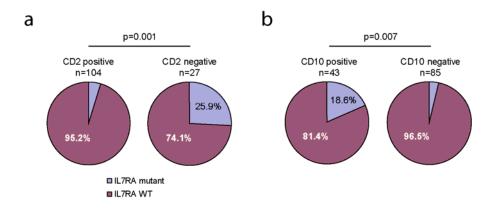
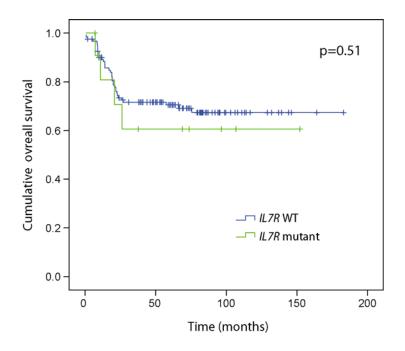

Oncogenic *IL7R* gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia

Priscila P. Zenatti, Daniel Ribeiro, Wenqing Li, Linda Zuurbier, Milene C. Silva, Maddalena Paganin, Julia Tritapoe, Julie A. Hixon, André B. Silveira, Bruno A. Cardoso, Leonor M. Sarmento, Nádia Correia, Maria L. Toribio, Jörg Kobarg, Martin Horstmann, Rob Pieters, Silvia R. Brandalise, Adolfo A. Ferrando, Jules P. Meijerink, Scott K. Durum, J. Andrés Yunes, João T. Barata

Supplementary Figures 1-19, Tables 1-2 and References

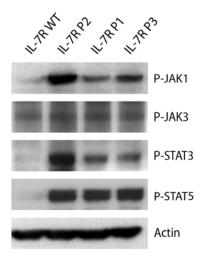

Supplementary Figure 1. *IL7R* exon 6 somatic mutations in pediatric T-ALL. DNA chromatograms of 3 patients from the Boldrini cohort showing the mutated sequences at diagnosis and lack of mutation at remission. The corresponding chromatograms of the remaining 2 patients from the same cohort are shown in Figure 1. Highlighted are the DNA and respective amino acid sequence alterations in each case. Patient P5 has a SNP (c.731C>T; p.T244I) in addition to the indicated QW mutation.

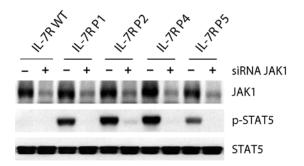
a		
	WT	PEINNSSGEMDPILLTISILSFFSVALLVILACVLWKKRIKPIVW
	P1	PEINNSSGEMDPILNP<mark>E</mark>LTISILSFFSVALLVILACVLWKKRIKPIVW
	P2	PEINNSSGEMDPILLT E PTISILSFFSVALLVILACVLWKKRIKPIVW
	РЗ	PEINNSSGEMDP <mark>SANE</mark> GAISILSFFSVALLVILACVLWKKRIKPIVW
	P4	PEINNSSGEMDPILL <mark>VS<mark>C</mark>PTISILSFFSVALLVILACVL</mark> WKKRIKPIVW
	P5	PEINNSSGEMDPIL<mark>LIISIQWLSFFSVALLVILACVL</mark>WKKRIKPIVW
	P6	PEINNSSGEMD <mark>QSPS</mark> ELIISILSFFSVALLVILACVLWKKRIKPIVW
	P7	PEINNSSGEMDP ELEGLTISILSFFSVALLVILACVL WKKRIKPIVW
	P8	PEINNSSGEMDPIL <mark>LTISILSFFWN</mark> LLVILACV <mark>LWKKRIKPIVW</mark>
	P9	PEINNSSGEMD RF<mark>C</mark>PH I <mark>SILSFFSVALLVILACVL</mark> WKKRIKPIVW
	P10	PEINNSSGEMD LK<mark>G</mark>ILSFFSVALLVILACV LWKKRIKPIVW
	P11	PEINNSSGEMDPI FHPFNGGPI<mark>SILSFFSVALLVILACVL</mark>WKKRIKPIVW
	P12	PEINNSSGEMDPILLM C PTISILSFFSVALLVILACVLWKKRIKPIVW
	P13	PEINNSSGEMDPIL <mark>LTISILSFFSGPSLALLVILACV</mark> LWKKRIKPIVW
	P14	PEINNSSGEMDPILRLE<mark>G</mark>VTISILSFFSVALLVILACVLWKKRIKPIVW
	P15	PEINNSSGEMDPIPQGG <mark>G</mark> ILSFFSVALLVILACVLWKKRIKPIVW
	P16	PEINNSSGEMDL<mark>QSG</mark>ILSFFSVALLVILACVLWKKRIKPIVW
	P17	PEINNSSGEMDPI FPHQHG TI <mark>SILSFFSVALLVILACVL</mark> WKKRIKPIVW
b		

