Supplementary Information

Graphitic phosphorus coordinated single Fe atoms for hydrogenative transformations

Long et al

Supplementary Figures

Supplementary Figure 1. XPS survey spectra of the Fe-C900-PCC, Fe-N900-PCC and Fe-P900-PCC. The main elemental contributions are indicated.

Supplementary Figure 2. Textural properties. N2 adsorption-desorption isotherms (**a**) and pore size distribution curves (**b**) for Fe-C900-PCC, Fe-N900-PCC, and Fe-P900-PCC.

Supplementary Figure 3. XRD patterns of the Fe-C900-PCC, Fe-N900-PCC and Fe-P900-PCC. The diffraction peaks (002, 100) are labelled in the spectra.

Supplementary Figure 4. Raman spectra of the Fe-C900-PCC, Fe-N900-PCC and Fe-P900-PCC. For all of the samples, only D-band (1338 cm⁻¹) and G-band (1589 cm⁻¹) of carbon have been detected.

Supplementary Figure 5. Morphology characterization of the catalysts. TEM images of (**a**) Fe-C900-PCC, (**b**) Fe-N900-PCC and (**c**) Fe-P900-PCC.

Supplementary Figure 6. HRTEM images of the catalysts. (a) Fe-C900-PCC. **(b)** Fe-N900-PCC. **(c)** Fe-P900-PCC. Graphitic layers are highlighted by yellow arrows.

Supplementary Figure 7. Characterize the Fe single atoms in the Fe-N900-PCC. (a, c, e) Representative AC-STEM images, Fe single atoms are highlighted by yellow circles. **(b, d, f)** Corresponding HRTEM images.

Supplementary Figure 8. Characterize the Fe single atoms in the Fe-P900-PCC. (a, c) Representative AC-STEM images, Fe single atoms are highlighted by yellow circles. **(b, d)** Corresponding HRTEM images.

Supplementary Figure 9. Characterize the Fe nanoparticles in the Fe-N900-PCC. (**a**) STEM image, Fe nanoparticles are highlighted by yellow arrows. (**b**) Corresponding HRTEM image.

Supplementary Figure 10. Characterize the Fe nanoparticles in the Fe-P900-PCC. (a) STEM image. **(b)** Corresponding HRTEM image. Fe nanoparticles are highlighted by yellow arrows.

Supplementary Figure 11. Exploration of substrate scope for the hydrogenation of unsaturated N-heterocycles. Reaction conditions: 1 mmol substrate, 100 mg Fe-P900-PCC, 2 mL solvent (heptane), 4 MPa H2. Yields were determined by GC using dodecane as an internal standard.

Supplementary Figure 12. Characterizations of the Fe@Fe-C900-PCC. (**a**, **b**) AC-STEM images, Fe single atoms are highlighted by yellow circles. (**c**) HRTEM image. (**d**) Fe K-edge EXAFS spectra of Fe@Fe-C900-PCC and reference materials (Fe foil and Fe2O3).

Supplementary Figure 13. Characterizations of the Fe@Fe-N900-PCC. (**a**) AC-STEM image, Fe single atoms are highlighted by yellow circles. (**b**) Fe K-edge EXAFS spectra of Fe@Fe-N900- PCC and Fe foil.

Supplementary Figure 14. Chemical environment of the Fe@Fe-N900-PCC. Fe K-edge EX-AFS analysis of the Fe@Fe-N900-PCC at *k*-space (**a**) and R-space (**b**), respectively. The inset in (**b**) demonstrates the schematic model of Fe-N4. The best-fit structural parameters are listed in Supplementary Table 6.

Supplementary Figure 15. Adsorption configurations of H2 molecule on Fe-N4 structure. (a) Top view. **(b)** Side view.

Supplementary Figure 16. Gas-phase isotopic H2-D2 exchange experiments. (**a**) HD profiles of polymer derived catalysts (P900-PCC-polymer, Fe-P900-PCC-polymer). (**b**) HD profile of Fe-P900-PCC.

Supplementary Figure 17. Fe 2p XPS spectrum of the Fe-P900-PCC. The black vertical line indicate the binding energy of Fe $2p3/2$ of Fe³⁺.

