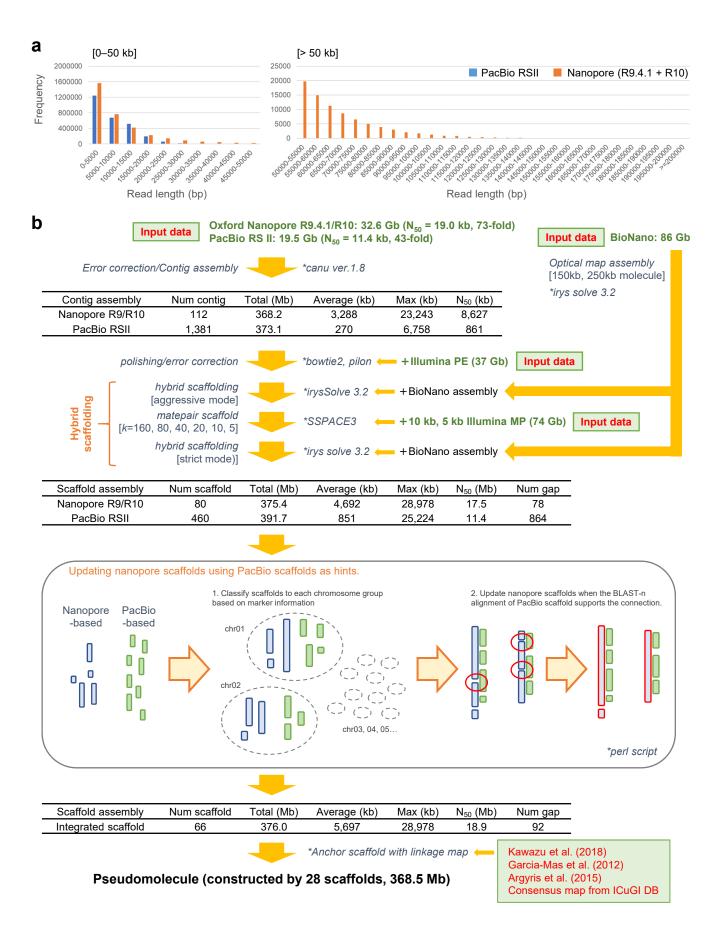
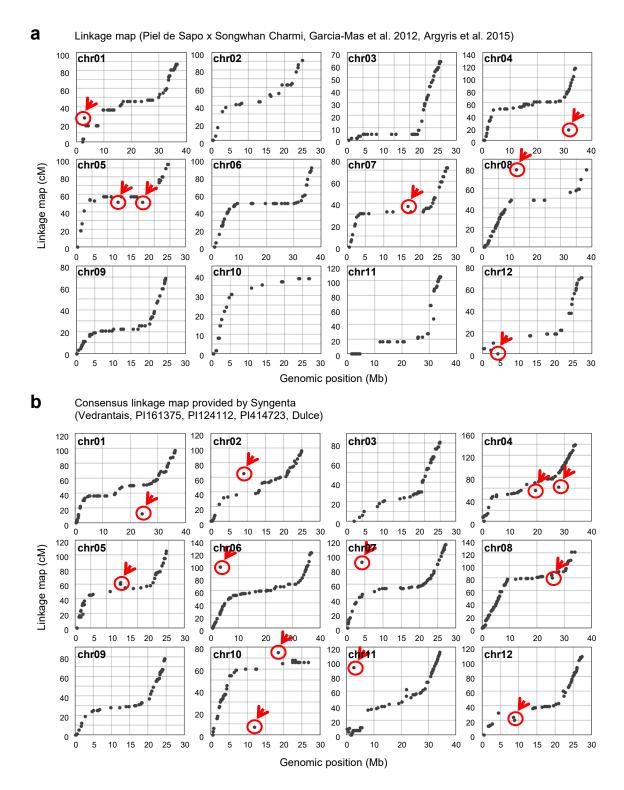


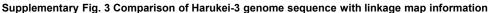
Apr-19 May-19 Jun-19 Jul-19 Aug-19 Aug-19 Sep-19 Oct-19 Oct-19 Nov-19 Dec-19

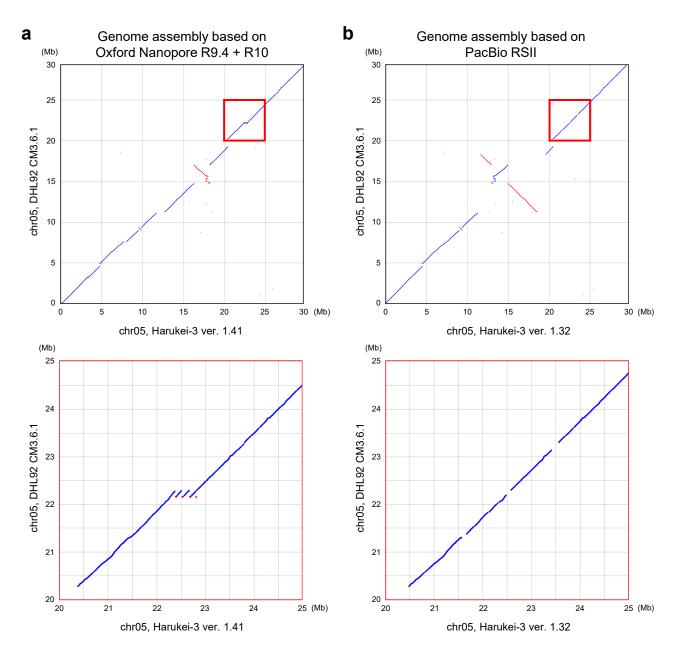
Apr-19 May-19 Jun-19 Jun-19 Jul-19 Aug-19 Aug-19 Sep-19 Oct-19 Oct-19 Nov-19 Dec-19



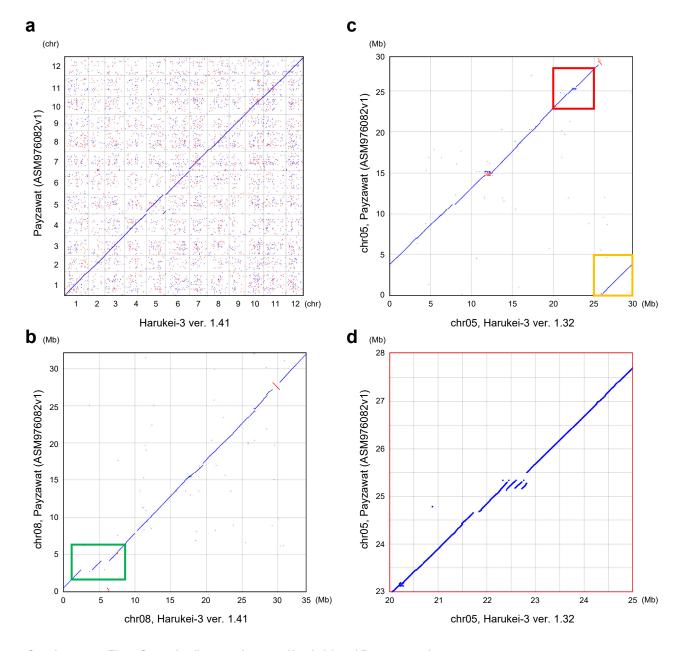
JSS-6 (*C. agrestis*, wild melon), max BRIX = [11.3]