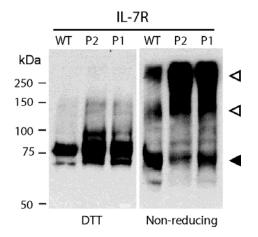

WT	PEINNSSGEMDPIL LTISILSFFSVALLVILACVLWKKRIKPIVW
P1	PEINNSSGEMDSIL <mark>NP</mark> ELTISILSFFSVALLVILACVLWKKRIKPIVW
P2	PEINNSSGEMDPILLT <mark>E</mark> PT <mark>ISILSFFSVALLVILACVLW</mark> KKRIKPIVW
РЗ	PEINNSSGEMDP <mark>SAN<mark>G</mark>GAISILSFFSVALLVILACVLW</mark> KKRIKPIVW
P4	PEINNSSGEMDPILL <mark>VSE</mark> P <mark>TISILSFFSVALLVILACVLW</mark> KKRIKPIVW
P5	PEINNSSGEMDPILLI <mark>ISIQWLSFFSVALLVILACVLW</mark> KKRIKPIVW
Рб	PEINNSSGEMD <mark>QSPS<mark>E</mark>LIISILSFFSVALLVILACVLW</mark> KKRIKPIVW
P7	PEINNSSGEMDP <mark>E</mark> LEGLT <mark>ISILSFFSVALLVILACVLW</mark> KKRIKPIVW
P8	PEINNSSGEMDP <mark>ILLTISILSFFWNLLVILACVLW</mark> KKRIKPIVW
Р9	PEINNSSGEMD RF<mark>C</mark>PHISILSFFSVALLVILACVLWKKRIKPIVW
P10	PEINNSSGEMDLK<mark>E</mark>ILSFFSVALLVILACVLWKKRIKPIVW
P11	PEINNSSGEMDPI FHPFN<mark>E</mark>G<mark>P</mark>ISILSFFSVALLVILACVLWKKRIKPIVW
P12	PEINNSSGEMDPILLMEPTISILSFFSVALLVILACVLWKKRIKPIVW
P13	PEINNSSGEMDPILLTISI <mark>LSFFSGPSL</mark> ALLVILACVLWKKRIKPIVW
P14	PEINNSSGEMDPIL <mark>RLEEVTISILSFFSVALLVILACVLW</mark> KKRIKPIVW
P15	PEINNSSGEMDPI <mark>PQ</mark> G <mark>G</mark> ILSFFSVALLVILACVLWKKRIKPIVW
P16	PEINNSSGEMD<mark>LQS</mark>EILSFFSVALLVILACVLWKKRIKPIVW
P17	PEINNSSGEMDPI FPHQHG T <mark>ISILSFFSVALLVILACVLW</mark> KKRIKPIVW

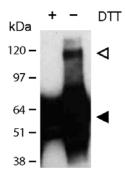
Supplementary Figure 2. The majority of unpaired cysteines created by *IL7R* mutations are predicted to localize extracellularly at the juxtamembrane-transmembrane domain interface. Prediction of core transmembrane helices (TMH, boxed) and localization of mutated amino acids (red), using two distinct bioinformatics tools. (a) According to DAS ¹ using TM-Library size of 32, the cysteine (cyan) is located extracellularly in 12 patients (6 at the TMH border) and at the extracellular border within the TMH in 2 patients. (b) According to TMPRED ² the cysteine is located extracellularly in 11 patients (4 at the TMD border) and within the TMD in 3 patients (with 1 at the extracellular border).