Supplementary Figure 18. P 2p XPS spectra of Fe-P900-PCC and Fex/Fe-P900-PCC. The P 2p XPS spectra of Fe-P900-PCC have been changed by post-impregnation Fe species.

Supplementary Figure 19. Characterizations of spent Fe-P900-PCC. (a) P 2p XPS spectra, the contents of different P species are listed in Supplementary Table 5. **(b)** Fe 2p XPS spectra. **(c)** STEM image of Fe-P900-PCC-used. (**d**) Fe K-edge EXAFS spectra of Fe-P900-PCC and Fe-P900- PCC-used, as well as the reference sample Fe foil.

Supplementary Figure 20. ¹ H NMR spectrum of compound **5n**.

Supplementary Figure 21. 13C NMR spectrum of compound **5n**.

Supplementary Figure 22. HRMS of compound **5n**.

Supplementary Figure 23. Chiral HPLC data of compound **5n**. Peak 1: 12.596 min, area (65198511 mAU*s), area percentage (98.364%); peak 2: 13.476 min, area (1084165 mAU*s), area percentage (1.636%).

Supplementary Figure 24. ¹ H NMR spectrum of compound **5o**.

Supplementary Figure 25. 13C NMR spectrum of compound **5o**.

Supplementary Figure 26. HRMS of compound **5o**.

Supplementary Figure 27. Chiral HPLC data of compound **5o**. Peak 1: 12.359 min, area (234963 mAU*s), area percentage (1.339%); peak 2: 13.351 min, area (17318351 mAU*s), area percentage (98.661%).

Supplementary Figure 28. ¹ H NMR spectrum of compound **5p**.

Supplementary Figure 29. 13C NMR spectrum of compound **5p**.

Supplementary Figure 30. HRMS of compound **5p**.

Supplementary Figure 31. ¹ H NMR spectrum of compound **5q**.

Supplementary Figure 32. 13C NMR spectrum of compound **5q**.

Supplementary Figure 33. HRMS of compound **5q**.

Supplementary Tables

Supplementary Table 1. The contents of Fe in raw materials.

Determined by ICP-MS. Company name of purchased raw materials are shown in parenthesis.

Catalyst	Fe content $(wt\%)$
$Fe-C900-PCC$	1.6×10^{-3}
$Fe-N900-PCC$	2.3×10^{-3}
$Fe-P900-PCC$	7.1×10^{-2}
$Fe@Fe-C900-PCC$	3.8×10^{-2}
Fe@Fe-N ₉₀₀ -PCC	5.7×10^{-2}
P_{900} -PCC-polymer	2.3×10^{-5}
$Fe-P_{900}$ -PCC-polymer	9.6×10^{-2}
$Fe-P700-PCC$	7.2×10^{-3}
$Fe-P800-PCC$	3.5×10^{-2}
$Fe-P1000-PCC$	1.1×10^{-1}
$Fe-P1100-PCC$	6.8×10^{-2}

Supplementary Table 2. The contents of Fe in the catalysts.

Determined by ICP-MS.

				XPS analysis (atomic $\%$)		
Catalyst	\mathcal{C}	Ω	F	Fe	N	P
$Fe-C900-PCC$	91.02	6.08	2.6	0.3	\blacksquare	\blacksquare
$Fe-N900-PCC$	81.69	6.24	0.92	0.16	10.99	$\overline{}$
$Fe-P700-PCC$	86.23	10.66	0.91	0.16		2.04
$Fe-P800-PCC$	81.86	12.97	1.43	0.26	$\overline{}$	3.48
$Fe-P900-PCC$	84.55	11.55	0.96	0.20		2.74
$Fe-P1000-PCC$	86.81	9.68	1.2	0.26	$\overline{}$	2.04
$Fe-P1100-PCC$	91.47	6.45	1.01	0.15	$\overline{}$	0.91
$Fe-P900-PCC-H$	93.05	5.64	0.33	0.14		0.98

Supplementary Table 3. Elemental compositions of catalysts (XPS results).

