

We use the following summary statistic to capture the overall significance of the data 

 

𝑆𝑖: = {
med(𝒑

𝒊
),                               𝑛 is odd

c(n) (med(𝒑
𝒊
) −

1

2
) +

1

2
,    𝑛 is even

,     𝑐(𝑛) ≔ √
𝑛+1

𝑛
,      𝑃𝑖 ≔ 1 − 𝐹

Beta(
𝑛+1

2
,
𝑛+1

2
)
(𝑆𝑖). 

  (3) 

When n is an odd number, it's well known that 𝑆𝑖 = med(𝒑𝑖) follows a Beta-distribution 

Beta(
𝑛+1

2
,

𝑛+1

2
) based on the theory of order statistics, therefore we can compute an overall p-

value 𝑃𝑖 based on the distribution function of Beta(
𝑛+1

2
,

𝑛+1

2
). When n is even, the distribution of 

med(𝐩) is more complex but it can be proven that the adjusted median, 𝑆𝑖 = c(n) (med(𝒑𝒊) −
1

2
) +

1

2
, has the same mathematical expectation as Beta(

𝑛+1

2
,

𝑛+1

2
), so using the quantile function 

of Beta(
𝑛+1

2
,

𝑛+1

2
) will lead to a well approximated overall p-value in this case. 

 

The algorithm used in our meta-analysis can be summarized as follows 

1. Apply affine registration on the fitted difference maps, which is implemented by R package 

RNiftyReg 
2. Record the affine transformation matrices and then apply them to the p-value maps. 

3. Calculate sample median p-values from all 28 unadjusted p-value maps. 

4. Use adjusted Beta-distribution to compute the combined p-value maps. 

5. Apply a suitable multiple testing adjustment, such as Holm-Bonferroni procedure which 

controls familywise error rate, to get the adjusted combined p-value map. Of note, while the 

WY procedure also controls for the family-wise error rate, it is a permutation-based MTP 

which is not directly applicable to p-value combination test. 

6. Select significant voxels based on this adjusted combined p-value map, which is presented 

in Fig. 3. 

  



Supplementary Fig. 1: Examples of SPREAD Parameter Combinations 

 
(A) A visualization of the actual small synthesized signal created in the simulation study. (B) 

Region of significantly changed voxels detected by SPREAD at a smoothing bandwidth of 5 and 

using the Benjamini-Hochberg procedure. (C) A visualization of the actual small synthesized 

signal created in the simulation study. (D) Region of significantly changed voxels detected by 

SPREAD at a smooth bandwidth of 5 and using the Westfall-Young procedure. (E) A 

visualization of the actual medium synthesized signal created in the simulation study. (F) Region 

of significantly changed voxels detected by SPREAD at a smoothing bandwidth of 10 and using 

the Benjamini-Hochberg procedure. (G) A visualization of the actual medium synthesized signal 

created in the simulation study. (H) Region of significantly changed voxels detected by SPREAD 



at a smooth bandwidth of 10 and using the Westfall-Young procedure. (I) A visualization of the 

actual large synthesized signal created in the simulation study. (J) Region of significantly 

changed voxels detected by SPREAD at a smoothing bandwidth of 19 and using the Benjamini-

Hochberg procedure. (K) A visualization of the actual large synthesized signal created in the 

simulation study. (L) Region of significantly changed voxels detected by SPREAD at a smooth 

bandwidth of 19 and using the Westfall-Young procedure. (M) A visualization of the small 

synthesized signal from the simulation study. (N) A visualization of the medium synthesized 

signal from the simulation study. (O) A visualization of the large synthesized signal from the 

simulation study.



Supplementary Fig. 2. All athletes’ individual raw p-value map at registered slice 32. 

 
The yellow/red highlighted regions of the brain are voxels with associated raw p-values of 

<0.002 when comparing the pre-season to post-season scans. The red voxels are associated with 

a lower raw p-value than the yellow ones. 

