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Supplementary Figures 

 

 

Supplementary Figure 1. XPS survey spectra of the Fe-C900-PCC, Fe-N900-PCC and Fe-

P900-PCC. The main elemental contributions are indicated. 
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Supplementary Figure 2. Textural properties. N2 adsorption-desorption isotherms (a) and  pore 

size distribution curves (b) for Fe-C900-PCC, Fe-N900-PCC, and Fe-P900-PCC. 
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Supplementary Figure 3. XRD patterns of the Fe-C900-PCC, Fe-N900-PCC and Fe-P900-PCC. 

The diffraction peaks (002, 100) are labelled in the spectra. 
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Supplementary Figure 4. Raman spectra of the Fe-C900-PCC, Fe-N900-PCC and Fe-P900-PCC. 

For all of the samples, only D-band (1338 cm-1) and G-band (1589 cm-1) of carbon have been 

detected. 
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Supplementary Figure 5. Morphology characterization of the catalysts. TEM images of (a) 

Fe-C900-PCC, (b) Fe-N900-PCC and (c) Fe-P900-PCC. 
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Supplementary Figure 6. HRTEM images of the catalysts. (a) Fe-C900-PCC. (b) Fe-N900-PCC. 

(c) Fe-P900-PCC. Graphitic layers are highlighted by yellow arrows. 
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Supplementary Figure 7. Characterize the Fe single atoms in the Fe-N900-PCC. (a, c, e) Rep-

resentative AC-STEM images, Fe single atoms are highlighted by yellow circles. (b, d, f) Corre-

sponding HRTEM images. 
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Supplementary Figure 8. Characterize the Fe single atoms in the Fe-P900-PCC. (a, c) Repre-

sentative AC-STEM images, Fe single atoms are highlighted by yellow circles. (b, d) Correspond-

ing HRTEM images. 
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Supplementary Figure 9. Characterize the Fe nanoparticles in the Fe-N900-PCC. (a) STEM 

image, Fe nanoparticles are highlighted by yellow arrows. (b) Corresponding HRTEM image. 
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Supplementary Figure 10. Characterize the Fe nanoparticles in the Fe-P900-PCC. (a) STEM 

image. (b) Corresponding HRTEM image. Fe nanoparticles are highlighted by yellow arrows. 
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Supplementary Figure 11. Exploration of substrate scope for the hydrogenation of unsatu-

rated N-heterocycles. Reaction conditions: 1 mmol substrate, 100 mg Fe-P900-PCC, 2 mL solvent 

(heptane), 4 MPa H2. Yields were determined by GC using dodecane as an internal standard. 
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Supplementary Figure 12. Characterizations of the Fe@Fe-C900-PCC. (a, b) AC-STEM im-

ages, Fe single atoms are highlighted by yellow circles. (c) HRTEM image. (d) Fe K-edge EXAFS 

spectra of Fe@Fe-C900-PCC and reference materials (Fe foil and Fe2O3). 
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Supplementary Figure 13. Characterizations of the Fe@Fe-N900-PCC. (a) AC-STEM image, 

Fe single atoms are highlighted by yellow circles. (b) Fe K-edge EXAFS spectra of Fe@Fe-N900-

PCC and Fe foil. 
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Supplementary Figure 14. Chemical environment of the Fe@Fe-N900-PCC. Fe K-edge EX-

AFS analysis of the Fe@Fe-N900-PCC at k-space (a) and R-space (b), respectively. The inset in (b) 

demonstrates the schematic model of Fe-N4. The best-fit structural parameters are listed in Sup-

plementary Table 6. 
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Supplementary Figure 15. Adsorption configurations of H2 molecule on Fe-N4 structure. (a) 

Top view. (b) Side view. 

