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1 SUPPLEMENTARY METHODS

1.1 Analysis of the influence of dendritic spikes on synaptic clustering

In our model we considered dendritic branch dynamics including a stochastic firing threshold and
dendritic spikes where the shape of the dendritic spike is given by a brief sodium spikelet followed by a
plateau. We hypothesized that this nonlinear integration of synaptic input and dendritic plateau potentials
are crucial for synaptic clustering in our model. In order to verify this, we conducted simulations of an
altered model with linear dendritic integration (i.e., we removed the firing threshold and did not model
dendritic spikes). The dynamics of the soma were kept as before.

In the original model, the functional term of the plasticity dynamics was given by

fLki(t) =

{
cLΓk(t)(xi(t)− γ(1− xi(t)), if θki(t) > 0 (functional connection)
0, if θki(t) ≤ 0 (non-established connection),

(S1)

where cL > 0 and γ > 0 are constants. The constant γ determines the threshold activity that switches from
long-term depression (LTD) to long-term potentiation (LTP) and xi is the exponential presynaptic activity
trace. Note that changes occur only during the presence of a plateau potential (Γk is one during a dendritic
spike and zero otherwise). In order to adapt these dynamics to the altered model, we introduced a threshold
Lth for LTD/LTP initiation. The adapted functional term of the plasticity dynamics is then given by

fLki(t) =

{
cLΠk(t)(xi(t)− γ(1− xi(t)), if θki(t) > 0 (functional connection)
0, if θki(t) ≤ 0 (non-established connection),

(S2)

where Πk = 1 whenever the membrane potential of branch k is above Lth, and Πk = 0 if the membrane
potential of the respective branch is below this threshold. Hence, the plasticity rule has a similar threshold-
like behavior as the original one. The only difference is thus the missing extended depolarization caused by
the dendritic plateau potential.

We performed simulations as described for Figure 2 in the main text using the adapted functional term
and with various values of Lth ranging from −70 mV to −55 mV in 1 mV steps (with 25 independent
trials per value). We could not observe synaptic clustering for any of the considered LTD/LTP thresholds.
At low thresholds, a few synapses retracted over time and a few were established. Other synapses showed
after an initial increase some fluctuations in their weights (Figure S1). The membrane potentials of the
branches exceed these low thresholds for LTD/LTP initiation by the contribution of any input synapse
regardless of whether a specific assembly is active or not. The functional term acts on all these synapses
which are alternately depressed and potentiated. For medium thresholds, synapses tended to retract over
time and weak synapses were established (Figure S2). In this setup Lth is reached by the contribution of
only a few initially strong individual synapses during assembly pattern presentation. These synapses are
not able to depolarize the dendritic membrane potential for an extended period of time (as it would be
the case with dendritic plateau potentials), hence the contribution of LTP to these synapses is quite weak
and synapses that are not active during this short period of time are depressed. For higher thresholds, the
initial synapses remained rather stable (Figure S3). For these hight thresholds the membrane potential
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of the branches is almost always below Lth and hence there is almost no contribution of the functional
term to the synaptic weight. As a consequence the initial synapses remain stable. These results support
our initial assumption that nonlinear dendritic integration and dendritic plateau potentials are indeed
necessary for assembly-specific clustering of synapses onto individual dendritic branches. In summary,
our simulations indicate that the extended depolarization of dendritic plateau potentials is necessary to
collectively strengthen correlated inputs which eventually leads to synaptic clustering.

1.2 Sensitivity analysis of parameters

We performed a one-at-a-time sensitivity analysis in order to investigate the impact of all plasticity
parameters as well as three neuron parameters on the simulation results. We therefore modified the
parameters by ±10 % (each parameter individually while keeping others at their default values) and
analyzed the results of each run using a sensitivity index SI%i:

SI%i =

(
100

p

)
· |xi − xref |

xref
, (S3)

where p is the parameter variation in percent (±10 %), xi is the number of represented assemblies under
perturbation of parameter i averaged over 25 independent trials, and xref is the number of represented
assemblies representing the average over 25 independent simulations with the reference parameter values
(i.e., the parameter values reported in the main manuscript). The sensitivity index SI%i gives the variation
in the clustering (in %) per percent variation of parameter i. This analysis allowed us to measure the
importance of each individual parameter. The higher the SI%i is, the more impact the respective parameter
has on the model’s performance (measured by the number of represented assemblies on the neuron).

