Salmonella enterica serovar Typhi exposure elicits ex vivo cell-type-specific epigenetic changes in human gut cells

M.B. Sztein, A.C. Bafford, and R. Salerno-Goncalves

Supplementals

Supplementary table 1. Antibody panel used to evaluate chromatine changes

Atomic Mass:		Markers	
1	89 Y	CD45	
2	114 Cd	CD14	
3	141 Pr	EpCAM	
4	142 Nd	γ-H2AX	
5	143 Nd	HLA-DR	
6	144 Nd	CD38	
7	145 Nd	CD163	
8	146 Nd	CD8	
9	148 Nd	CD16	
10	149 Sm	CD45RO	
11	150 Nd	H3	
12	152 Sm	ΤCRγδ	
13	153 Eu	Arg-me2 (asy)	
14	154 Sm	H3K9me1	
15	155Gd	H2BK5ac	
16	156 Gd	H4K20me3	
17	159 Tb	CD161	
18	160 Gd	H2BK120ub	
19	162 Dy	CD69	
20	163 Dy	H3K4me3	
21	164 Dy	H3K14ac	
22	165 Ho	TCR V α 7.2	
23	166 Er	H4K16ac	
24	167 Er	CCR7	
25	169 Tm	CD19	
26	170 Er	CD3	
27	171 Yb	H4K20me1	
28	172 Yb	CD57	
29	173 Yb	PADI4	
30	174 Yb	CD4	
31	175Lu	Macro-H2A	
32	176 Yb	CD56	
33	209 Bi	CD11b	
Atomic Mass:		Other:	
34	191/193 lr	DNA content	
35	194/195 Pt	Live/dead stain	

	Antibody		
Chromatine profile	Clone	Vendor	Cat. #
<u>Histones</u> H3	D1H2	Cell Signaling Technology	4499S
<u>Histone Variant</u> Macro-H2A	14G7	Millipore	MABE61
Post-translational modifications			
H4K20me1 H4K20me3 H3K9me1 H3K4me3	5E10-D8 6F8-D9 7E7.H12 G.532.8	BioLegend Biolegend Biolegend ThermoFisher	828001 827701 824201 MA5-11199
<i>Acetylation</i> H2BK5ac H3K14ac H4K16ac	D5H1S D4B9 E2B8W	Cell Signaling Technology Cell Signaling Technology Cell Signaling Technology	12799S 7627S 13534S
<i>Phosphorylation</i> γ-H2AX	20E3	Cell Signaling Technology	9718S
<i>Citrullination</i> PAD4	OTI4H5	OriGene	CF504813
<i>Ubiquitination</i> H2BK120ub	D11	Cell Signaling Technology	5546S
Arginine Methylation Arg-me2 (asy)	13522	Cell Signaling Technology	13522S

Supplementary table 2. Epigenetic modifications evaluated in this manuscript

Supplementary Fig. 1. Gating procedure to identify cell lineage

Monocytes

minus uninfected)

Supplementary Fig. 2. Chromatin profiles of the epigenetic changes in monocytes induced by S. Typhi. Cells isolated cells from healthy terminal ileum surgical tissues were exposed to S. Typhi strain Ty2 (Ty2), and cultured as described in Fig. 1. Cells cultured with media only were used as controls (media). FCOM data of the 28 combinations within the acceptability criteria for changes of the chromatin marks are shown. Bars represent the net difference (S. Typhi-infected minus uninfected cultures). Bar graphs extend from the 25^{th} to 75^{th} percentiles; the line in the middle represents the median of the pooled data. The whiskers delineate the smallest to the largest value. These data are representative of three experiments with terminal ileum segments from 4 different donors, one replicate each. *P* values <0.05 were considered significant (red-colored box).

Epigenetic Markers

CD8

Epigenetic Markers

Net Difference (S. Typhi-infected minus uninfected)

Supplementary Fig. 3. Chromatin profiles of the epigenetic changes in CD8+ T-cells induced by S. Typhi. Cells isolated cells from healthy terminal ileum surgical tissues were exposed to S. Typhi strain Ty2 (Ty2), and cultured as described in Fig. 1. Cells cultured with media only were used as controls (media). FCOM data of the 28 combinations within the acceptability criteria for changes of the chromatin marks are shown. Bars represent the net difference (S. Typhi-infected minus uninfected cultures). Bar graphs extend from the 25^{th} to 75^{th} percentiles; the line in the middle represents the median of the pooled data. The whiskers delineate the smallest to the largest value. These data are representative of three experiments with terminal ileum segments from 4 different donors, one replicate each. *P* values <0.05 were considered significant (red-colored box).