  



17 
 

 

Supplementary Figure 16. Gas-phase isotopic H2-D2 exchange experiments. (a) HD profiles 

of polymer derived catalysts (P900-PCC-polymer, Fe-P900-PCC-polymer). (b) HD profile of Fe-

P900-PCC. 
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Supplementary Figure 17. Fe 2p XPS spectrum of the Fe-P900-PCC. The black vertical line 

indicate the binding energy of Fe 2p3/2 of Fe3+. 
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Supplementary Figure 18. P 2p XPS spectra of Fe-P900-PCC and Fex/Fe-P900-PCC. The P 2p 

XPS spectra of Fe-P900-PCC have been changed by post-impregnation Fe species. 
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Supplementary Figure 19. Characterizations of spent Fe-P900-PCC. (a) P 2p XPS spectra, the 

contents of different P species are listed in Supplementary Table 5. (b) Fe 2p XPS spectra. (c) 

STEM image of Fe-P900-PCC-used. (d) Fe K-edge EXAFS spectra of Fe-P900-PCC and Fe-P900-

PCC-used, as well as the reference sample Fe foil. 
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Supplementary Figure 20. 1H NMR spectrum of compound 5n. 
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Supplementary Figure 21. 13C NMR spectrum of compound 5n. 
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Supplementary Figure 22. HRMS of compound 5n. 
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Supplementary Figure 23. Chiral HPLC data of compound 5n. Peak 1: 12.596 min, area 

(65198511 mAU*s), area percentage (98.364%); peak 2: 13.476 min, area (1084165 mAU*s), area 

percentage (1.636%). 
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Supplementary Figure 24. 1H NMR spectrum of compound 5o. 
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Supplementary Figure 25. 13C NMR spectrum of compound 5o. 
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Supplementary Figure 26. HRMS of compound 5o. 
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Supplementary Figure 27. Chiral HPLC data of compound 5o. Peak 1: 12.359 min, area (234963 

mAU*s), area percentage (1.339%); peak 2: 13.351 min, area (17318351 mAU*s), area percentage 

(98.661%). 
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Supplementary Figure 28. 1H NMR spectrum of compound 5p. 
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Supplementary Figure 29. 13C NMR spectrum of compound 5p. 
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Supplementary Figure 30. HRMS of compound 5p. 
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Supplementary Figure 31. 1H NMR spectrum of compound 5q. 
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Supplementary Figure 32. 13C NMR spectrum of compound 5q. 

 

  



34 
 

 

Supplementary Figure 33. HRMS of compound 5q. 
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Supplementary Tables 

Supplementary Table 1. The contents of Fe in raw materials. 

Raw material Fe content (wt%) 

Silica colloid (Alfa Aesar) 3.5 × 10-4 

Sucrose (Macklin Biochemical Co. Ltd) 9.3 × 10-4 

Phytic acid solution (Aladdin Industrial Cooperation) 9.2 × 10-2 

Cyanamide (Alfa Aesar) 1.5 × 10-3 

Determined by ICP-MS. Company name of purchased raw materials are shown in parenthesis. 
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Supplementary Table 2. The contents of Fe in the catalysts. 

Catalyst Fe content (wt%) 

Fe-C900-PCC 1.6 × 10-3 

Fe-N900-PCC 2.3 × 10-3 

Fe-P900-PCC 7.1 × 10-2 

Fe@Fe-C900-PCC 3.8 × 10-2 

Fe@Fe-N900-PCC 5.7 × 10-2 

P900-PCC-polymer 2.3× 10-5 

Fe-P900-PCC-polymer 9.6 × 10-2 

Fe-P700-PCC 7.2 × 10-3 

Fe-P800-PCC 3.5 × 10-2 

Fe-P1000-PCC 1.1 × 10-1 

Fe-P1100-PCC 6.8 × 10-2 

Determined by ICP-MS.  
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Supplementary Table 3. Elemental compositions of catalysts (XPS results). 