The results of this analysis are given in Figure S4. Note that we varied all parameters by +10 % and−10 %
but we only show the stronger variation for each parameter. The threshold for spike-timing-dependent
plasticity (STDP) initiation, that is STDPth, has clearly the strongest influence on the clustering. The
sensitivity index of ∆ds

max (the maximum duration of a plateau potential) was zero for both considered
variations. In order to investigate this further, we reduced ∆ds

max in successive simulations from 300 ms
down to 150 ms (in steps of 30 ms) and recorded the number of represented assemblies on the neuron. The
mean number of represented assemblies deviated from xref at ∆ds

max = 150 ms (although not significantly,
t(24) = 0.47, p = 0.64, unpaired t-test). Reducing the maximum allowed duration of a dendritic spike
results in more spikes with shorter duration. These results indicate that this effect has only a minor influence
on the clustering. Increasing ∆ds

max had no influence on the number of represented assemblies. Although
the sensitivity index is highest for STDPth, the influence of this parameter on the clustering is quite low
(approximately 1.4 % variation in the clustering per percent variation of STDPth). The influence of all
other considered parameters on the clustering is even lower (less than 0.5 % variation in the clustering per
percent variation of these parameters). In summary, this analysis showed that the model is quite robust to
parameter variations.

1.3 Analysis of the influence of pattern duration and background interval on clustering

In the simulations so far, we considered a pattern duration of 300 ms and a background interval of 200 ms,
and we presented a total of 2000 patterns in each experiment. Hence, each of the 8 input assemblies was
active for 75 s (on average) throughout a simulation. Here we analyze the influence of the pattern duration
and the duration of the background interval, that is the delay between successive patterns, on the model’s
performance (measured by the number of assemblies represented on the neuron). To analyze this we

2



Supplementary Material

performed simulations as described for Figure 3 in the main text but with various combinations of pattern
durations and pattern delays (we kept the average time that an assembly was active at 75 s). We found
that our rewiring mechanism is, up to some point, quite robust to variations in the pattern duration and
the delay between patterns (Figure S5). This holds down to pattern durations of about 100 ms. For shorter
pattern durations the performance generally degraded for any of the considered delays between successive
pattern presentations. The main problem here is that the duration of a branch spike (up to 300 ms) can
span over multiple activations of different assemblies. This leads to the conflation of different assembly
activations in the plasticity update of single branches and therefore hinders rewiring. For even shorter
pattern durations (10 ms; data not shown) the rewiring dynamics were not able to separate connections
from different assemblies to different branches.

1.4 Analysis of the weakening of older memories over time

In Section 2.4 of the main text we showed that rewiring supports memory protection by recruiting
branches sequentially to store input patterns. That is, when activating exclusively an assembly A1, then an
assembly A2, etc., at first only one or a few branches evolve a synaptic cluster for the first shown assembly
while all other branches remain neutral to this assembly. When further assemblies become active, new
branches are recruited to store these patterns while synapse cluster at old branches (branches that evolved a
synapse cluster to earlier activated assemblies) remain rather stable.

However, due to the random fluctuations of the weights that are imposed by the noise term in our rewiring
dynamics, synaptic connections to inactive assemblies gradually degrade. This behavior can be interpreted
as gradual forgetting. If an assembly is inactive for some time, synaptic weights of a branch that previously
evolved a synaptic cluster to that assembly decrease with time. Ultimately, if an assembly is inactive for an
extended period of time, the branch will become neutral to this assembly. The branch can then adapt again
to respond to novel input assemblies.

To analyze this weakening of older memories over time we considered a neuron with 12 branches
where each of the branches had evolved a synaptic cluster with 20 synapses to one of 8 input assemblies
(assemblies A1 to A8). Four branches were not specialized to any assembly. We simulated the neuron
for 60 min and every 500 ms one of 7 assemblies (assemblies A1 to A7) was chosen randomly and
activated for 300 ms (assembly patterns and background noise were generated, and parameters were set
as described in Details to simulations for Figure 3 in the main text). Assembly A8 was never activated
during the simulation. We recorded the synaptic weights of the branch that had a synaptic cluster to the
inactive assembly (assembly A8) and analyzed the average weight decrease per time unit. We performed
this analysis with three different strengths of the noise term (that is, with three different values of the
temperature parameter T ). When repeating this experiment in 25 independent trials, the average change
of the mean weight of that assembly was −0.81 %/min ± 0.06 %/min (mean ± standard deviation),
−1.08 %/min ± 0.07 %/min, and −1.23 %/min ± 0.07 %/min for temperature values of 0.1, 0.3, and
0.5, respectively (Figure S6A, blue bars; the changes given are relative to the mean of the initial weights).
Figure S6B shows the mean weight (blue solid line) of that assembly as a function of time for T = 0.3
(the value of the temperature parameter that was used in all simulations reported in the main text). The
mean weight does not decrease linearly with time. The mean weight decreased after 30 min by ≈ 40 % of
its initial value and by ≈ 60 % after 60 min of simulated time.
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1.5 Retaining older memories for an extended period of time