Catalyst	S_{BET} [†] (m ² g ⁻¹)	$Smicro$ ‡ (m ² g ⁻¹)	$V_{\text{pore}}^{\#}(m^3g^{-1})$	V_{micro} § $(m3g-1)$	D_{pore} ^{I\!I} (nm)
$Fe-C900-PCC$	768	263	1.34	0.14	12.7
Fe-N ₉₀₀ -PCC	628	193	1.11	0.10	12.7
$Fe-P900-PCC$	511	259	1.32	0.14	17.2
$Fe-P700-PCC$	480	243	1.13	0.13	17.2
$Fe-P800-PCC$	496	251	1.29	0.13	17.2
$Fe-P1000-PCC$	418	167	1.16	0.09	17.2
$Fe-P1100-PCC$	615	275	1.45	0.14	17.2

Supplementary Table 4. Structural properties of the catalysts.

†BET surface area.

‡Micropore surface area.

#Total pore volume.

§Pore volume for micropores.

¶Mean pore diameter.

	Total P	C-O-P $(134.4$ eV)		C-PO ₃ /C ₂ -PO ₂ (133.1 eV) P_{graph} (132.1 eV)			
Catalyst	content (atomic $\%$)	Percent- age $(\%)$	Content (atomic %)	Percent- age $(\%)$	Content (atomic %)	Percent- age $(\%)$	Content (atomic $\%$)
$Fe-P700-PCC$	2.04	28.3	0.58	71.7	1.46	$\boldsymbol{0}$	$\boldsymbol{0}$
$Fe-P800-PCC$	3.48	24.0	0.84	70.0	2.43	6.0	0.21
$Fe-P900-PCC$	2.74	27.2	0.75	57.8	1.58	15.0	0.41
$Fe-P1000-PCC$	2.04	31.2	0.64	51.4	1.05	17.4	0.35
$Fe-P1100-PCC$	0.91	23.1	0.21	54.2	0.49	22.7	0.21
$Fe-P900-PCC-$ H	0.98	16.1	0.16	43.7	0.43	40.2	0.39
$Fe-P900-PCC-$ used	1.51	23.5	0.35	49.0	0.75	27.5	0.41

Supplementary Table 5. The contents of different P species in catalysts.

Content of P_{species} (atomic %) = Total P content (atomic %) × Percentage of P_{species} (%)

Sample	Bond	CN	R(A)	σ^2 (Å ²)	ΔE_0 (eV)	R-factor
$Fe@Fe-N900-PCC†$	Fe-N	4.2 ± 0.4	1.95 ± 0.01	0.007 ± 0.001	-6.23 ± 1.1	0.004
$Fe-P900-PCC‡$	$Fe-P$	4.0 ± 0.8	2.35 ± 0.02	0.014 ± 0.006	-0.96 ± 0.3	
	$Fe-O$	2.0 ± 0.4	2.00 ± 0.03	0.004 ± 0.004	-0.96 ± 0.3	0.013

Supplementary Table 6. Fitting results of Fe K-edge EXAFS data for Fe@Fe-N900-PCC and Fe-P900-PCC.

The average lengths of Fe-N, Fe-P and Fe-O bonds and coordination numbers of Fe atoms are extracted from the curve fitting for Fe K-edge EXAFS data. CN, coordination number; R, distance between absorber and backscatter atoms; $σ²$, the Debye-Waller factor; $ΔE₀$, inner potential correction; R-factor, indicate the goodness of the fit.

[†]For the EXAFS spectrum of Fe@Fe-N₉₀₀-PCC (Supplementary Fig. 14), only a strong Fe-N peak at 1.45 Å is observed. So, the fitting was performed by including a single Fe-N shell within the R-rang of 1.0 - 3.1 Å and *k*-rang of 1.42 Å⁻¹ - 9.62 Å⁻¹. The fitting results reveal that the coordination number of Fe center with surrounding N atoms is 4.2 ± 0.4 and the average Fe-N bond length is 1.95 ± 0.01 Å, suggesting the single Fe sites in Fe@Fe-N₉₀₀-PCC adopt a planar Fe-N4 structure (as presented in Supplementary Fig. 14b).