Catalyst 
 XPS analysis (atomic %) 

C O F Fe N P 

Fe-C900-PCC 91.02 6.08 2.6 0.3 - - 

Fe-N900-PCC 81.69 6.24 0.92 0.16 10.99 - 

Fe-P700-PCC 86.23 10.66 0.91 0.16 - 2.04 

Fe-P800-PCC 81.86 12.97 1.43 0.26 - 3.48 

Fe-P900-PCC 84.55 11.55 0.96 0.20 - 2.74 

Fe-P1000-PCC 86.81 9.68 1.2 0.26 - 2.04 

Fe-P1100-PCC 91.47 6.45 1.01 0.15 - 0.91 

Fe-P900-PCC-H 93.05 5.64 0.33 0.14 - 0.98 
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Supplementary Table 4. Structural properties of the catalysts. 

Catalyst SBET
† (m2g-1) Smicro

‡ (m2g-1) Vpore
# (m3g-1) Vmicro

§(m3g-1) Dpore
¶ (nm) 

Fe-C900-PCC 768 263 1.34 0.14 12.7 

Fe-N900-PCC 628 193 1.11 0.10 12.7 

Fe-P900-PCC 511 259 1.32 0.14 17.2 

Fe-P700-PCC 480 243 1.13 0.13 17.2 

Fe-P800-PCC 496 251 1.29 0.13 17.2 

Fe-P1000-PCC 418 167 1.16 0.09 17.2 

Fe-P1100-PCC 615 275 1.45 0.14 17.2 

†BET surface area.  
‡Micropore surface area.  
#Total pore volume.  
§Pore volume for micropores.  
¶Mean pore diameter. 

 

  



39 
 

Supplementary Table 5. The contents of different P species in catalysts. 

Catalyst 

Total P 

content 
(atomic %) 

C-O-P (134.4 eV) C-PO3/C2-PO2 (133.1 eV) Pgrap (132.1 eV) 

Percent-
age (%) 

Content 
(atomic %) 

Percent-
age (%) 

Content 
(atomic %) 

Percent-
age (%) 

Content 
(atomic %) 

Fe-P700-PCC 2.04 28.3 0.58 71.7 1.46 0 0 

Fe-P800-PCC 3.48 24.0 0.84 70.0 2.43 6.0 0.21 

Fe-P900-PCC 2.74 27.2 0.75 57.8 1.58 15.0 0.41 

Fe-P1000-PCC 2.04 31.2 0.64 51.4 1.05 17.4 0.35 

Fe-P1100-PCC 0.91 23.1 0.21 54.2 0.49 22.7 0.21 

Fe-P900-PCC-
H 

0.98 16.1 0.16 43.7 0.43 40.2 0.39 

Fe-P900-PCC-
used 

1.51 23.5 0.35 49.0 0.75 27.5 0.41 

Content of Pspecies (atomic %) = Total P content (atomic %) × Percentage of Pspecies (%) 
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Supplementary Table 6. Fitting results of Fe K-edge EXAFS data for Fe@Fe-N900-PCC and Fe-P900-PCC. 

Sample Bond CN R (Å) σ2 (Å2) ΔE0 (eV) R-factor 

Fe@Fe-N900-PCC† Fe-N 4.2 ± 0.4 1.95 ± 0.01 0.007 ± 0.001 -6.23 ± 1.1 0.004 

Fe-P900-PCC‡ 
Fe-P 4.0 ± 0.8 2.35 ± 0.02 0.014 ± 0.006 -0.96 ± 0.3 

0.013 
Fe-O 2.0 ± 0.4 2.00 ± 0.03 0.004 ± 0.004 -0.96 ± 0.3 

The average lengths of Fe-N, Fe-P and Fe-O bonds and coordination numbers of Fe atoms are extracted from the curve 

fitting for Fe K-edge EXAFS data. CN, coordination number; R, distance between absorber and backscatter atoms; 

σ2, the Debye-Waller factor; ΔE0, inner potential correction; R-factor, indicate the goodness of the fit.  