 

 

 

 



Supplementary Fig. 3. Significant (𝑝 < 0.002) temporal changes of FA values (post-season – 

pre-season) for all athletes at registered slice 32. Blue color is used to represent decreased FA 

values and red represents increased FA values. The overwhelming majority (93.3%) of 

significant voxels have decreased FA values after the football season. 

 

  



Supplementary Fig. 4: Removal of the ringing artifacts 

 

An illustration of the ringing artifacts and our strategy of removing them. First, we detect the 

foreground and background of the FA map by a pre-specified intensity threshold such as 0.01. 

Next, we enlarge the background mask by a pre-specified Euclidean distance such as two voxels 

in all 26 spatial directions. The final foreground mask is defined as the set complement of the 

enlarged background map. This procedure is implemented as function MountDoom() in our 

software package. 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Table 1. Basic demographics for all contact athletes and controls 

 

ID # Age Handedness Race Position Mid-season concussion Comment 

2 21.8 Right Other Strong Safety  0  

3 19.1 Right Black Outside Line Backer 0  

4 18.6 Right White Offensive Lineman  0  

5 20.1 Right White Outside Line Backer 0  

6 19.1 Right White   Excluded PIP* 

7 19.6 Right White Wide Receiver 0  

8 22.0 Left White Corner Back  0  

10 18.9 Right White Defensive Tackle  0  

11 21.6 Left  Black Wide Receiver 0  

12 21.1 Right White Defensive End 0  

13 21.5 Right White Defensive Tackle  0  

14 19.7 Right White Defensive End  0  

15 19.9 Right White Inside Line Backer 0  

17 21.5 Right White Tight End 1  

18 19.4 Right Black Free Safety 0  

19 21.3 Left White Defensive End  0  

20 21.0 Right White Offensive Lineman  0  

21 19.0 Right Black Corner Back  0  

23 18.9 Left White Outside Line Backer 0  

24 19.0 Right White Strong Safety  0  

25 21.6 Right White Offensive Lineman  1  

26 21.4 Left Other Running Back  0  

27 21.6 Right White Strong Safety  0  

28 19.9 Right White Outside Line Backer 0  

29 19.7 Right White Corner Back  0  

31 18.8 Right Black Running Back  1  

32 19.6 Right White Tight End 0  

33 19.6 Right White Running Back  0  

34 19.7 Left White Offensive Lineman  0  

 

* PIP is poor DTI image processing 

 

 

Supplementary Table 2: Summary of helmet-based impact measures. LA: linear acceleration; 

RA: rotational acceleration; HIC15: head impact criterion 15; GSI: Gadd Severity Index; HITsp: 

helmet impact technology severity profile.  

 



Exposure Mean Min Max 

Total Hits 379 37 1057 

Mean     

LA 30 24 36 

RA 1931 1504 2288 

HIC 15 20 10 30 

GSI 30 15 46 

HITsp 18 15 20 

Peak     

LA 134 67 227 

RA 9213 5030 15217 

HIC 15 416 63 1096 

GSI 597 100 1411 

HITsp 97 36 229 

CUW     

LA 11562 885 31885 

RA 719341 63021 1847651 

HIC 15 7221 371 19600 

GSI 11022 581 30732 

HITsp 6563 572 17273 

TBH     

LA 718029406 20591682 2029992077 

RA 45091564064 1361704123 115032650410 

HIC 15 601069851 5117060 2326720102 

GSI 890000716 6600590 3511226283 

HITsp 393522625 16414424 1076179853 

TUA     

LA 283 21 812 

RA 18075 1476 47729 

HIC 15 172 10 519 

GSI 261 15 813 

HITsp 162 14 443 

TBH+TUA     

LA 20611549 332134 70455643 

RA 1384018628 21405493 5860030308 

HIC 15 15664952 84202 62212765 

GSI 22926740 112721 95355128 

HITsp 10931072 254411 30023615 

 

Supplementary Table 3. Correlations between helmet impact metrics and L1 bandwidth 

combinations. LA: linear acceleration; RA: rotational acceleration; HIC15: head impact criterion 



15; GSI: Gadd Severity Index; HITsp: helmet impact technology severity profile. “c.c” is the 

Spearman rank correlation coefficient (ρ). 