[‡]The EXAFS spectrum of Fe-P₉₀₀-PCC shows that the main peak locates at 1.63 Å, ascribing to Fe-P first shell coordination. Furthermore, the Fe-O first shell coordination at 1.45 Å is also included in this broadening peak, which indicates that O need to be included in the curve fitting. On the other hand, a shoulder peak at 2.55 Å for Fe-C second shell coordination is also observed. Therefore, a three-shell structure model, including a Fe-P, a Fe-O and a Fe-C shell, is initially used to fit the EXAFS data of Fe-P₉₀₀-PCC within the R-rang of 1.0 - 3.1 Å and k -rang of 1.42 - 9.62 Å⁻¹. The best-fitting analyses manifests that the dominant contribution is given by Fe-P and Fe-O first shell coordination as presented in Manuscript Fig. 3c and 3d. The coordination numbers for P and O atoms are calculated as 4.0 ± 0.8 and 2.0 \pm 0.4, and the corresponding mean bond length of Fe-P and Fe-O are 2.35 \pm 0.02 Å and 2.00 \pm 0.03 Å, respectively. These results reveal that the single Fe atom in Fe-P₉₀₀-PCC coordinates with four P atoms and a dioxygen molecule (O₂-Fe-P₄). Because the atomic size of P (106 pm) is larger than C (75 pm), Fe center adopts a pyramidal geometry as shown in Manuscript Fig. 3e, this configuration is quite different from the planar structure of Fe-N4.

		Catalyst H ₂	Ĥ	
Entry	Catalyst	Temperature $(^{\circ}C)$	Conversion $(\%)$	Yield $(\%)$
	$Fe0.11/Fe-P900-PCC$	150	19	18
∍	$Fe0.2/Fe-P900-PCC$	150	13	11
3	$Fe0.4/Fe-P900-PCC$	150		
	$Fe0.95/Fe-P900-PCC$	150		

Supplementary Table 7. Hydrogenation of quinoline catalyzed by Fe_x/Fe-P₉₀₀-PCC.

Reaction conditions: 1 mmol quinoline, 100 mg catalyst, 2 mL solvent (heptane), 4 MPa H₂, 12 h. The conversion and yield were determined by GC using dodecane as an internal standard.

Number	Reactions	E_a (eV)	E_r (eV)
	$H_2(g) \to H_2^*$		-0.407
2	$C_9H_7N + H_2^* \rightarrow C_9H_7N^* + H_2^*$		-0.687
3	$C_9H_7N^* + H_2^* \rightarrow C_9H_8N^* + H(Fe)^*$	0.220	-0.004
$\overline{4}$	$C_9H_8N^* + H(Fe)^* \rightarrow C_9H_9N^*$	0.380	-0.348
5	$C_9H_9N^* + H_2(g) \rightarrow C_9H_9N^* + H_2^*$		-0.025
6	$C_9H_9N^* + H_2^* \rightarrow C_9H_{10}N^* + H(Fe)^*$	0.728	0.432
7	$C_9H_{10}N^* + H(Fe)^* \rightarrow C_9H_{11}N$	0.132	-1.331

Supplementary Table 8. Step by step barrier (E_a, eV) and reaction energy (E_r, eV) for hydrogenation of quinoline (C9H7N) over Fe-P900-PCC.

Label	Species	E(eV)	$E_{rel} (eV)^{\dagger}$
IS	$C_9H_7N + H_2(g)$	-635.885	0.000
$int-1$	$C_9H_7N + H_2^*$	-643.051	-0.407
$int-2$	$C_9H_7N^* + H_2^*$	-758.800	-1.094
TS1			$\overline{}$
$int-3$	$C_9H_8N^* + H(Fe)^*$	-758.804	-1.098
TS ₂			
$int-4$	$C_9H_9N^*$	-759.152	-1.446
$int-5$	$C_9H_9N^* + H_2^*$	-765.936	-1.471
TS3			
$int-6$	$C_9H_{10}N^* + H(Fe)^*$	-765.504	-1.039
TS4			
$int-7$	$C_9H_{11}N$	-766.836	-2.370
FS		-635.885	-1.801

Supplementary Table 9. The energies of species in the processes of hydrogenation of quinoline (C₉H₇N).