Supplementary Fig. 1 Seasonal changes in fruit BRIX


Seasonal changes in fruit BRIX in five melon accessions. Fruit BRIX was continuously analyzed in a non-destructive manner using 'Fruit selector' near-infrared spectrometer (Kubota Co. Ltd., Japan) from April to November in 2019 in the greenhouse at the University of Tsukuba. Line colors distinguish the timing of fruit set from Spring to late Autumn. The melon accessions analyzed were Harukei-3, Honey dew, Ougon-9, Spicy, and JSS-6.


Supplementary Fig. 2 Procedure of whole genome assembly in Harukei-3

a Histograms of sequenced reads in Oxford Nanopore technology (ONT, R9.4.1 and R10 flow cells) and PacBio RSII. Reads with > 50 kb are present only in ONT reads (right). **b** Procedure of genome assembly. Contigs were separately assembled based on ONT or PacBio reads; then, scaffolds were assembled using BioNano optical map and Illumina mate-pair. ONT-based scaffolds were further updated by using Pacbio-based scaffolds as a hint; both scaffolds were first classified into each chromosome group based on the linkage marker information^{1,2,3}, then hint scaffolds (Pacbio-based) that connect two different ONT-based scaffolds were identified based on BLAST-n alignment. Finally, the chromosome-scale pseudomolecule was constructed by 28 genomic scaffolds that were anchored and oriented using the linkage map information^{1,2,3}.



a, **b** Comparison of Harukei-3 genome sequence with linkage maps. Linkage maps were derived from a cross between Piel de Sapo and Songwhan Charmi³ (a) or the consensus genetic map available in Cucurbit Genomics Database^{4,5} (b). Red circles and arrows indicate genetic markers in which the physical position does not match the linkage map position.

Supplementary Fig. 4 Comparison of genome assembly between ONT and PacBio in Harukei-3

a, **b** Genomic alignments of chromosome 5 between DHL92 and two versions of Harukei-3. The Harukei-3 sequences are ONTbased (a, ver. 1.41) or PacBio RSII-based (b, ver. 1.32). Entire chromosome (top) and the magnified view of the specific region (20– 25 Mb) (bottom) are shown. ONT-based Harukei-3 assembly can resolve large genome block duplications of around 22–23 Mb, whereas it is absent in the PacBio-based assembly. Blue and red dots indicate that DNA is aligned in the forward or reverse directions, respectively.

Supplementary Fig. 5 Genomic alignment between Harukei-3 and Payzawat melon genomes

a, **b**, **c** Genomic alignment of entire chromosomes (a), chromosome 8 (b), or chromosome 5 (c) between Harukei-3 (ver. 1.41) and Payzawat⁶ (ASM976082v1) genomes. Large genomic blocks that are present in Harukei-3 but not in Payzawat genome are indicated by the green rectangle in b. Inter-chromosomal translocation observed in chromosome 5 between the two genomes is indicated by the yellow rectangle in c. **d** Magnified view of the specific region of chromosome 5 (20–25 Mb in in Harukei-3, 23–28 Mb in Payzawat; shown by the red rectangle in c. Harukei-3 genome can resolve large genomic block duplications around 22–23 Mb, but it is absent or not assembled in the Payzawat genome. Blue and red dots indicate that DNA is aligned in the forward or reverse directions, respectively.

Sample	Condition	Bulked replicate	Total RNA (µ
Seedling cotyledon	7d after imbibition on filter paper	2 x 4 seedlings	20
Seedling root	7d after imbibition on filter paper	2 x 4 seedlings	20
Seedling hypocotyl	7d after imbibition on filter paper	2 x 4 seedlings	20
Germinating seed	1d imbibition on filter paper	2 x 4 seedlings	30
Germinating seed	3d imbibition on filter paper	1 x 4 seedlings	30
Dry seed	-	1 x >100 seeds	20
Combined RNA se Sample	condition	Bulked replicate	Total RNA (µ
Expanded leaves (6th)	Hydroponically-cultivated in the greenhouse	3	15
Expanded leaves (9th)	Hydroponically-cultivated in the greenhouse	3	15
Expanded leaves (12th)		3	15
Hole-punched leaves	infected with powdery mildew	8	15
Hole-punched leaves	without powdery mildew	8	15
Root	Hydroponically-cultivated in the greenhouse	4	25
Main stem	Hydroponically-cultivated in the greenhouse	2	16
Tendril	Hydroponically-cultivated in the greenhouse	2	6
Combined RNA se			
Sample	Condition	Bulked replicate	Total RNA (µ
Anther (female)	just after flowering	4 x >10 flowers 4 x >10 flowers	12.5
Anther (male) Ovary (female)	just after flowering just after flowering	4 x >10 flowers 3 x 4 ovaries	12.5 25
Ovary (remaie) Petal	just after flowering	3 x 4 ovaries 4 x >10 flowers	25 25
Pistil (female)	just after flowering	3 x 4 ovaries	25
Combined RNA se	t4		
Sample	Condition	Bulked replicate	Total RNA (µ
Fruit peel	DAF8	2	4
Fruit peel	DAF15	2	4
Fruit peel	DAF22	2	4
Fruit peel	DAF29	2	2.5
Fruit peel	DAF36	2	2.5
Fruit peel	DAF43	2	2.5
Fruit peel	DAF50	2	2.5
Fruit peel	Post harvest, 3weeks	2	2.5 2.5
Fruit peel Fruit peel	Post harvest, 1week Post harvest, 4weeks	2	2.5
Fruit peel	Post harvest, 2weeks	2	2.5
Fruit	DAF4	4 ovaries	10
Fruit flesh	DAF8	2	4
Fruit flesh	DAF15	2	4
Fruit flesh	DAF22	2	4
Fruit flesh	DAF29	2	2.5
Fruit flesh	DAF36	2	2.5
Fruit flesh	DAF43	2	2.5
Fruit flesh	DAF50	2	2.5
Fruit flesh	Post harvest, 3weeks	2	2.5
Fruit flesh	Post harvest, 1week	2	2.5
Fruit flesh Fruit flesh	Post harvest, 4weeks Post harvest, 2weeks	2 2	2.5 2.5
Combined RNA se			
Sample	Condition	Bulked replicate	Total RNA (
Hole-punched leaves	infected with powdery mildew (2018-Apr)	4	50
Hole-punched leaves	infected with powdery mildew (2018-Oct)	4	50
Combined RNA se			
Sample	Condition	Bulked replicate	Total RNA (
Etiolated seedling	germinted in the dark	>10 seedlings	100
Combined RNA se	Condition	Pulkod replicate	Total DNA (
Sample Shoot apox		Bulked replicate 4	Total RNA (µ
Shoot apex	Hydroponically-cultivated in the greenhouse	4	130
RNA (hole-punshe		Dulliand we direct	Tatal DNA /
Sample	Condition	Bulked replicate	Total RNA (
Harukei-3 (rep.1)	Hydroponically-cultivated in the greenhouse	4	>100