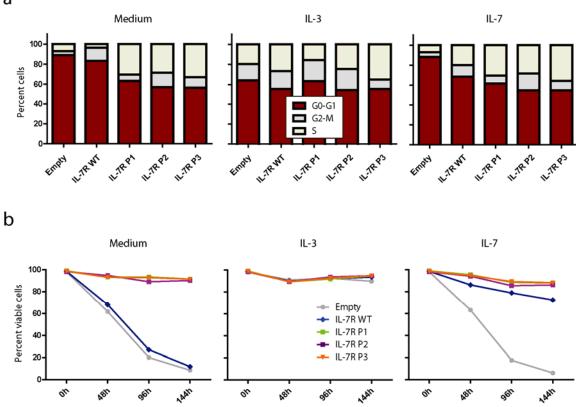
а

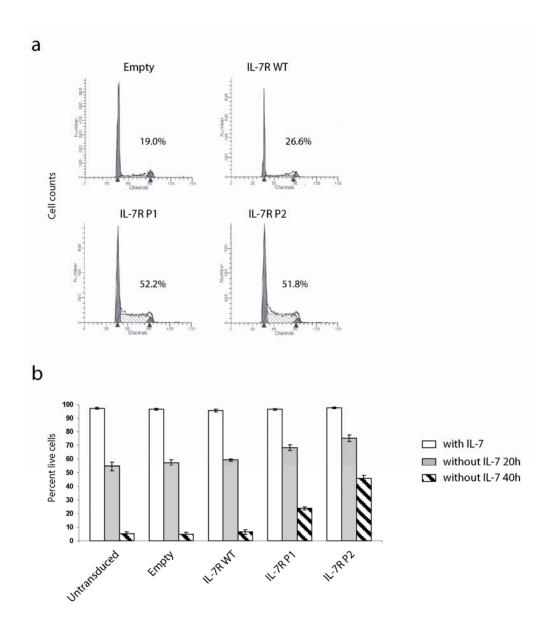

Supplementary Figure 3. Association of *IL7R* mutations with CD2 and CD10. Distribution of *IL7R* mutations among (a) CD2 and (b) CD10 positive *versus* negative patient samples. P values were calculated using Fisher's exact test.

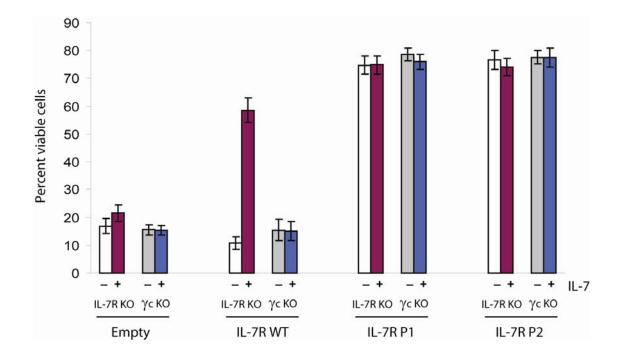

Supplementary Figure 4. Overall survival in pediatric T-ALL cases with and without IL7R mutation. Kaplan-Meier survival curve in pediatric T-ALL cases with (*IL7R* mutant, n=12) and without (*IL7R* WT, n=123) mutations in *IL7R* treated on DCOG ALL-7/-8 and -9 (n=66) and COALL-97 protocols (n=69). P value was calculated using Log-Rank test.

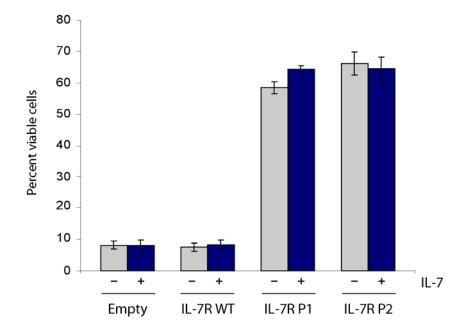

Supplementary Figure 5. Further characterization of JAK/STAT pathway activation in IL-7- versus mutant IL7R-dependent signaling in D1 cells. D1 cells expressing human WT or mutated (P1 and P2) IL-7Rα were cultured without IL-7 for 4 hr, stimulated or not with IL-7 for 20 min and evaluated by immunoblot for phosphorylation of (a) JAK3 and TYK2, (b) JAK2, and (c) STAT1 and STAT3. Whereas *IL7R* mutations induce constitutive phosphorylation of STAT1 and STAT3, they do not drive TYK2, JAK2 or JAK3 phosphorylation.

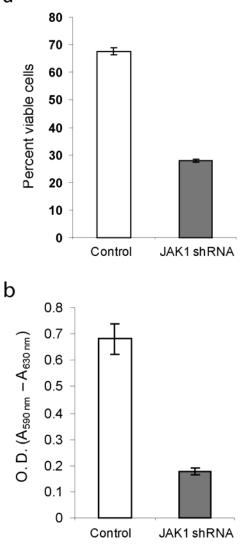

Supplementary Figure 6. *IL7R* mutations induce JAK1, STAT3 and STAT5, but not JAK3, phosphorylation in Ba/F3 cells. Ba/F3 cells expressing human WT or mutated (P1 and P2) IL-7R α were cultured without IL-3 for 4 hr and evaluated by immunoblot for phosphorylation of the indicated proteins.