†The Erel refers to the energy of species labelled IS.

IS: initial state. int: intermediate. TS: transition state. FS: final state.

Supplementary Table 10. Catalytic performances for non-precious metal catalyzed heterogeneous hydrogenation of quinoline in earlier literatures.

†Nanoparticle catalyst

‡Single atom catalyst

 $^{\#}TOF = mol_{yield \ of \ tetrahydroquino line} / (mol_{metal} \bullet h)$

NH_2 NO ₂ Catalyst H ₂							
Entry	Catalyst	NP [†] /SA [‡]	Reaction conditions	Yield $(\%)$	TOF # (h^{-1})	Ref.	
1	$Fe-P_{900}PCC$	SA	100 °C, toluene, 4 MPa H ₂ , 18 h	99	43.7	This work	
$\overline{2}$	Fe-phen/C-800	NP	120 °C, H ₂ O-THF, 5 MPa H ₂ , 15 h	98	1.5	Ref ⁷	
3	Co-L1/carbon	NP	110 °C, H ₂ O, 5 MPa H ₂ , 4 h	99	24.8	Ref ⁸	
4	Co@mesoNC	SA	110 °C, ethanol, 3 MPa H_2 , 2 h	55	42	Ref ⁹	
5	Co-SiCN	NP	110 °C, ethanol-H ₂ O, 5 MPa H ₂ , 15 h	99	1.4	Ref ¹⁰	
6	$CoOx(a)$ NCNTs	NP	110 °C, ethanol, 3 MPa H_2 , 3 h	99	8.3	Ref ¹¹	
7	Co ₃ O ₄ /NGr@C	NP	110 °C, THF-H ₂ O, 5 MPa H ₂ , 4 h	95	25	Ref ¹²	
8	Fe-N-C@CNTs-1.5	NP	110 °C, THF-H ₂ O, 5 MPa H ₂ , 6 h	99	46.8	Ref ¹³	
9	Fe ₃ C@G-CNT-700	NP	40 °C, ethanol, 2 MPa H ₂ , 4.5 h	98	22	Ref ¹⁴	
10	$Fe/N-C-500$	NP	120 °C, ethyl acetate, 4 MPa H_2 , 15 h	99	0.6	Ref ¹⁵	
11	Co-Co ₃ O ₄ @carbon-700	NP	110 °C, ethanol-H ₂ O, 4 MPa H ₂ , 15 h	99	3.9	Ref ¹⁶	
12	$Fe2O3(a)0G-C-900$	NP	70 °C, ethanol, 2 MPa H_2 , 2 h	95	46.6	Ref ¹⁷	
13	$Co(\partial NCA)$	NP	110 °C, ethanol, 3 MPa H_2 , 3 h	99	$\,8\,$	Ref ¹⁸	
14	$Co(\partial)NMC-800$	NP	80 °C, ethanol, 1 MPa H ₂ , 80 min	99	37.5	Ref ¹⁹	
15	Co_2P/CN_x	NP	60 °C, THF-H ₂ O, 5 MPa H ₂ , 6 h	99	1.5	Ref ²⁰	
16	Zr_{12} -TPDC-CoCl	SA	110 °C, toluene, 4 MPa H_2 , 42 h	99	4.8	Ref ²¹	
17	Ni/SiO ₂	NP	110 °C, ethanol, 2.5 MPa H ₂ , 7 h	99	1.2	Ref ²²	
18	$Ni@PS_{60}SiCN$	NP	110 °C, ethanol-H ₂ O, 5 MPa H ₂ , 20 h	99	5	Ref ²³	
19	7.2% Ni/Mo ₂ C	NP	80 °C, ethanol-H ₂ O, 2 MPa H ₂ , 1.5 h	99	32.3	Ref ²⁴	
20	$Ni/C-300$	NP	140 °C, ethanol, 2 MPa H_2 , 2 h	71	17.7	Ref ²⁵	
21	Ni/AC _{OX}	NP	40 °C, toluene, 0.3 MPa H ₂ , 190 min	95	1.8	Ref ²⁶	
22	30.0 wt% Ni/C ₆₀ -Ac-B-4	NP	110 °C, ethanol, 2 MPa H ₂ , 5 h	99	6.3	Ref ²⁷	
23	Ni-NiO/NGr@C	NP	110 °C, THF-H ₂ O, 5 MPa H ₂ , 8 h	98	2.5	Ref ²⁸	
24	Ni/NGr@OMC-800	NP	100 °C, H ₂ O, 5 MPa H ₂ , 2 h	99	17.2	Ref ²⁹	
25	Ni-phen $@SiO_2-1000$	NP	40 °C, methanol-H ₂ O, 1 MPa H ₂ , 20 h	99	1.3	Ref ³⁰	