а

b

Harukei-3 (rep.2)

Harukei-3 (rep.3) Harukei-3 (rep.4) Honey dew (rep.1)

Honey dew (rep.2) Awamidori (rep.1) Awamidori (rep.2)

Ougon-9 (rep.1) Ougon-9 (rep.2) JSS-6 (rep.1)

JSS-6 (rep.1)

ONT direct RNA-seq (R9.4.1 flow cell)

1. Combine RNA in each set

- 2. Poly-A+ purification
- 3. Nanopore RNA-seq library prep.
- 4. Sequencing
- 5. Basecall with guppy

Total 8.2 Gb, 7.6 million reads (five flow cells)

ONT cDNA-seq (R9.4.1 flow cell) 1. Poly-A+ purification

2. Nanopore RNA-seq library prep.

Total 8.8 Gb, 11.5 million reads

3. Multiplex sequencing 4. Basecall with guppy

(one flow cell)

Supplementary Fig. 6 Summary of RNA samples used for ONT RNA-seq in Harukei-3

Hydroponically-cultivated in the greenhouse

Hydroponically-cultivated in the greenhouse Hydroponically-cultivated in the greenhouse Hydroponically-cultivated in the greenhouse

Hydroponically-cultivated in the greenhouse Hydroponically-cultivated in the greenhouse Hydroponically-cultivated in the greenhouse

Hydroponically-cultivated in the greenhouse Hydroponically-cultivated in the greenhouse

Hydroponically-cultivated in the greenhouse

Hydroponically-cultivated in the greenhouse

a, b Summary of RNA samples used for ONT direct RNA-seq (a) or cDNA RNA-seq (b). Both RNA-seq datasets were used for gene prediction in the Harukei-3 genome. Sequencing strategies are also briefly described on the left.

4

4 4 4

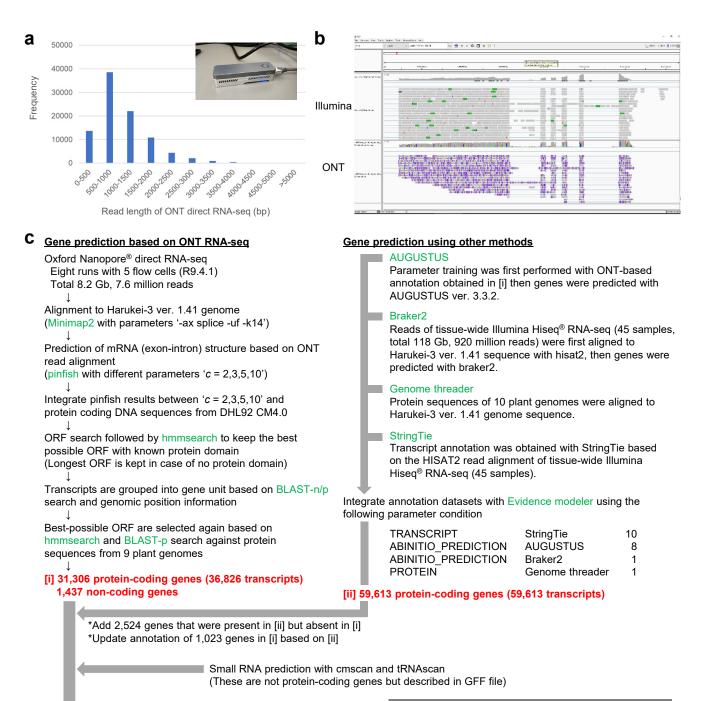
Δ

>100

>100 >100

>100

>100 >100

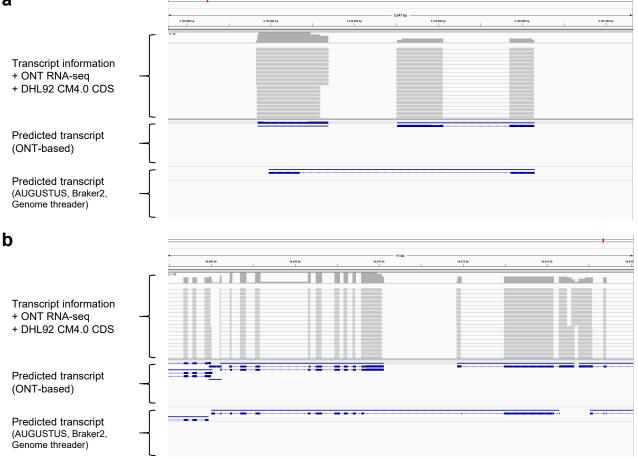

>100

>100

>100

>100

>100


[iii] 33,829 protein-coding genes (40,363 transcripts) 3,425 non-coding genes

	Protein BUSCO benchmark (ver3.0)							
Gene prediction dataset	Complete	Fragmented	Missing					
Final dataset [iii]	1,372 (95.3%)	16	52					
ONT-based gene dataset [i]	1,362 (94.6%)	24	55					
EVM [ii]	1,348 (93.6%)	33	59					

Genome reference	ONT-based gene prediction	Genome threader
Aarabidopsis thaliana TAIR10	Yes	Yes
Solanum lycopersicum iTAG3.0	Yes	Yes
Cucumis melo DHL92 CM4.0	Yes	Yes
Cucumis sativus Chineese Long ver3.0	Yes	Yes
Cucumis sativus PI183967	Yes	Yes
Cucumis sativus Gy14 ver1.0	-	Yes
Citrullus lanatus 97103 ver1.0	Yes	Yes
Lagenaria siceraria USVL1Vr-Ls	Yes	Yes
Cucurbita moschata Rifu ver1.1	Yes	Yes
Cucurbita maxima Rimu ver1.1	Yes	Yes