†For the EXAFS spectrum of Fe@Fe-N900-PCC (Supplementary Fig. 14), only a strong Fe-N peak at 1.45 Å is ob-

served. So, the fitting was performed by including a single Fe-N shell within the R-rang of 1.0 - 3.1 Å and k-rang of 

1.42 Å-1 - 9.62 Å-1. The fitting results reveal that the coordination number of Fe center with surrounding N atoms is 

4.2 ± 0.4 and the average Fe-N bond length is 1.95 ± 0.01 Å, suggesting the single Fe sites in Fe@Fe-N900-PCC adopt 

a planar Fe-N4 structure (as presented in Supplementary Fig. 14b). 

‡The EXAFS spectrum of Fe-P900-PCC shows that the main peak locates at 1.63 Å, ascribing to Fe-P first shell coor-

dination. Furthermore, the Fe-O first shell coordination at 1.45 Å is also included in this broadening peak, which 

indicates that O need to be included in the curve fitting. On the other hand, a shoulder peak at 2.55 Å for Fe-C second 

shell coordination is also observed. Therefore, a three-shell structure model, including a Fe-P, a Fe-O and a Fe-C shell, 

is initially used to fit the EXAFS data of Fe-P900-PCC within the R-rang of 1.0 - 3.1 Å and k-rang of 1.42 - 9.62 Å-1. 

The best-fitting analyses manifests that the dominant contribution is given by Fe-P and Fe-O first shell coordination 

as presented in Manuscript Fig. 3c and 3d. The coordination numbers for P and O atoms are calculated as 4.0 ± 0.8 

and 2.0 ± 0.4, and the corresponding mean bond length of Fe-P and Fe-O are 2.35 ± 0.02 Å and 2.00 ± 0.03 Å, 

respectively. These results reveal that the single Fe atom in Fe-P900-PCC coordinates with four P atoms and a dioxygen 

molecule (O2-Fe-P4). Because the atomic size of P (106 pm) is larger than C (75 pm), Fe center adopts a pyramidal 

geometry as shown in Manuscript Fig. 3e, this configuration is quite different from the planar structure of Fe-N4. 
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Supplementary Table 7. Hydrogenation of quinoline catalyzed by Fex/Fe-P900-PCC.  

 

Entry Catalyst Temperature (oC) Conversion (%) Yield (%) 

1 Fe0.11/Fe-P900-PCC 150 19 18 

2 Fe0.2/Fe-P900-PCC 150 13 11 

3 Fe0.4/Fe-P900-PCC 150 7 7 

4 Fe0.95/Fe-P900-PCC 150 5 5 

Reaction conditions: 1 mmol quinoline, 100 mg catalyst, 2 mL solvent (heptane), 4 MPa H2, 12 h. The conversion 

and yield were determined by GC using dodecane as an internal standard.  
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Supplementary Table 8.  Step by step barrier (Ea, eV) and reaction energy (Er, eV) for hydrogenation of quinoline 

(C9H7N) over Fe-P900-PCC. 

Number Reactions Ea (eV) Er (eV) 

1 H2(g) → H2* - -0.407 

2 C9H7N + H2* → C9H7N* + H2* - -0.687 

3 C9H7N* + H2* → C9H8N* + H(Fe)* 0.220 -0.004 

4 C9H8N* + H(Fe)* → C9H9N* 0.380 -0.348 

5 C9H9N* + H2(g) → C9H9N* + H2* - -0.025 

6 C9H9N* + H2* → C9H10N* + H(Fe)* 0.728 0.432 

7 C9H10N* + H(Fe)* → C9H11N 0.132 -1.331 
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Supplementary Table 9. The energies of species in the processes of hydrogenation of quinoline (C9H7N). 