Supplementary Table 11. Catalytic performances for non-precious metal catalyzed heterogeneous hydrogenation of nitrobenzene in earlier literatures.

†Nanoparticle catalyst

‡Single atom catalyst

 $\text{\#TOF} = \text{mol}_\text{yield of aniline} \text{ / (mol}_\text{metal} \bullet h)$

	R ¹	\mathcal{C}_{λ}	NH ₂ Catalyst R^1			
		R ²	NH ₃ R ²			
Entry	Catalyst	NP [†] /SA [‡]	Reaction conditions	Yield $(\%)$	TOF [#] (h^{-1})	Ref.
1 ^a	$Fe-P900-PCC$	SA	75 °C, H ₂ O, 6 MPa H ₂ , 30 h	98	173	This work
2 ^b	Co-DABCO-TPA@C-800	NP	120 °C, t-BuOH, 4 MPa H ₂ , 15 h	88	1.7	Ref ³¹
3 ^c	$Ni-TA@SiO2-800$	NP	120 °C, t-BuOH, 2 MPa H ₂ , 24 h	98	0.7	Ref ³²
4 ^d	$Ni/gama-Al2O3$	NP	80 °C, H ₂ O, 1 MPa H ₂ , 20 h	99	4.2	Ref ³³
5 ^e	Fe/(N)SiC	NP	130 °C, H ₂ O, 6.5 MPa H ₂ , 20 h	89	0.4	Ref ³⁴
6 ^f	Fe/(N)SiC	NP	140 °C, H ₂ O, 6.5 MPa H ₂ , 20 h	99	0.5	Ref ³⁴
79	$Co/N-C-800$	NP	110 °C, H ₂ O, 0.5 MPa H ₂ , 4 h	92	1.8	Ref ³⁵
8 ^h	Raney Ni		120 °C, methanol, 1 MPa H_2 , 2 h	65	1.0	Ref ³⁶
9 ⁱ	Raney Co		120 °C, methanol, 1 MPa H_2 , 2 h	98	3.1	Ref ³⁶
10^{j}	Ni ₆ AIO _x	NP	100 °C, H ₂ O, 0.1 MPa H ₂ , 6 h	99	0.3	Ref ³⁷
11 ^k	$Co@NC-800$	NP	130 °C, ethanol, 1 MPa H ₂ , 12 h	97	11.9	Ref ³⁸

Supplementary Table 12. Catalytic performances for non-precious metal catalyzed heterogeneous reductive amination of carbonyl compounds in earlier literatures.

†Nanoparticle catalyst ‡Single atom catalyst ${}^{#}TOF = mol_{yield\ of\ product} / (mol_{metal} \cdot h)$ ^aSubstrate: R^1 = COOH, R^2 = H ^bSubstrate: R^1 = COOCH₃, R^2 = H c^{c} Substrate: R¹ = CH₃, R² = H ^dSubstrate: $R^1 = H$, $R^2 = H$ $eSubstrate: R¹ = H, R² = H$ ^fSubstrate: $R^1 = H$, $R^2 = CH_3$ ^gSubstrate: $R^1 = H$, $R^2 = H$ ^hSubstrate: 2-furaldehyde i Substrate: 2-furaldehyde j Substrate: 5-hydroxymethylfurfural ^kSubstrate: $R^1 = H$, $R^2 = H$

Supplementary Methods

¹H NMR and ¹³C NMR spectra were recorded at room temperature on Zhongke-Niujin 400 using CDCl₃, D₂O solvents. High resolution mass spectra (HRMS) were tested on Agilent 6530 Accurate-Mass Q-TOF LC/MS with ESI mode. High Performance Liquid Chromatography (HPLC) analysis for the ee values was performed on a SHIMADZU system (SHIMADZU LC-20AT pump, SHIMADZU LC-20A Absorbance Detector).