  Bandwidth 3 Bandwidth 5 Bandwidth 10 Bandwidth 15 

Metric HIM c.c. adjusted p-value c.c. adjusted p-value c.c. adjusted p-value c.c. adjusted p-value 

M
ea

n
 

LA 0.0454 1.0000 0.1138 0.5859 0.1232 0.5308 0.1368 0.4858 

RA 0.0668 1.0000 0.2414 0.3898 0.3525 0.1573 0.3870 0.1942 

HIC15 0.0213 1.0000 0.1478 0.5415 0.1888 0.3715 0.1779 0.4039 

GSI 0.0564 1.0000 0.1642 0.5026 0.2080 0.3586 0.2058 0.3651 

HITsp 0.0312 1.0000 0.2217 0.3898 0.3695 0.1573 0.4193 0.1942 

P
ea

k
 

LA 0.0274 1.0000 0.1128 0.5859 0.1609 0.4259 0.1593 0.4309 

RA 0.0000 1.0000 0.0925 0.6385 0.1686 0.4173 0.1675 0.4207 

HIC15 0.0044 1.0000 0.1237 0.5859 0.2014 0.3632 0.1932 0.3877 

GSI 0.0148 1.0000 0.1352 0.5667 0.1888 0.3715 0.1866 0.3924 

HITsp 0.0881 0.9351 0.2222 0.3898 0.2813 0.2178 0.2846 0.2365 

C
U

W
 

LA 0.3711 0.3077 0.3612 0.2441 0.3443 0.1573 0.3262 0.1942 

RA 0.3519 0.3077 0.3503 0.2441 0.3574 0.1573 0.3481 0.1942 

HIC15 0.3897 0.3077 0.4034 0.2441 0.3968 0.1573 0.3908 0.1942 

GSI 0.4149 0.3077 0.4149 0.2441 0.3935 0.1573 0.3875 0.1942 

HITsp 0.3558 0.3077 0.3503 0.2441 0.3476 0.1573 0.3355 0.1942 

T
B

H
 

LA 0.2742 0.3715 0.3383 0.2441 0.3695 0.1573 0.3421 0.1942 

RA 0.2315 0.4696 0.2989 0.2520 0.3519 0.1573 0.3361 0.1942 

HIC15 0.2895 0.3680 0.3870 0.2441 0.4023 0.1573 0.3530 0.1942 

GSI 0.2720 0.3715 0.3629 0.2441 0.3815 0.1573 0.3415 0.1942 

HITsp 0.2540 0.4104 0.3333 0.2441 0.3727 0.1573 0.3563 0.1942 

T
U

A
 

LA 0.3662 0.3077 0.3273 0.2441 0.3158 0.2037 0.2917 0.2365 

RA 0.3290 0.3077 0.3010 0.2520 0.3010 0.2052 0.2781 0.2388 

HIC15 0.2901 0.3680 0.3082 0.2520 0.3443 0.1573 0.3279 0.1942 

GSI 0.3246 0.3077 0.3333 0.2441 0.3563 0.1573 0.3426 0.1942 

HITsp 0.3262 0.3077 0.2961 0.2520 0.2983 0.2052 0.2846 0.2365 

T
B

H
+

T
U

A
 

LA 0.1554 0.7806 0.2167 0.3898 0.2775 0.2178 0.2682 0.2388 

RA 0.1494 0.7806 0.2206 0.3898 0.3071 0.2052 0.3032 0.2337 

HIC15 0.1275 0.8151 0.2042 0.4036 0.2677 0.2292 0.2534 0.2625 

GSI 0.1111 0.8581 0.1856 0.4473 0.2507 0.2576 0.2348 0.2975 

HITsp 0.1423 0.7806 0.2140 0.3898 0.2802 0.2178 0.2709 0.2388 

  



Supplementary Table 4. Correlations between helmet impact metric with L2 bandwidth 

combinations. LA: linear acceleration; RA: rotational acceleration; HIC15: head impact criterion 

15; GSI: Gadd Severity Index; HITsp: helmet impact technology severity profile. “c.c” is the 

Spearman rank correlation coefficient (ρ). Bold values signify significant correlations (adjusted 

p-value <0.05).  