Supplementary Fig. 7 Summary of ONT-based gene prediction in Harukei-3

a Read-length histogram of ONT direct RNA-seq in Harukei-3. **b** Examples of RNA-seq read alignment. Reads of ONT RNA-seq (bottom) or Illumina RNA-seq (top, control) were aligned to Harukei-3 ver. 1.41 genomic sequence. Although the ONT reads contained many errors as shown by the purple lines, it was enough to predict exon-intron gene structure. **c** Summarized procedure of gene prediction in Harukei-3 ver. 1.41 genome reference. ONT-based method that integrates several software, such as Minimap2, pinfish, BLAST, and HMMER, predicted 31,306 protein-coding genes with a complete BUSCO ver. 3.0 score = 1,362 (94.6%). In parallel, Evidence Modeler (EVM) was used to integrate the results of AUGUSTUS (*ab initio* method), Braker2 (Illumina RNA-seq) based method), Genome Threader (protein-based method), and StringTie (transcript annotation based on Illumina RNA-seq). The EVM-based method predicted 59,613 protein-coding genes with a complete BUSCO ver. 3.0 score = 1,348 (93.6%). This EVM-based dataset was used to update the ONT-based dataset: 2,524 genes that were absent in the ONT-based dataset but present in the EVM-based dataset were added while open reading frame (ORF) structures of 1,023 genes in the ONT-based dataset were corrected based on the EVM-based dataset. Finally, a dataset of 33,829 protein-coding genes (40,363 transcripts) were obtained (BUSCO ver. 3.0 score = 1,372 [95.3%]). **d** Summary of the genome dataset used as supporting information in gene prediction analysis.

Supplementary Fig. 8 Comparison of predicted gene structures between the ONT-based method and EVM-based method

a, **b** Exon-intron structures of predicted genes are compared between different gene prediction methods. Top: alignment of transcript sequences obtained from ONT RNA-seq or DHL92 CM4.0 genome annotation; middle: structure of genes predicted by the ONT-based method; bottom: structure of genes predicted by EVM coupled with AUGUSTUS, Braker2, and Genome Threader. Please note that the EVM-based method predicted strange introns that were absent in the transcript sequence, whereas the ONT-based method correctly predicted exon-intron gene structure according to the transcript sequence.

enome1		Enriched ID	Fisher's exac	t test		Num
ne2		(Interproscan ID)	<i>p</i> -value	q-value	Information of GO ID	gene
		IPR012337	6.59E-150	2.70E-147	Ribonuclease H-like domain	291
		IPR001584	1.92E-118	3.93E-116	Integrase catalytic core	225
		IPR005162	9.25E-100	1.26E-97	Retrotransposon gag domain	155
		IPR013242	1.04E-98	1.06E-96	Retroviral aspartyl protease	171
		IPR000477	3.43E-93	2.81E-91	Reverse transcriptase	178
		IPR021109	1.13E-90	7.73E-89	Aspartic peptidase	170
	different chromosome on the Genome2	IPR001878	1.38E-85	8.06E-84	Zinc finger CCHC-type	152
		IPR004242	1.62E-53	8.28E-52	Transposon En/Spm-like	61
	B C D	IPR023780	1.11E-49	5.04E-48	Chromo domain	113
		IPR025312	1.27E-40	5.18E-39	Domain of unknown function DUF4216	40
		IPR025724	2.59E-38	9.62E-37	GAG-pre-integrase domain	59
		IPR013103	2.08E-36	7.09E-35	Reverse transcriptase RNA-dependent DNA polymerase	79
		IPR025452	2.44E-30	7.68E-29	Domain of unknown function DUF4218	34
diffor	ent chromosome on the Genome?	IPR008906	2.28E-28	6.66E-27	HAT dimerisation domain C-terminal	44
	inerent chromosome on the Genomez	IPR016197	5.80E-25	1.54E-23	Chromo domain-like	51
		IPR025525	6.01E-25	1.54E-23	Domain of unknown function DUF4413	31
Ą		IPR003653	1.02E-19	2.45E-18	Peptidase C48 SUMO/Sentrin/UbI1	32
_		IPR019557	1.96E-16	4.32E-15	Aminotransferase-like plant mobile domain	32
		IPR003656	2.01E-16	4.32E-15	Zinc finger BED-type predicted	24
	distant region on the same chromosome	IPR015410	8.28E-15	1.69E-13	Domain of unknown function DUF1985	23

Supplementary Fig. 9 Retrotransposon-related functions are enriched in candidates of copy number or presence/absence polymorphisms between Harukei-3 and DHL92 genomes

a Schematic illustration of the definition of copy number polymorphism (CNP) and presence/absence polymorphism (PAP). Four cases are assumed; genes are tandemly duplicated at the same chromosome region or a different chromosome (top, 2nd from the top). Gene is apparently copied to a distant region of the same chromosome or a different chromosome (3rd from the top). Gene is apparently translocated to a distant region of the same chromosome or a different chromosome (bottom). In total, 1203 genes or protein-coding sequences were applied to these cases (also shown in Fig. 2a). **b** InterPro ID enriched in the 1203 CNP or PAP candidates. ID enrichment analysis was performed using the 'GO enrichment analysis tool' in Melonet-DB (https://melonet-db.dna.affrc.go.jp/ap/got).

a Genome reference: Harukei-3 ver. 1.41 (var. reticulatus)

			Concorda	ntly aligned	Discordan	Discordantly aligned		aligned
Accession	Species, subgroup	Total reads	%aligned	%complete match	%aligned	%complete match	%aligned	%complete match
Harukei-3	C. melo var. reticulatus	459,736,006	99.18	90.68	0.37	0.33	0.08	0.03
Honey dew	C. melo var. inodorus	54,438,848	93.91	66.52	1.03	0.50	1.73	0.41
Spicy	C. melo var. cantalupensis	56,537,156	96.68	75.53	0.30	0.13	0.94	0.27
Manshuu	C. melo var. makuwa	55,690,052	88.87	42.88	1.02	0.22	3.43	0.61
Ougon-9	C. melo var. makuwa	64,043,888	88.90	43.41	1.16	0.27	3.48	0.63
JSS-6	C. agrestis (wild melon)	61,361,440	88.98	43.20	1.06	0.22	3.44	0.61

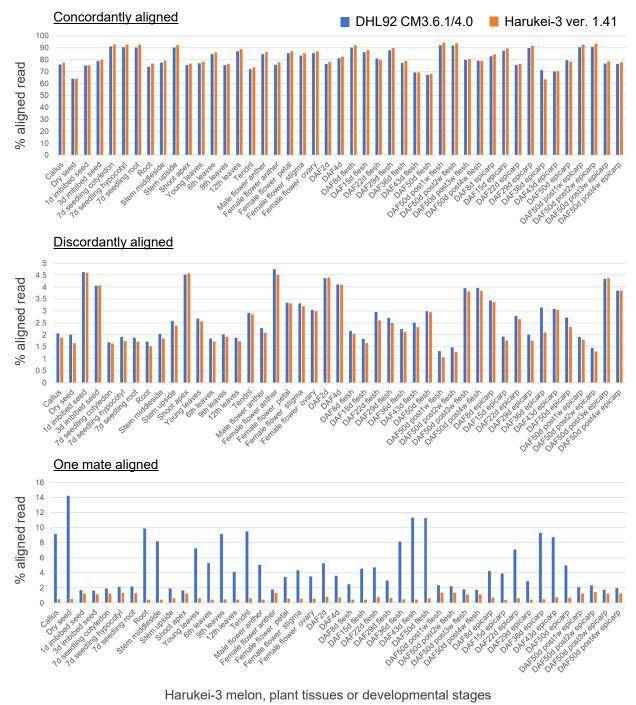
Genome reference: DHL92 CM3.6.1 (var. inodorus x conomon-chinensis)