The deterministic part of our rewiring dynamics contains a structural plasticity term fSki that follows from
a structural prior pS . This structural term is meant to limit the number of functional synapses per branch
to Nsyn in a smooth manner (see Section 2.6 in the main text). We show here that the lifetime of older
memories can be increased by using an additional Gaussian prior pG(θki) per synapse ki given by

pG(θki) =
1

σG
√

2π
e
− 1

2

(
θki−µG
σG

)2

(S4)

with mean µG and standard deviation σG . By using this Gaussian prior pG in combination with the structural
prior pS the stochastic plasticity dynamics tend to sample network configurations where the weight of
a functional synapse is close to µG and where the number of these functional synapses per branch is at
most Nsyn. The Gaussian prior will mitigate the influence of the noise term and thus helps to stabilize the
weights of a synapse cluster of a branch even in the absence of input activity. To quantify this, we have
repeated the experiment as described in Section 1.4 (above) with stochastic dynamics of parameters θki
given by

dθki(t) = ηH(θki(t))
(
fSki(t) + fGki(t) + fLki(t) + fST DPki (t)

)
dt+

√
2ηTdWki, (S5)

where the new term fGki(t) = −θki(t)−µG
σ2G

follows from the Gaussian prior. The mean µG was set to 8,

that is the value of wmax, and the standard deviation σG was set to 32. In 25 independent simulations of
this experiment, the average change of the mean weight of an assembly that hosted a synaptic cluster
from an inactive assembly changed from −0.81 %/min to −0.25 %/min± 0.02 %/min (mean ± standard
deviation), from−1.08 %/min to−0.33 %/min±0.05 %/min, and from−1.23 %/min to−0.48 %/min±
0.06 %/min for temperature values of 0.1, 0.3, and 0.5, respectively (Figure S6A, red bars; the changes
given are relative to the mean of the initial weights). Again, the mean weight does not decrease linearly
with time (Figure S6B, red dotted line). After an initial decrease to ≈ 80 % of its initial value it remains
rather stable.

We next asked whether this additional Gaussian prior influences the model’s performance (measured by
the number of represented assemblies on the neuron). To test this, we performed simulations as described
for Figure 4 in the main text using the additional term fGki. We found that the average number of represented
assemblies increased from 6.92±0.89 to 7.64±0.48 (mean± standard deviation over 25 independent trials).
This is a significant increase of the number of assemblies that are stored on the dendrites (t(24) = 3.49,
p = 0.001, unpaired t-test). In summary, using an additional Gaussian prior on the parameters does not
only protect memories over longer time scales but also increases the number of patterns that are stored on
the neuron.

1.6 Synaptic consolidation by sharpening of weight priors

In Section 1.5 (above) we described a way to reduce gradual forgetting in our model by introducing an
additional term fGki in the rewiring dynamics. This term resulted from a Gaussian prior pG on the parameters
θki. By using this additional Gaussian prior the stochastic plasticity dynamics tend to sample network
configurations where the weight of a functional synapse is close to the mean of pG . Note that, due to the
functional term fSki, the number of synapse per branch is still bounded (we used a soft upper bound of
Nsyn = 20 per branch in all simulations).
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Here, we investigate a simple way how consolidation can be incorporated in this framework by sharpening
of the Gaussian prior. Note that, the sharper this prior, the more probability mass is concentrated directly
around its preferred synaptic weight. Hence, weights will tend to stay in the vicinity of the mean of the
prior (see Section 2.6 in the main text for a description of the parameter sampling dynamics of the network).
In this consolidation mechanism, the standard deviation of the Gaussian prior is a function of the synaptic
parameter θki. Consolidation of a synapse occurs whenever its weight reaches the threshold for synaptic
consolidation. Consolidated synapses are then well protected against changes induced by the noise term.
More precisely, the standard deviation σG is given by