Supplementary Fig. 4. Chromatin profiles of the epigenetic changes in CD3+ T-cells induced by S. Typhi. Cells isolated cells from healthy terminal ileum surgical tissues were exposed to *S*. Typhi strain Ty2 (**Ty2**), and cultured as described in **Fig. 1**. Cells cultured with media only were used as controls (**media**). FCOM data of the 28 combinations within the acceptability criteria for changes of the chromatin marks are shown. Bars represent the net difference (*S*. Typhi-infected minus uninfected cultures). Bar graphs extend from the 25th to 75th percentiles; the line in the middle represents the median of the pooled data. The whiskers delineate the smallest to the largest value. These data are representative of three experiments with terminal ileum segments from 4 different donors, one replicate each.

Supplemental Fig. 5. Chromatin profiles of the epigenetic changes in macrophages induced by S. Typhi. Cells isolated cells from healthy terminal ileum surgical tissues were exposed to *S*. Typhi strain Ty2 (**Ty2**), and cultured as described in **Fig. 1**. Cells cultured with media only were used as controls (**media**). FCOM data of the 28 combinations within the acceptability criteria for changes of the chromatin marks are shown. Bars represent the net difference (*S*. Typhi-infected minus uninfected cultures). Bar graphs extend from the 25th to 75th percentiles; the line in the middle represents the median of the pooled data. The whiskers delineate the smallest to the largest value. These data are representative of three experiments with terminal ileum segments from 4 different donors, one replicate each.

Epigenetic Markers

Supplemental Fig. 6. Chromatin profiles of the epigenetic changes in NK cells induced by S. Typhi. Cells isolated cells from healthy terminal ileum surgical tissues were exposed to S. Typhi strain Ty2 (**Ty2**), and cultured as described in **Fig. 1**. Cells cultured with media only were used as controls (**media**). FCOM data of the 28 combinations within the acceptability criteria for changes of the chromatin marks are shown. Bars represent the net difference (*S*. Typhi-infected minus uninfected cultures). Bar graphs extend from the 25th to 75th percentiles; the line in the middle represents the median of the pooled data. The whiskers delineate the smallest to the largest value. These data are representative of three experiments with terminal ileum segments from 4 different donors, one replicate each.

NK

minus uninfected)

Supplemental Fig. 7. Chromatin profiles of the epigenetic changes in B-cells induced by S. Typhi. Cells isolated cells from healthy terminal ileum surgical tissues were exposed to S. Typhi strain Ty2 (**Ty2**), and cultured as described in **Fig. 1**. Cells cultured with media only were used as controls (**media**). FCOM data of the 28 combinations within the acceptability criteria for changes of the chromatin marks are shown. Bars represent the net difference (*S*. Typhi-infected minus uninfected cultures). Bar graphs extend from the 25th to 75th percentiles; the line in the middle represents the median of the pooled data. The whiskers delineate the smallest to the largest value. These data are representative of three experiments with terminal ileum segments from 4 different donors, one replicate each, one replicate each.

divided by uninfected)

Supplemental Fig. 8. Chromatin profile of H3 histone changes in 11 cell subsets induced by S. Typhi. Cells isolated from healthy terminal ileum surgical tissues were exposed to *S*. Typhi strain Ty2 (**Ty2**), and cultured as described in **Fig. 1**. Cells cultured with media only were used as controls (**media**). Bars represent the fold difference (*S*. Typhi-infected divided by uninfected cultures). Bar graphs extend from the 25th to 75th percentiles; the line in the middle represents the median of the pooled data. The whiskers delineate the smallest to the largest value. These data are representative of three experiments with terminal ileum segments from 4 different donors, one replicate each. The doted lines express the data distribution within 95% confidence (± 2SD).

Supplemental Fig. 9. **Principal Component Analysis variances**. (**A**) The percent variation are plotted for each component (bars) and cumulatively (line).(**B**) Ability of PCA to separate FCOM data between media and Ty2 conditions. Each dot represents a single experimental condition, where each PC summarizes the variance of 308 data points for each of the 4 volunteers. (**C**) The principal component analysis parameter loadings (weighting coefficients) for the second component (PC2) is plotted. Colored bars represent the phenotypes with high (•) and moderate (•) variances in PC2.

Supplemental Fig. 10. Hierarchical clustering of all cell subsets using principal component analysis. Cells isolated from healthy terminal ileum surgical tissues were exposed to *S*. Typhi strain Ty2 (**Ty2**), and cultured as described in **Fig. 1**. Cells cultured with media only were used as controls (**media**). FCOM data of the 28 combinations (within the acceptability criteria for changes of chromatin marks) were used to perform an unsupervised principal component analysis (PCA). PCA compared sample changes before and after exposure to Ty2. PCA was performed using the ClustVis web tool. Rows were centered and unit variance scaling applied to rows. Rows were clustered using Euclidean distance and average linkage. Columns were clustered using correlation distance and average linkage. Trees ordering for both rows and columns display the tightest cluster first. Red boxes represent the phenotypes with high variances in PC2. These data are representative of three experiments with terminal ileum segments from 4 different donors, one replicate each.