Supplementary Figure 7. JAK1 knockdown abrogates mutant *IL7R*-mediated signaling. 293T cells were transfected with WT or the indicated mutant IL-7R α together with siRNA against JAK1 (+) or control non-targeting siRNA (-) and evaluated after 36 hr for JAK1 expression and STAT5 phosphorylation. This blot further illustrates that P5, which displays a mutation not introducing a *de novo* cysteine (T244I, I247_L248insQW; Table 1) is able to promote some degree of constitutive STAT5 phosphorylation, which is also sensitive to JAK1 knockdown.

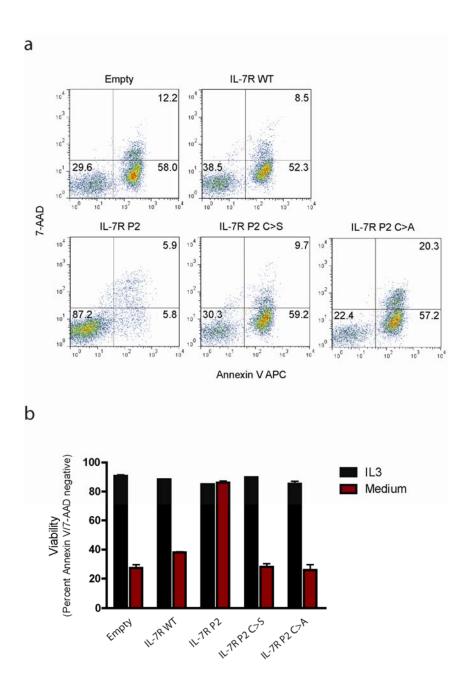

Supplementary Figure 8. IL-7R α mutant, but not wild type, proteins constitutively form redox-sensitive dimers/oligomers in 293T cells. Lysates from 293T cells expressing wild type (WT) or mutant (P1 and P2) IL-7R α were treated or not with the reducing agent DTT and analyzed for IL-7R α expression by immunoblot. The monomeric and dimeric/oligomeric forms of the receptor are denoted by black and white arrows, respectively.


Supplementary Figure 9. IL-7R α mutant proteins constitutively form redox-sensitive dimers/oligomers in *Il7r* -/- BM cells. Lysates from BM cells from *Il7r* -/- mice transduced with P1 mutant *IL7R* were treated or not with the reducing agent DTT and analyzed for IL-7R α expression by immunoblot. The monomeric and dimeric forms of the receptor are denoted by black and white arrows, respectively.

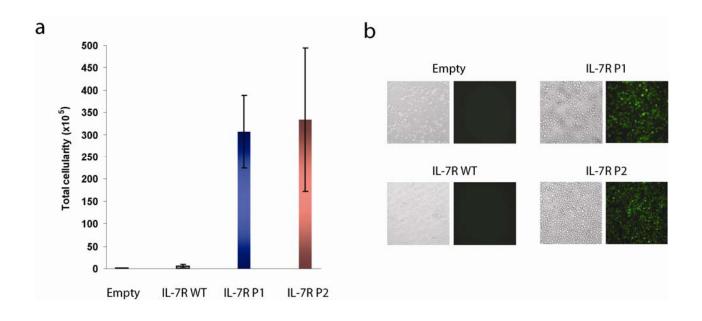

Supplementary Figure 10. *IL7R* mutations induce cell cycle progression and viability in Ba/F3 cells independently of IL-3 or IL-7. Ba/F3 cells stably expressing WT or mutated IL-7R α were cultured in the absence of growth factors or with IL-3 or IL-7. (a) Cell cycle was determined at 96h. (b) Viability was evaluated by Annexin V/ 7-AAD staining at the indicated time points. Data represent average of triplicates ± sem.


Supplementary Figure 11. *IL7R* mutations induce cell cycle progression and viability in D1 cells independently of IL-7. (a) D1 cells transduced with empty pMIG vector (Empty), IL-7R α wild type (WT), IL-7R α P1 or IL-7R α P2 were analyzed for cell cycle distribution after 24h of IL-7 deprivation. Percentage of cells in cycle (S+G2/M) is indicated for each condition. (b) Viability of D1 cells transduced with empty pMIG vector (Empty), IL-7R α WT, IL-7R α P1 or IL-7R α P2 was assessed after 20h and 40h of IL-7 deprivation. D1 cells cultured in the presence of IL-7 are shown as positive controls. Data represent average of triplicates ± sem.