  Bandwidth 3 Bandwidth 5 Bandwidth 10 Bandwidth 15 

Metric HIM c.c. adjusted p-value c.c. adjusted p-value c.c. adjusted p-value c.c. adjusted p-value 

M
ea

n
 

LA 0.1500 0.4763 0.1418 0.4863 0.1576 0.4214 0.1615 0.4101 

RA 0.1522 0.4763 0.2490 0.2506 0.3596 0.0830 0.3979 0.1340 

HIC15 0.1215 0.5549 0.1275 0.5162 0.2085 0.2954 0.1943 0.3314 

GSI 0.1680 0.4512 0.1719 0.4074 0.2271 0.2639 0.2239 0.2869 

HITsp 0.1002 0.6108 0.2288 0.2775 0.3700 0.0830 0.4116 0.1340 

P
ea

k
 

LA 0.2698 0.2146 0.2496 0.2506 0.2518 0.2255 0.2206 0.2869 

RA 0.2080 0.3442 0.1954 0.3528 0.2261 0.2639 0.2124 0.2964 

HIC15 0.2365 0.2810 0.2370 0.2684 0.2852 0.1694 0.2359 0.2711 

GSI 0.2857 0.1914 0.2693 0.2255 0.2917 0.1649 0.2469 0.2557 

HITsp 0.3076 0.1611 0.3229 0.1428 0.3673 0.0830 0.3465 0.1340 

C
U

W
 

LA 0.4997 0.0546 0.4915 0.0464 0.4143 0.0732 0.3558 0.1340 

RA 0.4959 0.0546 0.4981 0.0464 0.4330 0.0732 0.3755 0.1340 

HIC15 0.5583 0.0356 0.5523 0.0404 0.4817 0.0732 0.4275 0.1340 

GSI 0.5676 0.0356 0.5545 0.0404 0.4718 0.0732 0.4171 0.1340 

HITsp 0.4882 0.0546 0.4871 0.0464 0.4215 0.0732 0.3645 0.1340 

T
B

H
 

LA 0.4401 0.0613 0.4669 0.0464 0.4532 0.0732 0.3870 0.1340 

RA 0.4182 0.0693 0.4521 0.0497 0.4412 0.0732 0.3859 0.1340 

HIC15 0.4576 0.0613 0.4729 0.0464 0.4691 0.0732 0.3941 0.1340 

GSI 0.4494 0.0613 0.4631 0.0464 0.4587 0.0732 0.3870 0.1340 

HITsp 0.4379 0.0613 0.4729 0.0464 0.4641 0.0732 0.4094 0.1340 

T
U

A
 

LA 0.4324 0.0613 0.4149 0.0727 0.3706 0.0830 0.3016 0.1698 

RA 0.4067 0.0700 0.3941 0.0777 0.3645 0.0830 0.2972 0.1698 

HIC15 0.4012 0.0705 0.4056 0.0765 0.4198 0.0732 0.3591 0.1340 

GSI 0.4346 0.0613 0.4346 0.0593 0.4286 0.0732 0.3706 0.1340 

HITsp 0.4116 0.0700 0.3985 0.0777 0.3656 0.0830 0.3060 0.1698 

T
B

H
+

T
U

A
 

LA 0.3262 0.1611 0.3388 0.1331 0.3695 0.0830 0.3213 0.1607 

RA 0.3251 0.1611 0.3519 0.1255 0.3897 0.0830 0.3498 0.1340 

HIC15 0.3131 0.1611 0.3218 0.1428 0.3602 0.0830 0.3060 0.1698 

GSI 0.3065 0.1611 0.3114 0.1527 0.3470 0.0926 0.2868 0.1810 

HITsp 0.3153 0.1611 0.3372 0.1331 0.3684 0.0830 0.3207 0.1607 
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