Label Species E (eV) Erel (eV)† 

IS C9H7N + H2(g) -635.885 0.000 

int-1 C9H7N + H2* -643.051 -0.407 

int-2 C9H7N* + H2* -758.800 -1.094 

TS1 - - - 

int-3 C9H8N* + H(Fe)* -758.804 -1.098 

TS2 - - - 

int-4 C9H9N* -759.152 -1.446 

int-5 C9H9N* + H2* -765.936 -1.471 

TS3 - - - 

int-6 C9H10N* + H(Fe)* -765.504 -1.039 

TS4 - - - 

int-7 C9H11N -766.836 -2.370 

FS - -635.885 -1.801 

†The Erel refers to the energy of species labelled IS.  

IS: initial state. int: intermediate. TS: transition state. FS: final state.  
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Supplementary Table 10. Catalytic performances for non-precious metal catalyzed heterogeneous hydrogenation of 

quinoline in earlier literatures. 

 

Entry Catalyst 
NP†/ 
SA‡ 

Reaction  
conditions 

Yield 
(%) 

TOF# 
(h-1) 

Ref. 

1 Fe-P900-PCC SA 150 oC, heptane, 4 MPa H2, 12 h 92 60.4 
This 
work 

2 Co3O4-Co/NGr@α-Al2O3 NP 120 oC, toluene, 2 MPa H2, 48 h 98 0.5 Ref1 

3 Co1/h-NC SA 120 oC, THF, 3.5 MPa H2, 10 h 56 5.6 Ref2 

4 Co@NGS-800-NL NP 140 oC, isopropanol, 4 MPa H2, 24 h 96 0.4 Ref3 

5 CoOx@CN NP 120 oC, methanol, 3.5 MPa H2, 3 h 91 6.6 Ref4 

6 Fe(1)/L4(4.5)@C-800(12) NP 130 oC, isopropanol-H2O, 4 MPa H2, 56 h 87 0.1 Ref5 

7 Ni NPs/[BMIM][Pro] NP 75 oC, ethanol, 3 MPa H2, 10 h 99 28.8 Ref6 

†Nanoparticle catalyst 
‡Single atom catalyst 
#TOF = molyield of tetrahydroquinoline / (molmetal • h) 
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Supplementary Table 11. Catalytic performances for non-precious metal catalyzed heterogeneous hydrogenation of 

nitrobenzene in earlier literatures. 

 

Entry Catalyst NP†/SA‡ Reaction conditions 
Yield 
(%) 

TOF# 
(h-1) 

Ref. 