σG(θki) =

{
σhG , if θki(t) ≥ Gth
σlG , otherwise,

(S6)

where σhG = 1, σlG = 32, and where Gth = 7 is the threshold for synaptic consolidation (note that we
apply the Gaussian prior only to functional synapses, see Equation S5). We hypothesized that a branch
that hosts a synaptic cluster from one of the input assemblies, receiving approximately 20 synapses from
that assembly with the weight at or above Gth, will be strongly protected in this way. To quantify this,
we have repeated the experiment as described in Section 1.4 (above) where we added this consolidation
mechanism. In 25 independent simulations of this experiment, the average change of the mean weight of
an assembly that hosted a synaptic cluster from an inactive assembly was −0.002 %/min± 0.0004 %/min
(mean ± standard deviation), −0.003 %/min± 0.0006 %/min, and −0.003 %/min± 0.0005 %/min for
temperature values of 0.1, 0.3, and 0.5, respectively (Figure S6A, green bars; the changes given are relative
to the mean of the initial weights). The mean weight is stabilized and does virtually not change anymore
(Figure S6B, green dashed dotted line).
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Figure S1. Results of the model with linear dendritic integration where the threshold Lth for LTD/LTP
initiation was set to −69 mV. (A) Spike raster plot of input neurons for three test patterns of input
assemblies A1, A2, and A3 (top; black dots denote spike times), initial wiring diagram of three selected
branches (b1, b2, and b3; middle left), dendritic membrane potential V b

i of these branches (middle right),
and the somatic membrane potential V soma (bottom). The color of the graph edges indicate to which of the
shown assemblies a connection was established (connections in gray are connections to one of the other 5
assemblies). Initially, input neurons were connected to branches randomly such that exactly 20 synapses
were established on each branch. The dendritic membrane potential increased during presynaptic assembly
activation but this increase was not specific to any of the input assemblies. The somatic membrane potential
was subthreshold during pattern presentation of these input assemblies. (B) Same as (A) but after 17 min
of rewiring dynamics. Synapses did not cluster in an assembly-specific way and the dendritic membrane
potential was not specific to presynaptic assembly activations. (C) Evolution of the synaptic weights wki of
branch b1 (top), b2 (middle), and b3 (bottom). A few synapses retract over time, a few strong, and some
weak synapses are established.
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Figure S2. Same as Figure S1 but with LTD/LTP initiation threshold set to −65 mV. (A) Spike raster
plot of input neurons (top), wiring diagram of three selected branches (middle left), dendritic and somatic
membrane potentials before learning (middle right and bottom) and (B) after learning. Evolution of the
synaptic weights wki of branch b1 (top), b2 (middle), and b3 (bottom). Synapses retract over time and
weak synapses are established.
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Figure S3. Same as Figure S1 but with LTD/LTP initiation threshold set to −55 mV. (A) Spike raster
plot of input neurons (top), wiring diagram of three selected branches (middle left), dendritic and somatic
membrane potentials before learning (middle right and bottom) and (B) after learning. Evolution of the
synaptic weights wki of branch b1 (top), b2 (middle), and b3 (bottom). Initial synapses remain rather stable
and some weak synapses are established.
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Figure S4. Results of the one-at-a-time sensitivity analysis. Parameters were varied by ±10 % and the
sensitivity index SI% for the variation which had the stronger influence on the model’s performance is
shown. For a description of the parameters see Tables 1 and 2 in the main text.
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Figure S5. Number of represented assemblies on the neuron as a function of the pattern duration and
the delay between patterns. Shown is the mean and standard deviation (inset) over 25 independent trials.
Our rewiring mechanism is quite insensitive to variations in the pattern duration and the delay between
successive pattern presentations. Short pattern durations combined with short delays had the most adverse
impact on the model’s performance. The performance generally degraded for pattern durations of 50 ms
(for any of the considered delays).
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Figure S6. Weakening of older memories over time due to the noise term. (A) Average change of the
mean weight per time unit of a branch that hosted a synaptic cluster from an inactive assembly for three
values of the temperature parameter T . Shown is the mean and the standard deviation over 25 independent
simulations of the original model without Gaussian prior (blue), the model with Gaussian prior (red), and
the model with consolidated Gaussian prior (green). The values are given relative to the mean of the initial
weights (note the logarithmic scale of the y-axis). (B) Mean and standard deviation (shaded area) of the
weights of an assembly that hosted a synaptic cluster from an inactive assembly as a function of time t
(temperature T = 0.3; mean and standard deviation is over 25 independent trials and values shown are
relative to the initial weights w(0)). Results are shown for the model without Gaussian prior (blue solid
line), the model with Gaussian prior (red dashed line), and the model with consolidated Gaussian prior
(green dashed dotted line). Synapses in our model with consolidated Gaussian prior are well protected
against changes induced by the noise term.
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