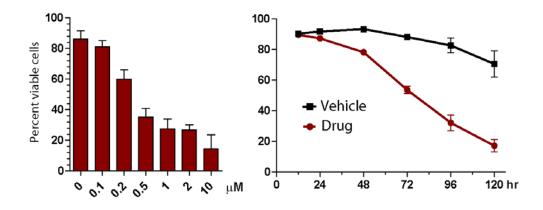
Supplementary Figure 12. *IL7R* mutations induce cell viability independently of γc expression. Bone marrow cells from *Il7r* -/- (IL-7R KO) or *Il2rg* -/- (γc KO) mice were transduced with the empty pMIG vector (Empty), *IL7R* (IL-7R) WT, *IL7R* P1 or *IL7R* P2 and cultured for 96h with or without IL-7. Viability was evaluated by Annexin V/ 7-AAD staining. Data represent average of triplicates ± sem.

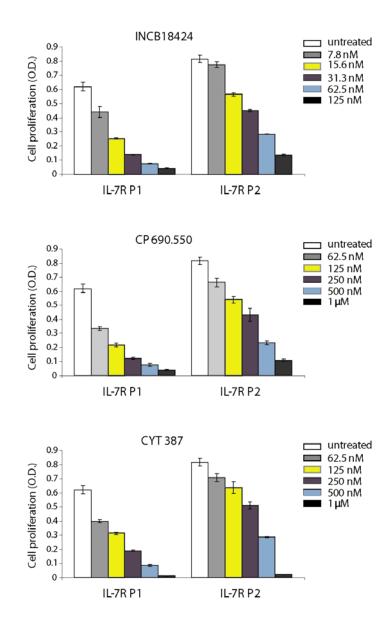


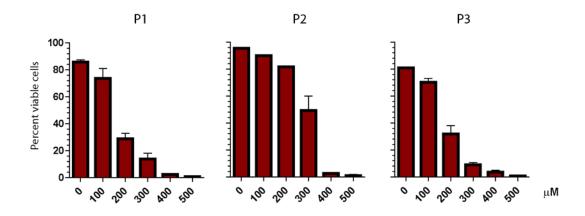
Supplementary Figure 13. *IL7R* mutations induce cell viability independently of JAK3 expression. Bone marrow cells from *Jak3* -/- mice were transduced with the empty pMIG vector (Empty), *IL7R* (IL-7R) WT, *IL7R* P1 or *IL7R* P2 and cultured for 96h with or without IL-7. Viability was evaluated by Annexin V/7-AAD staining. Mean \pm sem is indicated for triplicates of each condition.



Supplementary Figure 14. *IL7R* mutations induce cell viability and proliferation in a JAK1dependent manner. D1 cells expressing P1 mutant IL-7R α were transduced with *Jak1* or control shRNAs. After 24 hr of infection, cells were cultured with IL-7 (50 ng/ml) and puromycin (5 µg/ml) for 48 hr, and then cultured in medium alone for 48 hr. Viability/Proliferation was analyzed by Annexin V/7-AAD staining (a) and by an MTT assay (b). Mean ± sem is indicated for triplicates of each condition.


а


Supplementary Figure 15. Cell viability promoted by *IL7R* mutations depends on the presence of the cysteine introduced *de novo*. Ba/F3 cells stably transduced with pMIG vector (Empty), IL-7R α WT, or IL-7R α P2 or the indicated P2 cysteine mutants were cultured in cytokine-deprived medium or in the presence of IL-3, and analyzed for cell viability at 48h. Viability was evaluated by Annexin V/ 7-AAD staining. (a) Representative dot plots of cells cultured in the absence of cytokines. (b) Mean ± sem of duplicates of each condition.


Supplementary Figure 16. Lymph node and liver infiltration in *Rag1 -/-* mice subcutaneously injected with D1 cells. (a) Lymph node cellularity and (b) representative phase contrast and fluorescence images of lymph nodes from *Rag1 -/-* mice 20 days post subcutaneous transplantation of D1 cells. Mean \pm sem is indicated for triplicates of each condition.

Supplementary Figure 17. JAK inhibition reduces cell viability of P2 mutant IL-7R α -expressing Ba/F3 cells. Ba/F3 cells stably expressing mutant IL-7R α P2 were cultured in medium alone with or without JAK inhibitor I at the indicated doses for 72 hr (left) or for the indicated culture periods at 1 μ M (right) and analyzed for cell viability by flow cytometry. Mean \pm sem is indicated for triplicates of each condition.