1 Fe-P900-PCC SA 100 oC, toluene, 4 MPa H2, 18 h 99 43.7 
This 
work 

2 Fe-phen/C-800 NP 120 oC, H2O-THF, 5 MPa H2,15 h 98 1.5 Ref7 

3 Co-L1/carbon NP 110 oC, H2O, 5 MPa H2, 4 h 99 24.8 Ref8 

4 Co@mesoNC SA 110 oC, ethanol, 3 MPa H2, 2 h 55 42 Ref9 

5 Co-SiCN NP 110 oC, ethanol-H2O, 5 MPa H2, 15 h 99 1.4 Ref10 

6 CoOx@NCNTs NP 110 oC, ethanol, 3 MPa H2, 3 h 99 8.3 Ref11 

7 Co3O4/NGr@C NP 110 oC, THF-H2O, 5 MPa H2, 4 h 95 25 Ref12 

8 Fe-N-C@CNTs-1.5 NP 110 oC, THF-H2O, 5 MPa H2, 6 h 99 46.8 Ref13 

9 Fe3C@G-CNT-700 NP 40 oC, ethanol, 2 MPa H2, 4.5 h 98 22 Ref14 

10 Fe/N-C-500 NP 120 oC, ethyl acetate, 4 MPa H2, 15 h 99 0.6 Ref15 

11 Co-Co3O4@carbon-700 NP 110 oC, ethanol-H2O, 4 MPa H2, 15 h 99 3.9 Ref16 

12 Fe2O3@G-C-900 NP 70 oC, ethanol, 2 MPa H2, 2 h 95 46.6 Ref17 

13 Co@NC-800 NP 110 oC, ethanol, 3 MPa H2, 3 h 99 8 Ref18 

14 Co@NMC-800 NP 80 oC, ethanol, 1 MPa H2, 80 min 99 37.5 Ref19 

15 Co2P/CNx NP 60 oC, THF-H2O, 5 MPa H2, 6 h 99 1.5 Ref20 

16 Zr12-TPDC-CoCl SA 110 oC, toluene, 4 MPa H2, 42 h 99 4.8 Ref21 

17 Ni/SiO2 NP 110 oC, ethanol, 2.5 MPa H2, 7 h 99 1.2 Ref22 

18 Ni@PS60SiCN NP 110 oC, ethanol-H2O, 5 MPa H2, 20 h 99 5 Ref23 

19 7.2%Ni/Mo2C NP 80 oC, ethanol-H2O, 2 MPa H2, 1.5 h 99 32.3 Ref24 

20 Ni/C-300 NP 140 oC, ethanol, 2 MPa H2, 2 h 71 17.7 Ref25 

21 Ni/ACOX NP 40 oC, toluene, 0.3 MPa H2, 190 min 95 1.8 Ref26 

22 30.0 wt% Ni/C60-Ac-B-4 NP 110 oC, ethanol, 2 MPa H2, 5 h 99 6.3 Ref27 

23 Ni-NiO/NGr@C NP 110 oC, THF-H2O, 5 MPa H2, 8 h 98 2.5 Ref28 

24 Ni/NGr@OMC-800 NP 100 oC, H2O, 5 MPa H2, 2 h 99 17.2 Ref29 

25 Ni-phen@SiO2-1000 NP 40 oC, methanol-H2O, 1 MPa H2, 20 h 99 1.3 Ref30 

†Nanoparticle catalyst 
‡Single atom catalyst 
#TOF = molyield of aniline / (molmetal • h) 
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Supplementary Table 12. Catalytic performances for non-precious metal catalyzed heterogeneous reductive amina-

tion of carbonyl compounds in earlier literatures. 

 

Entry Catalyst NP†/SA‡ Reaction conditions 
Yield 
(%) 

TOF# 
(h-1) 

Ref. 