			Concordar	ntly aligned	Discordan	Discordantly aligned		aligned
Accession	Species, subgroup	Total reads	%aligned	%complete match	%aligned	%complete match	%aligned	%complete match
Harukei-3	C. melo var. reticulatus	459,736,006	93.40	60.69	1.31	0.53	1.59	0.38
Honey dew	C. melo var. inodorus	54,438,848	88.98	51.75	2.56	0.87	3.07	0.67
Spicy	C. melo var. cantalupensis	56,537,156	87.84	45.95	2.46	0.68	3.48	0.71
Manshuu	C. melo var. makuwa	55,690,052	90.17	56.30	2.22	0.75	2.59	0.70
Ougon-9	C. melo var. makuwa	64,043,888	90.37	57.17	2.26	0.80	2.61	0.70
JSŠ-6	C. agrestis (wild melon)	61,361,440	89.70	55.52	2.45	0.84	2.76	0.75

Genome reference: Payzawat, ASM976082v1 (var. inodorus)

			Concordar	ntly aligned	Discordan	tly aligned	One mate aligned	
Accession	Species, subgroup	Total reads	%aligned	%complete match	%aligned	%complete match	%aligned	%complete match
Harukei-3	C. melo var. reticulatus	459,736,006	93.88	69.44	0.86	0.36	1.41	0.39
Honey dew	C. melo var. inodorus	54,438,848	90.09	63.54	1.47	0.58	2.71	0.85
Spicy	C. melo var. cantalupensis	56,537,156	88.86	55.37	1.23	0.31	3.18	0.85
Manshuu	C. melo var. makuwa	55,690,052	84.23	36.96	1.50	0.26	4.67	0.84
Ougon-9	C. melo var. makuwa	64,043,888	84.20	37.48	1.62	0.31	4.70	0.85
JSS-6	C. agrestis (wild melon)	61,361,440	84.26	37.05	1.57	0.28	4.67	0.84

b Genome reference: Harukei-3 ver. 1.41 (var. reticulatus)


Accession	Intergenic	Synonymous	Non-CDS exon	Intron	Splicing junction	Nonsense	Missense	Mutation at start codon	Mutation at stop codon*
Harukei-3	22,588	336	1,727	6,774	31	145	570	8	41
Honey dew	748,925	18,512	33,906	211,054	579	1,313	20,743	119	459
Spicy	484,305	13,176	24,174	139,551	431	1,589	17,440	92	298
Manshuu	1,658,203	38,035	68,107	423,972	1,147	2,944	45,327	246	849
Ougon-9	1,797,255	40,739	72,799	453,835	1,256	3,025	47,783	260	943
JSS-6	1,485,476	35,092	62,158	378,455	1,084	2,610	41,023	220	780

Genome reference: DHL92 CM3.6.1 + CM4.0 annotation (var. inodorus x conomon-chinensis)

Accession	Intergenic	Synonymous	Non-CDS exon	Intron	Splicing junction	Nonsense	Missense	Mutation at start codon	Mutation at stop codon*
Harukei-3	1,548,547	24,062	36,825	252,908	1,025	2,621	29,119	389	651
Honey dew	1,350,119	23,728	38,207	239,690	1,003	2,537	27,229	349	593
Spicy	1,616,475	29,635	46,548	297,333	1,223	3,353	35,955	421	689
Manshuu	962,558	17,714	29,345	175,515	822	2,584	22,426	299	531
Ougon-9	911,926	17,143	27,925	169,146	758	2,346	21,155	299	516
JSS-6	1,007,793	19,160	31,793	186,004	838	2,647	23,955	322	564

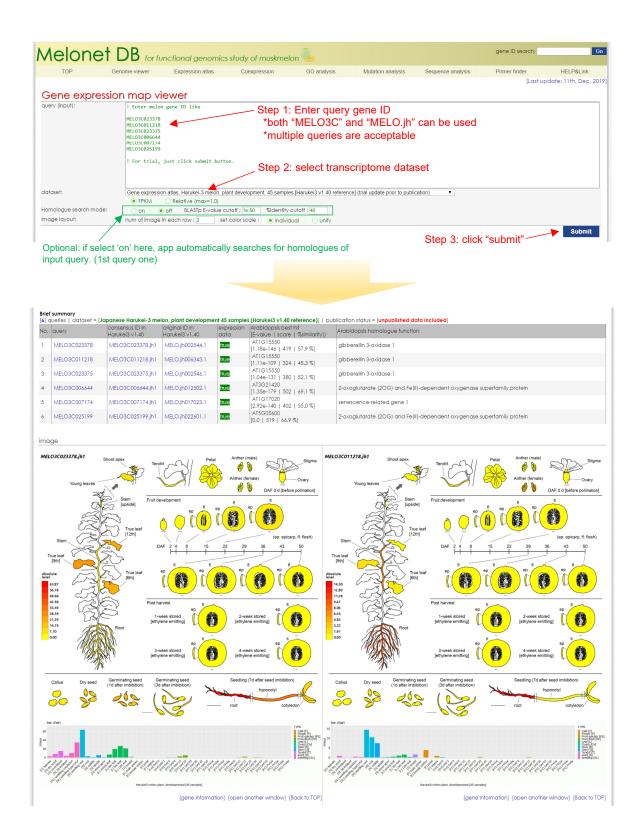
Supplementary Fig. 10 Evaluation of melon genome references using Illumina short read resequencing

a Comparison of short read alignment ratios between Harukei-3 (ver.1.41), DHL92^{1,7} (CM3.6.1 assembly), and Payzawat⁶ (ASM976082v1) genomes. Illumina short reads of six melon accession (Harukei-3, Honey Dew, Spicy, Manshuu, Ougon-9, and JSS-6) were aligned to the genome sequences with bowtie2. **b** Comparison of detected mutation type between Harukei-3 (ver. 1.41) and DHL92 (CM3.6.1 assembly + CM4.0 annotation).

