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Supplementary Methods 
We consider a population of size N, in which each individual has a status as a mask-wearer or a 
non wearer. For each status f (f=m for mask wearer, f=n for non wearer), let Sf, Ef, be the 
number of susceptible and exposed (but not infectious) individuals. Let 𝐼"

#, 𝐼$
# and 𝐼%

# be the 
number of pre-symptomatic, asymptomatic/mildly symptomatic and fully symptomatic individuals 
respectively. Finally, let R and D be the number of recoveries and deaths. Fully symptomatic 
cases are associated with an infection rate of 𝛽%, while pre-symptomatic and 
mildly/asymptomatic infections have a lower infection rate 𝛽$; we assume 𝛽% = 2𝛽$. Progression 
from exposed to pre-symptomatic occurs at rate 𝛼*, and progression to either 𝐼% or 𝐼$ occurs at 
rate 𝛼+. The average incubation period (1/𝛼*+1/𝛼+) is assumed to be 6 days 1-3. The probability 
of developing only mild symptoms or no symptoms among age group x is 𝑃-. Removal occurs at 
rate 𝛾% and 𝛾$ respectively. The proportion of fatalities among fully symptomatic cases in age 
group x is assumed to be 𝑝0. We assumed an R0 of 2.5 across models4,5. In order to calculate 
the infection rates in our models with multiple infected compartments, we derived the dominant 
eigenvalue of the next generation matrix 6 in terms of the model parameters: 

𝑅2 =
𝛽$
𝛼+
+
𝛽$𝑃-
𝛾$

+
𝛽%(1 − 𝑃-)

𝛾%
 

so that if 𝛾% = 𝛾$ = 𝛾, and 𝛽$ =
89
+

: 

𝛽% = 𝑅2
+:;<

+:;=<>"?:;
 . 

 
Given that estimates for the proportion of asymptomatic infections vary considerably, including 
18% based on data from the Diamond Princess cruise ship (with a high proportion of elderly 
people) [28], 25% according to the director of the US CDC [29], 30% based on Japanese 
evacuees from Wuhan [30], and even up to 78% based on limited reporting from China [31], we 
allowed this parameter to vary over a plausible range. We assume that mild/asymptomatic 
infections have an infection rate 50% lower than fully symptomatic infections. 
 
Resource allocation model 

  
We partition the population into age groups, comprising Ny and No young (<70 years old) and 
elderly (70+ years old) persons respectively. For each age group x (x=y for young, x=o for 
elderly), and status f (f=m for mask wearer, f=n for non-wearer), let Sxf, Exf, be the number of 
susceptible and exposed (but not infectious) individuals, and we apply similar superscript 
notation for all other compartments. The probability of developing only mild symptoms or no 
symptoms among age group x is 𝑃-@. The proportion of fatalities among fully symptomatic cases 
in age group x is assumed to be 𝑝@0. Dynamics are governed by the following system of 
differential equations: 

(1) 

(2) 



 
  
where m* is an indicator function equal to 1 when there is a remaining supply of masks M, δ is 
the probability of detecting mild/asymptomatic infections, and 𝜙@ is the probability of death for a 
symptomatic individual in age group x. As masks are provided to newly diagnosed cases, 
supplies are depleted at the following rate:  

 
Mask supplies monotonically decline until zero is reached, at which point, no further masks are 
provided for detected cases. Models are run for three years; total cases and infections are 
counted until that point. While in some edge cases, the epidemic peak can be delayed until after 
this point, it is reasonable to assume that vaccination deployment will contribute to developing 
herd immunity by then, effectively ending the epidemic. 
 
Supply & demand model 
  
In this model (Supplementary Figure 11), we allow for movement between mask-wearing and 
non-mask-wearing status, depending on availability and demand, and masks must be 
continually acquired to remain a mask wearer. New masks are produced at a fixed rate B and 
mask supply decreases as people become mask wearers. We assume that the mask is worn on 
average for μ days before requiring replacement, and the rate of non-wearers acquiring masks 
depends on both demand (ωA for healthy and asymptomatic individuals, or ωS for symptomatic 
individuals) and current supply (M/N, the proportion of mask in the overall population). We 
assume that demand for masks increases with the number of reported cases in the population 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 
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(13) 
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up to a certain plateau, and as such modeled the relationship between ωA and the number of 
symptomatic infections in the following sigmoidal function: 

 𝜔$ =
*

*=CDEF G9DE;
. 

	
The range of ωA is [0, 1], k1 represents the rate of demand increase, and k2 represents the 
timing of demand, defined as the number of reported cases when half the population seeks face 
masks (i.e. higher k2 means mask demand increases later in the outbreak). We allow ωS to 
differ from ωA, in order to explore the effects of recommending face mask use to the general 
population (ωS=ωA), or specifically to symptomatic individuals (ωS>ωA). This parameterization 
allows us to explore different demand dynamics, for example, panic buying (high k1), delayed 
response to epidemic threat (high k2), limited interest in mask use (low k1, high k2) (Figure S1). 
The model details are as follows: 
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Supplementary Table 1. Parameter values used in the study  
  

Parameter Definition Baseline value References 

R0 Basic reproduction number for 
symptomatic individuals 

2.5 4,5,7,8 

1/α1 Time from exposed to pre-symptomatic 1 4  

1/α2 Time from pre-symptomatic to 
symptomatic/ asymptomatic 

5 1-4  
  

Pa The proportion of asymptomatic infections 30% (varied in 
simulations) 