1a Fe-P900-PCC SA 75 oC, H2O, 6 MPa H2, 30 h 98 173 
This 
work 

2b Co-DABCO-TPA@C-800 NP 120 oC, t-BuOH, 4 MPa H2, 15 h 88 1.7 Ref31 

3c Ni-TA@SiO2-800 NP 120 oC, t-BuOH, 2 MPa H2, 24 h 98 0.7 Ref32 

4d Ni/gama-Al2O3 NP 80 oC, H2O, 1 MPa H2, 20 h 99 4.2 Ref33 

5e Fe/(N)SiC NP 130 oC, H2O, 6.5 MPa H2, 20 h 89 0.4 Ref34 

6f Fe/(N)SiC NP 140 oC, H2O, 6.5 MPa H2, 20 h 99 0.5 Ref34 

7g Co/N-C-800 NP 110 oC, H2O, 0.5 MPa H2, 4 h 92 1.8 Ref35 

8h Raney Ni - 120 oC, methanol, 1 MPa H2, 2 h 65 1.0 Ref36 

9i Raney Co - 120 oC, methanol, 1 MPa H2, 2 h 98 3.1 Ref36 

10j Ni6AlOx NP 100 oC, H2O, 0.1 MPa H2, 6 h 99 0.3 Ref37 

11k Co@NC-800 NP 130 oC, ethanol, 1 MPa H2, 12 h 97 11.9 Ref38 

†Nanoparticle catalyst 
‡Single atom catalyst 
#TOF = molyield of product / (molmetal • h) 
aSubstrate: R1 = COOH, R2 = H 
bSubstrate: R1 = COOCH3, R2 = H 
cSubstrate: R1 = CH3, R2 = H 
dSubstrate: R1 = H, R2 = H 
eSubstrate: R1 = H, R2 = H 
fSubstrate: R1 = H, R2 = CH3 
gSubstrate: R1 = H, R2 = H 
hSubstrate: 2-furaldehyde 
iSubstrate: 2-furaldehyde 
jSubstrate: 5-hydroxymethylfurfural 
kSubstrate: R1 = H, R2 = H 
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Supplementary Methods 
1H NMR and 13C NMR spectra were recorded at room temperature on Zhongke-Niujin 400 using CDCl3, D2O 

solvents. High resolution mass spectra (HRMS) were tested on Agilent 6530 Accurate-Mass Q-TOF LC/MS with ESI 

mode. High Performance Liquid Chromatography (HPLC) analysis for the ee values was performed on a SHIMADZU 

system (SHIMADZU LC-20AT pump, SHIMADZU LC-20A Absorbance Detector). 

 

(R)-N-benzyl-1-phenylethan-1-amine (5n) 

 
1H NMR (400 MHz, CDCl3) 7.35-7.21(m, 10H), 3.79 (q, J = 6.6 Hz, 1H), 3.69 – 3.53 (m, 2H), 1.59 (s, 1H), 1.34 (d, 

J = 6.6 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 145.71, 140.79, 128.60, 128.48, 128.25, 127.05, 126.96, 126.83, 

57.63, 51.79, 24.65. HRMS (ESI) Calcd for C15H17N [M+H]+ 212.1439; found 212.1459. HPLC (Daicel Chiralcel 

OD-H, 25 oC, n-heptane/i-PrOH = 99/1, flow rate 0.5 mL/min, λ = 210 nm). Colorless oil. 

 

(S)-N-benzyl-1-phenylethan-1-amine (5o) 

 
1H NMR (400 MHz, CDCl3) δ 7.35-7.21 (m, 10H), 3.79 (q, J = 6.6 Hz, 1H), 3.61 (q, J = 13.1 Hz, 2H), 1.60 (s, 1H), 

1.35 (dd, J = 6.6, 1.0 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 145.67, 140.75, 128.53, 128.42, 128.19, 126.99, 126.90, 

126.77, 57.57, 51.74, 24.58. HRMS (ESI) Calcd for C15H17N [M+H]+ 212.1439; found 212.1446. HPLC (Daicel 

Chiralcel OD-H, 25 oC, n-heptane/i-PrOH = 99/1, flow rate 0.5 mL/min, λ = 210 nm). Colorless oil. 

 

1-(4-(tert-butyl)benzyl)-4-((4-chlorophenyl)(phenyl)methyl)piperazine (5p) 

 

1H NMR (400 MHz, CDCl3) δ 7.34-7.28 (m, 6H), 7.25 - 7.15 (m, 6H), 7.15 - 7.10 (m, 1H), 4.18 (s, 1H), 3.46 

(s, 2H), 2.41 (d, J = 27.7 Hz, 8H), 1.28 (s, 9H). 13C NMR (101 MHz, CDCl3) δ 149.98, 142.31, 141.54, 135.02, 

132.61, 129.38, 129.14, 128.73, 128.66, 128.03, 127.22, 125.17, 75.58, 62.81, 53.43, 51.94, 34.56, 31.57. 

HRMS (ESI) Calcd for C28H33ClN2 [M+H]+ 433.2411; found 433.2400. Brown gum. 
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4-(aminomethyl)benzoic acid (5q) 

 

1H NMR (400 MHz, D2O) δ 7.71-7.86(m, 2H), 7.32-7.30(m,2H), 4.06(s,2H).  13C NMR (101 MHz, D2O) 

175.02, 136.95, 135.29, 129.40, 128.53, 42.71. HRMS (ESI) Calcd for C8H10NO2 [M+H]+ 152.0712; found 

152.0705. White solid. 
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