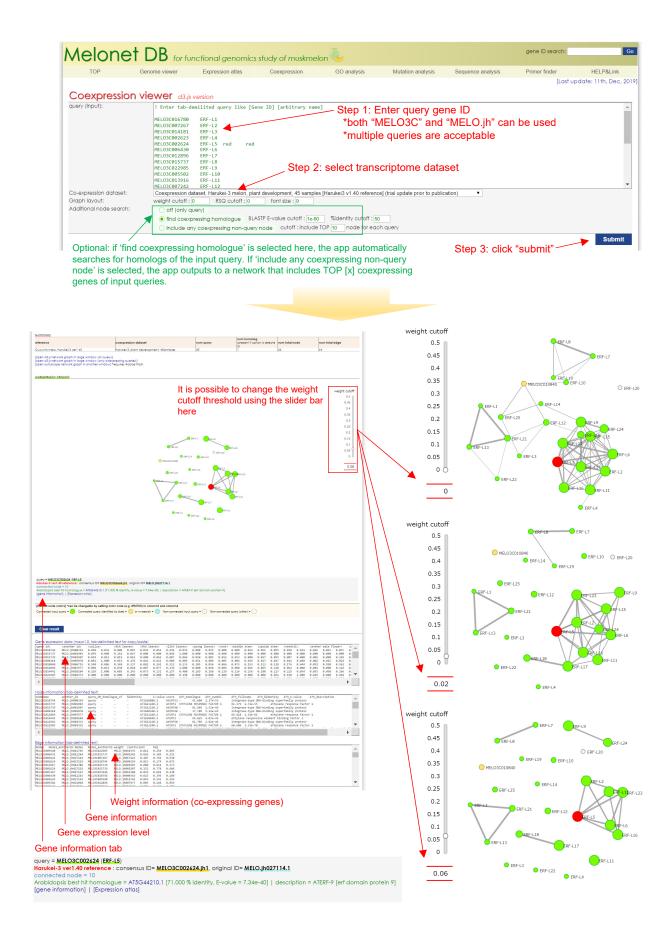
Number of genes with FPKM > 0.1 in at least one RNA-seq sample

Harukei-3 : **27,687** genes DHL92 : **16,013** genes

Supplementary Fig. 11 Comparison of Illumina RNA-seq alignment ratio


Illumina RNA-seq short reads of 45 tissue-wide samples (also summarized in Fig. 3a) were aligned to Harukei-3 (ver. 1.41) or DHL92 (CM 3.6.1 assembly + CM 4.0 annotation) genomes with HISAT2; then, alignment ratios were compared between the two genomes. Gene expression levels were calculated with StringTie, then, the number of genes with FPKM \ge 0.1 in at least one sample was calculated.

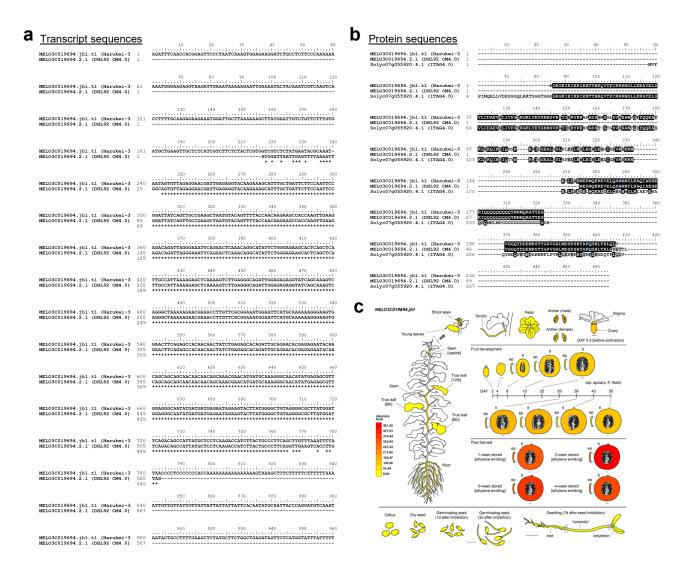
[CG1]	[CG2]	[CG3]	[CG4]	[CG5]	[CG6]	[CG7]	[CG8]
EA days a discovered work	-FAmerican mo	FALLAN	FALLEN	FManloom	A Frankling som	E. A. Markson	_EVILL_MAN
[CG9]	[CG10]	[CG11]	[CG12]	[CG13]	[CG14]	[CG15]	[CG16]
EMA MARINE MA	- Further and the strength	4 Francis	s.FWALLING States	LEWA March	a Flaten and in the	Fell Andrew market	EM LINAL IN T
[CG17]	[CG18]	[CG19]	[CG20]	[CG21]	[CG22]	[CG23]	[CG24]
Eutophi Andreas ma	I Alan	Franking and	En Aug	A	Anne	In a Anna An	
[CG25]	[CG26]	[CG27]	[CG28]	[CG29]	[CG30]	[CG31]	[CG32]
Entrance	la Épiden Mariane	ng Éthe dates Alexandress	Frank Andrew	Future	Ener Marca	Ender Augus	A Land
[CG33]	[CG34]	[CG35]	[CG36]	[CG37]	[CG38]	[CG39]	[CG40]
E A	- A A A	LE MAn M	E AND A	ME MAN	1 man AM	E Contraction of the	E Lange Mark
[CG41]	[CG42]	[CG43]	[CG44]	[CG45]	[CG46]	[CG47]	[CG48]
Es Au	ME Anna As	AF Marine Mar	Experies were	1 Am	Minu	Fahler American	A A A A
[CG49]	[CG50]	[CG51]	[CG52]	[CG53]	[CG54]	[CG55]	[CG56]
Flum all A	Ellenth	FAMMAN	A M	FIA AN ALMAN MAN	NED MAN	Employed	E.A. Maria
[CG57]	[CG58]	[CG59]	[CG60]	[CG61]			
Electronic	1 Francisco No	LE MALAN	E AN	/Fund	Ī	har been	las
					<i><i>q</i></i>		