Supplementary Figure 18. JAK pharmacological inhibitors in clinical use reduce cell viability/proliferation of mutant IL-7R α -expressing D1 cells. D1 cells stably expressing mutant IL-7R α were cultured in medium deprived of IL-7 with or without the indicated clinically-relevant JAK inhibitors and viability/proliferation (shown as O.D.) was determined at 48 hr using an MTT assay. Mean \pm sem is indicated for triplicates of each condition.

Supplementary Figure 19. Dose-dependent cell death induced by STAT5 inhibition in P1, P2 and P3 mutant IL-7R α -expressing Ba/F3 cells. Ba/F3 cells stably expressing the indicated mutant IL-7R α were cultured in medium alone with or without STAT5 inhibitor at the indicated concentrations for 72 hr and analyzed for cell viability by flow cytometry. Mean ± sem is indicated for triplicates of each condition.

	Supplementary Table 1. Differentially expressed genes in IL7R mutant versus	IL7R wild type pediatric T-ALLs (LIMMA analysis; cut-off FDR p-value=0.05).
--	---	---

Gene Title	(LIMMA analysis; cut-off FDR p-value=0.05). Gene Symbol	ID	P.Value	adj.P.Val	logi
similar to hypothetical protein MGC42630 /// hypothetical protein MGC42630 /// hypothetical LOC504188	LOC158318 /// MGC42630 /// LOC504188	1553590_at		0,000103	
proprotein convertase subtilisin/kexin type 6	PCSK6	207414 s at		0,000103	
		220701_at	2,07E-08	0,000378	-0
carboxypeptidase A6	CPA6	1552511 a at		0,001417	
protein kinase (cAMP-dependent, catalytic) inhibitor alpha	PKIA	204612 at		0,001478	
interleukin 17D	IL17D	227401 at		0,001478	
dipeptidylpeptidase 4 (CD26, adenosine deaminase complexing protein 2)	DPP4	203716_s_at		0,001839	
BAI1-associated protein 2	BAIAP2	1556145_a_at		0,002443	
Aryl hydrocarbon receptor	AHR	1559035_a_at		0,002557	
hypothetical protein LOC253982	LOC253982	214993_at		0,003328	
chromosome 2 open reading frame 23	C2orf23	204365_s_at	7,23E-07	0,003592	-(
toll-interleukin 1 receptor (TIR) domain containing adaptor protein	TIRAP	1554091_a_at	1,34E-06	0,005045	;
tight junction protein 3 (zona occludens 3)	TJP3	213412_at	1,24E-06	0,005045	1,
hypothetical protein FLJ13841	FLJ13841	219995 s at	1,38E-06	0,005045	1,
olfactory receptor, family 51, subfamily B, member 5	OR51B5	234775_at	1.14E-06	0,005045	-
suppressor of cytokine signaling 2	SOCS2	203372 s at		0,006691	
CDNA clone IMAGE:5265747		1555994_at		0,009742	
	FBXL16	-		0,011327	
F-box and leucine-rich repeat protein 16		227641_at			
chromosome 1 open reading frame 142	C1orf142	230810_at		0,011552	
dipeptidylpeptidase 4 (CD26, adenosine deaminase complexing protein 2)	DPP4	211478_s_at		0,012143	
dehydrogenase/reductase (SDR family) member 9	DHRS9	219799_s_at	4,66E-06	0,012143	-(
suppressor of cytokine signaling 2	SOCS2	203373_at	5,33E-06	0,01317	2,
EPH receptor B2	EPHB2	234158_at	5,54E-06	0,01317	0,
spondin 1, extracellular matrix protein	SPON1	209436_at		0,018298	
Acyl-Coenzyme A oxidase 3, pristanoyl	ACOX3	243817_at		0,018298	
spondin 1, extracellular matrix protein	SPON1	213994_s_at		0,019257	
Xg blood group (pseudoautosomal boundary-divided on the X chromosome)	XG	1563420 at		0,013237	
spondin 1, extracellular matrix protein	SPON1	209437_s_at		0,021793	
Protein kinase C, epsilon	PRKCE				
		216753_at		0,021793	
hypothetical protein MGC42630	MGC42630	227563_at		0,021793	