(R)-N-benzyl-1-phenylethan-1-amine (5n)

1 H NMR (400 MHz, CDCl3) 7.35-7.21(m, 10H), 3.79 (q, *J* = 6.6 Hz, 1H), 3.69 – 3.53 (m, 2H), 1.59 (s, 1H), 1.34 (d, *J* = 6.6 Hz, 3H). **13C NMR (101 MHz, CDCl3)** δ 145.71, 140.79, 128.60, 128.48, 128.25, 127.05, 126.96, 126.83, 57.63, 51.79, 24.65. **HRMS (ESI)** Calcd for C15H17N [M+H]+ 212.1439; found 212.1459. **HPLC** (Daicel Chiralcel OD-H, 25 °C, n-heptane/i-PrOH = $99/1$, flow rate 0.5 mL/min, $\lambda = 210$ nm). **Colorless oil.**

(S)-N-benzyl-1-phenylethan-1-amine (5o)

1 H NMR (400 MHz, CDCl3) δ 7.35-7.21 (m, 10H), 3.79 (q, *J* = 6.6 Hz, 1H), 3.61 (q, *J* = 13.1 Hz, 2H), 1.60 (s, 1H), 1.35 (dd, *J* = 6.6, 1.0 Hz, 3H). **13C NMR (101 MHz, CDCl3)** δ 145.67, 140.75, 128.53, 128.42, 128.19, 126.99, 126.90, 126.77, 57.57, 51.74, 24.58. **HRMS (ESI)** Calcd for C15H17N [M+H]+ 212.1439; found 212.1446. **HPLC** (Daicel Chiralcel OD-H, 25 °C, n-heptane/i-PrOH = 99/1, flow rate 0.5 mL/min, λ = 210 nm). Colorless oil.

1-(4-(tert-butyl)benzyl)-4-((4-chlorophenyl)(phenyl)methyl)piperazine (5p)

1H NMR (400 MHz, CDCl3) δ 7.34-7.28 (m, 6H), 7.25 - 7.15 (m, 6H), 7.15 - 7.10 (m, 1H), 4.18 (s, 1H), 3.46 (s, 2H), 2.41 (d, *J* = 27.7 Hz, 8H), 1.28 (s, 9H). **13C NMR (101 MHz, CDCl3)** δ 149.98, 142.31, 141.54, 135.02, 132.61, 129.38, 129.14, 128.73, 128.66, 128.03, 127.22, 125.17, 75.58, 62.81, 53.43, 51.94, 34.56, 31.57. **HRMS (ESI)** Calcd for C₂₈H₃₃ClN₂ [M+H]⁺ 433.2411; found 433.2400. **Brown gum.**

4-(aminomethyl)benzoic acid (5q)

$$
\begin{matrix}0\\ \text{H}_0\end{matrix}\begin{matrix}\text{NH}_2\end{matrix}
$$

1H NMR (400 MHz, D2O) δ 7.71-7.86(m, 2H), 7.32-7.30(m,2H), 4.06(s,2H). **13C NMR (101 MHz, D2O)** 175.02, 136.95, 135.29, 129.40, 128.53, 42.71. **HRMS (ESI)** Calcd for C₈H₁₀NO₂ [M+H]⁺ 152.0712; found 152.0705. **White solid.**