Epithelial Cells

Supplemental Fig. 11. Hierarchical clustering of epithelial cell population using Principal component analysis. Cells isolated from healthy terminal ileum surgical tissues were exposed to *S*. Typhi strain Ty2 (**Ty2**), and cultured as described in **Fig. 1**. Cells cultured with media only were used as controls (**media**). FCOM data of the 28 combinations (within the acceptability criteria for changes of chromatin marks) were used to perform an unsupervised principal component analysis (PCA). PCA compared sample changes before and after exposure to Ty2. PCA was performed using the ClustVis web tool. Rows were centered and unit variance scaling applied to rows. Rows were clustered using Euclidean distance and average linkage. Columns were clustered using correlation distance and average linkage. Trees ordering for both rows and columns display the tightest cluster first. Red boxes represent the phenotypes with high variances in PC2. These data are representative of three experiments with terminal ileum segments from 4 different donors, one replicate each.

Supplemental Fig. 12. Hierarchical clustering of NKT cell population using Principal component analysis. Cells isolated from healthy terminal ileum surgical tissues were exposed to *S*. Typhi strain Ty2 (**Ty2**), and cultured as described in **Fig. 1**. Cells cultured with media only were used as controls (media). FCOM data of the 28 combinations (within the acceptability criteria for changes of chromatin marks) were used to perform an unsupervised principal component analysis (PCA). PCA compared sample changes before and after exposure to Ty2. PCA was performed using the ClustVis web tool. Rows were centered and unit variance scaling applied to rows. Rows were clustered using Euclidean distance and average linkage. Columns were clustered using correlation distance and average linkage. Trees ordering for both rows and columns display the tightest cluster first. Red boxes represent the phenotypes with high variances in PC2. These data are representative of three experiments with terminal ileum segments from 4 different donors, one replicate each.

NKT cells

MAIT cells

Supplemental Fig. 13. Hierarchical clustering of MAIT cell population using Principal component analysis. Cells isolated from healthy terminal ileum surgical tissues were exposed to S. Typhi strain Ty2 (Ty2), and cultured as described in Fig. 1. Cells cultured with media only were used as controls (media). FCOM data of the 28 combinations (within the acceptability criteria for changes of chromatin marks) were used to perform an unsupervised principal component analysis (PCA). PCA compared sample changes before and after exposure to Ty2. PCA was performed using the ClustVis web tool. Rows were centered and unit variance scaling applied to rows. Rows were clustered using Euclidean distance and average linkage. Columns were clustered using correlation distance and average linkage. Trees ordering for both rows and columns display the tightest cluster first. Red boxes represent the phenotypes with high variances in PC2. These data are representative of three experiments with terminal ileum segments from 4 different donors, one replicate each.

TCR- $\gamma\delta$ cells

Supplemental Fig. 14. Hierarchical clustering of TCR- $\gamma\delta$ cell population using Principal component analysis. Cells isolated from healthy terminal ileum surgical tissues were exposed to *S*. Typhi strain Ty2 (**Ty2**), and cultured as described in **Fig. 1**. Cells cultured with media only were used as controls (media). FCOM data of the 28 combinations (within the acceptability criteria for changes of chromatin marks) were used to perform an unsupervised principal component analysis (PCA). PCA compared sample changes before and after exposure to Ty2. PCA was performed using the ClustVis web tool. Rows were centered and unit variance scaling applied to rows. Rows were clustered using Euclidean distance and average linkage. Columns were clustered using correlation distance and average linkage. Trees ordering for both rows and columns display the tightest cluster first. Red boxes represent the phenotypes with high variances in PC2. These data are representative of three experiments with terminal ileum segments from 4 different donors, one replicate each.

Supplemental Fig. 15. Hierarchical clustering of CD4+ T-cell population using Principal component analysis. Cells isolated from healthy terminal ileum surgical tissues were exposed to *S*. Typhi strain Ty2 (**Ty2**), and cultured as described in **Fig. 1**. Cells cultured with media only were used as controls (**media**). FCOM data of the 28 combinations (within the acceptability criteria for changes of chromatin marks) were used to perform an unsupervised principal component analysis (PCA). PCA compared sample changes before and after exposure to Ty2. PCA was performed using the ClustVis web tool. Rows were centered and unit variance scaling applied to rows. Rows were clustered using Euclidean distance and average linkage. Columns were clustered using correlation distance and average linkage. Trees ordering for both rows and columns display the tightest cluster first. Red boxes represent the phenotypes with high variances in PC2. These data are representative of three experiments with terminal ileum segments from 4 different donors, one replicate each.

CD4+ T-cells