Group	o Tissue specificity	positive	negative	Group	Tissue specificity	positive	negative
CG1	Dry seed	1,552	0	CG32	Ovary at DAF0, 2, 4	58	0
CG2	Imbibed seed	87	0	CG33	Ovary at DAF0, 2, 4 fruit epicarp DAF8, 15	166	0
CG3	Imbibed seed	93	0	CG34	Fruit epicarp around DAF36 to 50 (highest at DAF36)	142	1
CG4	Imbibed seed callus	251	0	CG35	Fruit epicarp around DAF8 to 15 (highest at DAF15)	89	0
CG5	Imbibed seed root (seedling) callus	41	0	CG36	Fruit epicarp post harvest 1w-4w (highest at 2w)	154	0
CG6	Hypocotyl (seedling)	271	0	CG37	Fruit flesh and epicarp around DAF22 to 50	850	14
CG7	Hypocotyl (seedling) root (seedling)	92	0	CG38	Fruit flesh and epicarp around DAF36 to 50 (highest at DAF43)	131	1
CG8	Callus	844	0		Fruit flesh and epicarp post harvest 1w-4w (highest at		
CG9	Root (seedling) callus root imbibed seed	106	0	CG39	1w)	645	10
CG10	Root root (seedling)	298	0	0040	Fruit flesh and epicarp post harvest 1w-4w (highest at	005	05
CG11	Root root (seedling)	179	0	CG40	3w)	385	25
CG12	Root root (seedling)	954	0	CG41	Fruit flesh around DAF36 to 50 (highest at DAF50)	418	2
CG13	Root stem root (seedling) hypocotyl(seedling)	219	0		post harvest 1w		
CG14	Shoot apex	148	0	CG42	Fruit flesh post harvest 1w-4w (highest at 2w)	67	0
CG15	Stem	292	0	CG43	Fruit flesh post harvest 1w-4w (highest at 3w)	481	1
CG16	Stem root hypocotyl (seedling)	326	0	CG44	Fruit flesh post harvest 3w-4w (highest at 4w)	267	0
CG17	Tendril	227	0	CG45	-	99	0
CG18	Tendril root stem hypocotyl (seedling) root (seedling)	84	0	CG46	-	804	7
	Young leaves shoot apex	83	0	CG47	-	43	0
	Young leaves shoot apex cotyledon (seedling)	134	0	CG48	-	105	2
CG21	Cotyledon (seedling) young leaves	486	10	CG49	-	276	0
	Cotyledon (seedling) young leaves expanded leaves	163	0	CG50	-	46	0
	Expanded leaves tendril	70	0	CG51 CG52	-	120	0
	Expanded leaves young leaves cotyledon (seedling)	411	28	CG52 CG53	-	56 123	0 0
	Expanded leaves young leaves cotyledon (seedling)			CG54	-	63	0
CG25	tendril hypocotyl (seedling)	789	18	CG55		136	0
CG26	Male anther	771	0	CG56		139	0
CG27	Male anther female anther	1,641	17	CG57	-	143	0
CG28	Male anther female anther petal stigma	128	3	CG58		144	0
CG29	Petal	562	0	CG59	-	3,525	23
CG30	Petal stigma female anther male anther	147	0	CG60	-	153	0
	Stigma	341	0	CG61		194	0
	v			CG62		0	0

Supplementary Fig. 12 WGCNA clustering of tissue-wide transcriptome dataset

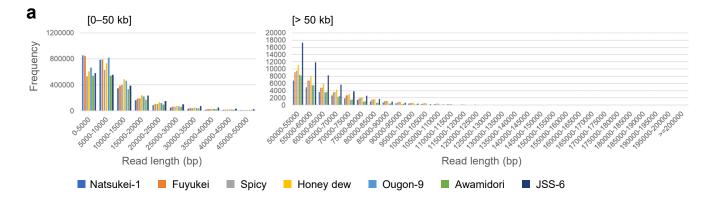
WGCNA co-expression clustering was performed based on the tissue-wide transcriptome dataset of Harukei-3 (Fig. 3a). In total, 62 co-expression groups were found. Pink and red rectangles indicate co-expression groups associating with fruit development or post-harvest ripening fruits, respectively.

Supplementary Fig. 13 Updated version of 'Gene expression map viewer' in the Melonet-DB This web application is available at the following URL: https://melonet-db.dna.affrc.go.jp/ap/mvw.


Supplementary Fig. 14 Updated version of 'Coexpression viewer' in the Melonet-DB This web application is available at the following URL: https://melonet-db.dna.affrc.go.jp/ap/mds.

TOP	et DB for for	Expression atlas	Coexpression	GO analysis	Mutation analysis	Sequence analysis	Primer finder	HELP&Link		
					*bot	query gene ID h "MELO3C" ar Itiple queries ar	d "MELO.jh" d			
mmary				Hanikai	3 v1.40 reference	Umul	kei-3 v1.40 referenc			
ery		DHL92 CM4.0 re		(original	ID)	(con:	sensus ID, present if			
LO3C016540.jh1		MELO3C016540	0.2	MELO.jh	013909.1	MELC	03C016540.jh1			
			erence		formation base	d on DHL92 ret	ference			
Hankel-3 v1.4 located on: ch position (bp): 2 strand; plus num transcript protein coding protein coding	0.genome reference vr06 17795290-27797365 vorianti: 2 1. TRUE 11. TRUE 11. TRUE				UH52 CM4.0 genome reference ocated on: cm03 ostion libpl: 253229-27565351 trand: minus um transolpt volants: 1 protein coding: 18/8 prediction: MAKER */inform:					
AT3G15510.1 (pediatric, Olf, Sinkakag Data, G Budoli Mer Budiatrian (urputatines) Beef NH Arobidopis gene (based on BLAID, 1.4810) A2015/911, IAACCES (E-stuer 2.38-112) (extre 4.31 sociaently 4.1.5 K.R) description in TAR I.HAC domini containing parlier 2				Eugen V. et al. (2016). Joneth Besoni 811: 888. Discolation and a constraint and a constra					
protein = (MEL3 Biological Proc Peguiation of Molecular Fun DNA binding InterProScon E NAC domain	Jeanch result Scott Add ph. 11) Store (Control (Contro) (Control (Control (Contr	-51]		InterProduces search next. prevers: NRCN2011442-31 Brogen Proceedings of the Acquered of ICO-0000355 (Searchine 42a-61; Learning 27a-61) Madazian Fundaru - Benefacian Sciences (Searchine 42a-61; Learning 21a-61) - Benefacian Sciences (Searchine 42a-61; Learning 21a-61) - Madazian Sciences (Searchine 42a-61; Learning 21a-61) - Madazian Sciences (Searchine 42a-61; Learning 21a-61) - Madazian Sciences (Searchine 42a-61; Learning 21a-61)						
HOMOLOGICAL HELL AND AN HELL AND AND HELL AND AND AND HELL AND AND AND AND AND HELL AND AND AND AND AND AND AND AND HELL AND AND AND AND AND AND AND AND AND HELL AND	Witten (1990) Provide # 1000 (1990) Pro					79 sea (identity = 51.205 88] 79 sea (identity = 50.200 8] 78 sea (identity = 50.202 76] pression)				
	The second secon	Arthur (matc) Arthur (matc) Def 1 () Jacobia polymetric)			MELOXCHESEL DOOT DOOT DOOT DOOT DOOT DOOT DOOT DOO					

By clicking '[transcript]' or '[protein]' link, it is possible to perform sequence alignment between the two genome references.