zinc finger protein 335	ZNF335	78330_at		0,021793	
hypothetical gene supported by AK091454	LOC285382	242447_at	1,37E-05	0,023389	
Ryanodine receptor 3	RYR3	241901_at	1,52E-05	0,025124	
v-ets erythroblastosis virus E26 oncogene homolog 2 (avian)	ETS2	201329 s at	1,57E-05	0,025297	1,
LIM homeobox 6	LHX6	224556 s at	1,62E-05	0,025355	0
growth arrest-specific 2	GAS2	205848_at	1,7E-05	0,02579	2
SH3-domain GRB2-like 3		230959 at		0,027152	
Death-associated protein kinase 1	DAPK1	237409_at		0,030229	
		_			
family with sequence similarity 49, member A /// family with sequence similarity 49, member A	FAM49A	208092_s_at	2,22E-05		
hypothetical gene supported by BC028053	LOC440569	1569386_at	2,34E-05		
cysteinyl leukotriene receptor 2	CYSLTR2	220813_at	2,5E-05		
protocadherin beta 13	PCDHB13	221450_x_at	2,41E-05		
Adaptor-related protein complex 4, epsilon 1 subunit	AP4E1	241174_at	2,46E-05	0,03183	-(
syndecan binding protein (syntenin) 2	SDCBP2	233565_s_at	2,62E-05	0,032525	-(
src family associated phosphoprotein 1	SCAP1	205790_at	2,74E-05	0,032776	-1
homeo box A9	HOXA9	209905_at	2,82E-05	0,032776	2,
Rho GTPase activating protein 10	ARHGAP10	239567_at		0,032776	
Rho GTPase-activating protein	RICS	203431_s_at		0,033081	
enhancer of zeste homolog 2 (Drosophila)	EZH2	203358_s_at		0,034046	
defensin, alpha 6, Paneth cell-specific	DEFA6	207814_at		0,034046	
chromosome 1 open reading frame 105	C1orf105	214357_at		0,034046	
brain and acute leukemia, cytoplasmic	BAALC	218899_s_at		0,034046	
chromosome 1 open reading frame 116	C1orf116	219856_at		0,034046	
Potassium voltage-gated channel, KQT-like subfamily, member 1	KCNQ10T1	237249_at	3,36E-05	0,034049	
olfactory receptor, family 5, subfamily U, member 1	OR5U1	234545_at	3,57E-05	0,035492	-
hypothetical gene LOC133874	LOC133874	1554115 at		0,036728	
spondin 1, extracellular matrix protein	SPON1	213993_at		0,036764	
chromosome 1 open reading frame 165	Clorf165	219670_at		0,036764	
Hypothetical protein LOC441168	LOC441168			0,036764	
		228362_s_at			
Solute carrier family 35, member F3	SLC35F3	231520_at		0,036764	
Protein kinase (cAMP-dependent, catalytic) inhibitor alpha	PKIA	1563217_at		0,037264	
myosin, heavy polypeptide 14	MYH14	217660_at		0,037264	
CDNA clone IMAGE:4828909		1563283_at	4,32E-05	0,037511	-
down-regulated in gastric cancer GDDR	GDDR	238222_at	4,48E-05	0,038288	- 1
v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog (avian)	SRC	1558211_s_at		0,038522	
EPH receptor B2	EPHB2	210651 s at		0,038692	
CDNA clone IMAGE:4694535		1564760_at		0,039111	
Chromosome 2 open reading frame 27	C2orf27	230336_at		0,039372	
		_			
Vacuolar protein sorting 13A (yeast)	VPS13A	1570295_at		0,039466	
ethanolamine kinase 2	ETNK2	219268_at		0,039466	
uronyl-2-sulfotransferase	UST	205138_s_at		0,039748	
hypothetical protein LOC144481	LOC144481	1559315_s_at	5,42E-05	0,040594	1,
thioesterase domain containing 1	THEDC1	222945_x_at		0,040594	
UTP15, U3 small nucleolar ribonucleoprotein, homolog (yeast)	FLJ12787	221038_at		0,041075	
Similar to ZNF43 protein		1565748 at		0,041867	
		-			
SLAM family member 6	SLAMF6	1552497_a_at		0,043684	
Four and a half LIM domains 2	FHL2	1557274_at		0,046982	
multimerin 2	MMRN2	219091_s_at	6,8E-05	0,047662	-(
hypothetical gene supported by AK091527	FLJ34208	1566761_a_at	7,11E-05	0,048614	-0