9  

1/	𝜸A	 Time to recovery for asymptomatic 
infections 

14 4,10   

1/	𝜸S	 Time to recovery for symptomatic 
infections 

14 4,10,11  

rt Relative transmissibility with mask Varied in simulations 
(=0.5 if not specified) 

  

rs Relative susceptibility with mask Varied in simulations 
(=0.75 if not specified) 

  

Resource allocation model  

N70 Proportion of people age 70+ 7.6% 12  

𝜙C 
𝜙X 

Death rate among symptomatics in 70+ 
Death rate among symptomatics in <70 

9.7% 
1.3% 

13  
  

𝛿 Detection rate of asymptomatic infections 44%  14  

Supply & demand model 

B Daily mask production Varied in simulations   

1/μ Average time of wearing disposable mask 1  

d The ratio of rate of wearing mask between 
symptomatic infected individuals and 
others (ωS/ωA) 

Varied in simulations 
(=1000 if not specified) 

  

  



SUPPLEMENTARY FIGURES 
 

 
 

Supplementary Figure 1. Rapid introduction of face masks to the general population can 
reduce infections and delay the epidemic peak. For a range of intervention dates, 50% of 
the general population adopt face masks conferring 25% protection and 50% containment. 
Earlier interventions can reduce overall deaths, and delay the epidemic peak. 

 
 



 
Supplementary Figure 2. Reduction in total infections under each of the described 
resource allocation strategy for a range of resource availability levels. Corresponds to 
Figure 2, showing here infections rather than deaths. Each panel represents intervention 
effectiveness in terms of relative susceptibility and transmissibility, with the bottom left panel 
denoting the most effective intervention (75% reduction in susceptibility and transmissibility) and 
the top right panel representing the least effective intervention (25% reduction in susceptibility 
and transmissibility). Resources are provided naïvely (pink), prioritized to the elderly (green), 
saved for detected cases (red), or balanced at different levels between healthy individuals, 
prioritizing the elderly, and detected cases (blue). 30% of infections are assumed to be 
undetected. See Methods for further details. 
 



 
Supplementary Figure 3. Prioritized distribution to high risk individuals is increasingly 
optimal for larger high risk populations. For a mask providing 50% containment and 75% 
protection, we explored dynamics in populations with different ‘high-risk’ communities and mask 
supplies. For all scenarios considered, prioritized distribution to the elderly was the optimal 
strategy. This strategy was associated with greater reductions in deaths relative to the random 
distribution strategy, as shown by the colors. The dashed line indicates where mask supply is 
equal to the size of the high risk population. 
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Supplementary Figure 4. Relative deaths decrease with a higher detection rate. For a 
range of mask effectiveness parameters, increased detection rates can improve outcomes 
under strategies in which infected persons are provided masks (strategy 4 [red] and strategies 
3a-3c [blue]). 
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Supplementary Figure 5. Optimizing mask distribution strategy can delay epidemic peak. 
We demonstrate that, even low coverage (5% of the population) of a mask offering no protection 
and 40% containment, the epidemic peak can be delayed when retaining resources for detected 
cases. 
  



 

 
Supplementary Figure 6. Impact of mask production rates on final number of infections. 
The reduction in total numbers of infections for different levels of mask protection and mask 
production. (k1, k2) = (0.1, 100) here.  
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Supplementary Figure 7. Levels of reduction in total infection numbers compared to no 
mask condition under different demand functions. The level of total infection reduction (%) 
varies with the rate of demand increase (k1) and the timing of 50% population demand on masks 
(k2). Here shows total infection reduction under high (B/N= 30%) or low (B/N= 1%) mask 
production when prioritizing (left) or not prioritizing (right) masks for infectious cases. Generally, 
‘panic buying’ is detrimental and prioritizing to infectious cases (setting ωS>ωA) is beneficial. N= 
2.3 × 107 is used here.   
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Supplementary Figure 8. The effect of prioritizing masks to infectious cases is less 
apparent if the proportion of asymptomatic infections is high. (k1, k2) = (0.1, 100) here.  
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Supplementary Figure 9. Low mask production rate can limit the advantage of building 
up supplies. Epidemic curves (pink) under a ‘panic buying’ demand curve (left), and a more 
gradual managed demand curve (right) when prioritizing (top) and not prioritizing (bottom) 
masks for infectious cases. Demand is shown as a dashed grey line, while the relative available 
mask supply is shown in blue. The proportion of the susceptible and symptomatically infected 
persons wearing masks are shown as green and red lines, respectively. (k1, k2) are (1, 100) and 
(10-6, 5×106) for “panic buying” and managed demand, respectively. While supplies are built up 
in the early phase of the epidemic (right), shortage still occurs during the outbreak if mask 
production rate is low (B/N = 1% here). 
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Supplementary Figure 10. Different parameterizations of demand dynamics. Different 
values of k1 and k2, provided as the title for each panel, result in different demand responses to 
increasing numbers of reported cases. A panic buying scenario can be approximated in the 
bottom right panel, where demand is maximal very early in the epidemic. A gradual increase in 
demand is shown in the top left panel, in which 50% of the population seek masks when the 
number of infections reaches 5 million. 
 
 



 
     

Supplementary Figure 11. Supply & demand model. Diagram of the supply & demand model 
showing the rates between each compartment.  
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