_						
Afgrenetresuit: CLUSTAL 2.1 multiple sequence alignment				MELO3C005940.jhl.tl MELO3C005940.2.1	1	HSSWRESDVLESTROHLLKENIANSSGGGGG-TETSTLOHHYKADAVERFKGVRREPWGR 58 MSSWRESDVLESTROHLLKENIANSSGGGGGCTTFSTLOHHYKADAVERFKGVRREPWGR 60
l	MELO3C016540.jhl.tl MELO3C016540.2.1 MELO3C016540.jhl.t2	0 1 GCTCGCATCCCATTTGCTTCACCTTAAACACTAACGTACTCCCACCCGGGCCAGATCATG 0	0 60 0	MELO3C005940.jh1.tl MELO3C005940.2.1		YAAEIRDPKRNGARTWLGTFETAQETALAYDRAAFKIRGAKAKLNFPHLIDSASTYSTSÄ 118 YAAEIRDPKRNGARTWLGTFETAQEAALAYDRAAFKIRGAKAKLNFPHLIDSASTYSTSÄ 120
l	MELO3C016540.jhl.tl MELO3C016540.2.1	061 CCCAGCTCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	0 120	MELO3C005940.jhl.tl MELO3C005940.2.1		STSSTKRPSSTHADH 134 STSSTKRPSSTHADH 136
	MELO3C016540.jh1.t2 MELO3C016540.jh1.t1	0	0 43			
l	MELO3C016540.2.1 MELO3C016540.jhl.t2	121 TAGTTACTCAAAAAAAAAAAAAAAAAAAAAAAAGAAGAAAAAAGAAAAA	45 180 49			
l	MELO3C016540.jhl.tl MELO3C016540.2.1 MELO3C016540.jhl.t2	44 TTTCCTARTCOCCCUTTTCTTCCTCCTCTTCTTCCCCARAAATTTACATTAATCC 181 TTTCCTARTCCCGCGATTTCTTCCTCCTCTCTCTCCCCGCARAATTTACATTAATCC 50 TTTCCTARTCCCGCGATTTCTTCTCTCCCCCTTCTTCTCCCGARAATTTACATTAATCC	103 240 109			
	MEL03C016540.jhl.tl MEL03C016540.2.1 MEL03C016540.jhl.t2	104 ATCGGAAAAAAACATAAGAACTGGGTCATGGAGAGCACCGACTCATCGGCCGCCCCACAG 241 ATCGGAAAAAAACATAAGAACTGGGTCATGGAGAGCACCGACTCATCGGCCGCCCCACAG 110 ATCGGAAAAAAACATAAGAACTGGGTCATGGAGAGGACCGACTCATCGGCCGCCCCACAG	163 300 169			

Supplementary Fig. 15 Gene information search function in the Melonet-DB This web application is available in Melonet-DB web site: https://melonet-db.dna.affrc.go.jp/.

Supplementary Fig. 16 Sequence and gene expression pattern of MELO3C019694

a, **b** Comparison of transcript (a) or protein amino acid (b) sequences of an *AGAMOUS*-like gene, *MELO3C019694*, between Harukei-3 (top) and DHL92 (bottom). c Tissue-wide gene expression pattern of *MELO3C019694* in Harukei-3.

 Accession	Read count	Total length (bp)	Average (bp)	Max (bp)	N ₅₀ (bp)
 Natsukei1	2,393,835	22,828,785,451	9,536	218,124	13,972
Fuyukei	2,519,061	26,060,465,229	10,345	313,129	15,542
Spicy	2,060,998	24,591,127,917	11,932	286,854	16,856
HoneyDew	2,444,716	29,608,876,134	12,111	244,739	16,941
Ougon9	2,490,216	27,243,224,015	10,940	204,102	15,172
Awamidori	1,867,169	21,287,972,918	11,401	218,625	16,795
JSS6	2,248,973	30,902,529,697	13,741	207,635	21,374

C Canu ver. 1.8 contig assembly

Accession	Num contig	Total length (Mb)	Average (kb)	Max (kb)	N ₅₀ (kb)
Natsukei-1	367	371.8	1,013	13,823	3,946
Fuyukei	265	371.3	1,401	20,607	4,863
Spicy	223	367.9	1,650	20,683	5,966
HoneyDew	288	373.2	1,296	15,114	5,084
Ougon-9	250	361.0	1,444	19,751	4,143
Awamidori	271	361.0	1,332	16,057	5,513
JSS6	129	361.6	2,803	32,807	10,243

Corrected contig assembly

Accession	Num contig	Total length (Mb)	Average (kb)	Max (kb)	N ₅₀ (kb)
Natsukei-1	462	373.7	809	13,898	3,505
Fuyukei	349	373.1	1,069	18,205	4,043
Spicy	262	369.6	1,411	20,815	5,044
HoneyDew	354	374.3	1,057	11,987	4,767
Ougon-9	295	363.1	1,231	17,961	3,706
Awamidori	315	362.8	1,152	16,150	4,709
JSS6	157	363.6	2,316	25,717	10,148

Supplementary Fig. 17 Contig assembly in seven melon accessions

a Histograms of sequenced reads in Oxford NanoPore technology (ONT; R9.4.1 flow cell). **b** Read length statistics of ONT reads. **c** Sequence length statistics of the contig assemblies in seven melon accessions. Contigs were initially assembled with Canu ver. 1.8 software based on ONT reads and the resultant contigs were subjected to racon and medaka polishing to correct sequence errors. Then, contigs with chimeric sequences (incorrectly assembled contigs) were identified and split by searching for the positions where the number of aligned ONT reads were less than four. The top panel indicates the value of the sequence length statistics of the Canu ver. 1.8 contig assemblies while the bottom indicates those of the corrected contig assemblies.

References

- 1. Garcia-Mas, J. *et al.* The genome of melon (*Cucumis melo* L.). *Proc Natl Acad Sci* **109** (2012).
- 2. Kawazu, Y. *et al.* QTL mapping for resistance to Cucurbit chlorotic yellows virus in melon (*Cucumis melo* L.). *Euphytica* **214**, 239 (2018).
- 3. Argyris, J.M. *et al.* Use of targeted SNP selection for an improved anchoring of the melon (*Cucumis melo* L.) scaffold genome assembly. *BMC Genomics* **16**, 014-1196 (2015).
- Zheng, Y. *et al.* Cucurbit Genomics Database (CuGenDB): a central portal for comparative and functional genomics of cucurbit crops. *Nucleic Acids Research* 47, D1128-D1136 (2018).
- 5. Diaz, A. *et al.* Anchoring the consensus ICuGI genetic map to the melon (Cucumis melo L.) genome. *Molecular Breeding* **35**, 188 (2015).
- 6. Zhang, H. *et al.* A High-Quality Melon Genome Assembly Provides Insights into Genetic Basis of Fruit Trait Improvement. *iScience* **22**, 16-27 (2019).
- Ruggieri, V. *et al.* An improved assembly and annotation of the melon (*Cucumis melo* L.) reference genome. *Scientific Reports* 8, 8088 (2018).