equencing an		5'-3' position	Fragment		
Primer	Sequence (5' →3')	(size)	size		
IL7R_exF	CCCTCCCTTCCTCTTACTCTCA	13 – 34 (22) ^a	589 bp		
IL7R_exR	TGGCGGTAAGCTACATCGTG	601 – 582 (20) ^a			
IL7R_trF	AGCCAATGACTTTGTGGTGAC	515 – 535 (21) ^a	()()		
IL7R_trR	ACATCCCCTCCAAGCCTCT	1120 – 1102 (19) ^a	606 bp		
IL7R_inF	CAGAGGCTTGGAGGGGATGT	1101 – 1120 (20) ^a			
IL7R_inR	AATCATCTTTGTCGCTCACGGT	1516 – 1495 (22) ^a	416 bp		
IL7R_hapF	CACTCACTGACCTGTGCTTTT	246 – 266 (21) ^a	(72h-		
IL7R_hapR	GGAGACTGGGCCATACGATA	918 - 899 (20) ^a	673bp		
IL7R_ex8F	TCCTATCTTACTAACCATCAGCATTT	806 - 831 (26) ^a	7001		
IL7R_ex8R	GACTGTGTAGTGGGGTTTTGCT	1593 – 1572 (22) ^a	788bp		
Jak1JH2_aF	AGGAGTGGCAGCCCGTCTA	1934 – 1952 (19) ^a	495 ha		
Jak1JH2_aR	GGCCAGGAGGAGGTTTTTAGT	2418 - 2398 (21) ^a	485 bp		
Jak1JH2_bF	AATTCAAAGTTGCCAAACAGCT	2321 – 2342 (22) ^a			
Jak1JH2_bR	GTCCACTTCAGTTGCTGGTTTT	2847 – 2826 (22) ^a	527 bp		
Jak3JH2_aF	CGTAGATGGGGTGGCAGTG	1489 – 1507 (19) ^a	50 ()		
Jak3JH2_aR	CAGATAGTTGAGGGCGTAGGC	2014 – 1994 (21) ^a	526 bp		
Jak3JH2_bF	GCCTACGCCCTCAACTATCTG	1994 – 2014 (21) ^a			
Jak3JH2_bR	CACCATTCCACAGCCCATC	2516 – 2498 (19) ^a	523 bp		
IL7R_exon6F	CAAAGCACCCTGAGACCCTAC	17400 – 17420 (21) ^b	278bp		
IL7R_exon6R	TTCGTGAAATGCCTTAATCCC	17667 – 17657 (21) ^b			
IL7R 3U32	GT <u>GGTACC</u> CTCCCTCCCTTCCTCTTACTCTCA	(32) ^c	1470bp		
IL7R 1434L39	GGG <u>CCCGGG</u> GTTTTGGTAGAAGCTGGACATGGTGACATA	(39) ^c			
hIL7R5'BglII	CGTAC <u>AGATCT</u> CCCTTCCTCTTACTCTCA	(29) ^c	1476bp		
hIL7R3'EcoRI	TACG <u>GAATTC</u> TAGCCGGGGTTTTGGTA	(27) ^c			
hIL7R_cP1s	AGAT <u>GGATCC</u> TATCTTAAACCCAaGCCTAACCATCAGCAT	799 – 829 (40) ^c	151bp		
hIL7R_cP2s	AGAT <u>GGATCC</u> TATCTTACTAACTTeTCCCACCATCAGCATTTT	799 - 832 (43) ^c			
hIL7R_cP2a	AGAT <u>GGATCC</u> TATCTTACTAACTgcTCCCACCATCAGCATTT	799 - 831 (42)			
hIL7R_BbsI	CAAAGATGTTCCAGA <u>GTCTTC</u> TTATGATCGGGGAGACTG	949 - 911 (39)			

Supplementary Table 2. Primers used for *IL7R*, *JAK1* (JH2), and *JAK3* (JH2) RT-PCR, sequencing and cloning.

^a Positions according to NCBI reference of coding sequences NM_002185.2 (*IL7R*), NM_002227.2 (*JAK1*), NM_000215.3 (*JAK3*). ^b Positions refer to flanking intronic regions of exon 6 according to NCBI reference of

^b Positions refer to flanking intronic regions of exon 6 according to NCBI reference of genomic sequence NT_006576.16 ^c The cloning restriction sites are underlined. Nucleotide changes for site-directed

^c The cloning restriction sites are underlined. Nucleotide changes for site-directed mutagenesis are noted in small caps. Positions refer to hybridization in the coding sequences of NM_002185.2 (*IL7R*).

Supplementary References

- 1. Cserzo, M., Eisenhaber, F., Eisenhaber, B. & Simon, I. On filtering false positive transmembrane protein predictions. *Protein Eng* **15**, 745-52 (2002).
- 2. Hofmann, K. & Stoffel, W. TMbase: A database of membrane spanning proteins segments. *Biol Chem Hoppe-Seyler* **374**, 166 (1993).