Supplementary References

- 1. Chen, F. et al*.* Selective catalytic hydrogenation of heteroarenes with N-graphene-modified cobalt nanoparticles (Co3O4-Co/NGr@α-Al2O3). *J. Am. Chem. Soc.* **137**, 11718-11724 (2015).
- 2. Huang, R. et al*.* Integration of metal single atoms on hierarchical porous nitrogen-doped carbon for highly efficient hydrogenation of large-sized molecules in the pharmaceutical industry. *ACS Appl. Mater. Interfaces* **12**, 17651- 17658 (2020).
- 3. Li, J. et al. Different active sites in a bifunctional Co@N-doped graphene shells based catalyst for the oxidative dehydrogenation and hydrogenation reactions. *J. Catal.* **355**, 53-62 (2017).
- 4. Wei, Z. et al*.* Cobalt encapsulated in N-doped graphene layers: an efficient and stable catalyst for hydrogenation of quinoline compounds. *ACS Catal.* **6**, 5816-5822 (2016).
- 5. Sahoo, B. et al*.* A robust iron catalyst for the selective hydrogenation of substituted (iso)quinolones. *Chem. Sci.* **9**, 8134-8141 (2018).
- 6. Jiang, H. -Y., Zhang, S. -S. & Sun, B. Highly selective hydrogenation with ionic liquid stabilized nickel nanoparticles. *Catal. Lett.* **148**, 1336-1344 (2018).
- 7. Jagadeesh, R. V. et al. Nanoscale Fe₂O₃-based catalysts for selective hydrogenation of nitroarenes to anilines. *Science* **342**, 1073-1076 (2013).
- 8. Westerhaus, F. A*.* et al*.* Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes. *Nat. Chem.* **5**, 537-543 (2013).
- 9. Sun, X. et al. Single cobalt sites in mesoporous N-doped carbon matrix for selective catalytic hydrogenation of nitroarenes. *J. Catal.* **357**, 20-28 (2018).
- 10. Schwob, T. & Kempe, R. A reusable Co catalyst for the selective hydrogenation of functionalized nitroarenes and the direct synthesis of imines and benzimidazoles from nitroarenes and aldehydes. *Angew. Chem. Int. Ed.* **55**, 15175-15179 (2016).
- 11. Wei, Z. et al. In situ-generated Co⁰-Co₃O₄/N-doped carbon nanotubes hybrids as efficient and chemoselective catalysts for hydrogenation of nitroarenes. *ACS Catal.* **5**, 4783-4789 (2015).
- 12. Jagadeesh, R. V. et al*.* Cobalt-based nanocatalysts for green oxidation and hydrogenation processes. *Nat. Protocols* **10**, 916-926 (2015).
- 13. Chen, J. et al*.* A highly active non-precious metal catalyst based on Fe-N-C@CNTs for nitroarene reduction. *RSC Adv.* **6**, 96203-96209 (2016).
- 14. Shi, J., Wang, Y., Du, W. & Hou, Z. Synthesis of graphene encapsulated Fe3C in carbon nanotubes from biomass and its catalysis application. *Carbon* **99**, 330-337 (2016).
- 15. Xu, S., Yu, D., Liao, S., Ye, T. & Sheng, H. Nitrogen-doped carbon supported iron oxide as efficient catalysts for chemoselective hydrogenation of nitroarenes. *RSC Adv.* **6**, 96431-96435 (2016).
- 16. Sahoo, B. et al*.* Biomass-derived catalysts for selective hydrogenation of nitroarenes. *ChemSusChem* **10**, 3035- 3039 (2017).
- 17. Wang, Y. et al. Carbon film encapsulated Fe₂O₃: an efficient catalyst for hydrogenation of nitroarenes. *Chinese*. *J. Catal.* **38**, 1909-1917 (2017).
- 18. Sun, X. et al*.* Metal-organic framework mediated cobalt/nitrogen-doped carbon hybrids as efficient and chemoselective catalysts for the hydrogenation of nitroarenes. *ChemCatChem* **9**, 1854-1862 (2017).
- 19. Zhang, F. et al. In situ mosaic strategy generated Co-based N-doped mesoporous carbon for highly selective hydrogenation of nitroaromatics. *J. Catal.* **348**, 212-222 (2017).
- 20. Yang, S. et al*.* MOF-derived cobalt phosphide/carbon nanocubes for selective hydrogenation of nitroarenes to anilines. *Chem. -Eur. J.* **24**, 4234-4238 (2018).
- 21. Ji, P. et al. Single-site cobalt catalysts at new $Zr_{12}(\mu_3-O)_8(\mu_3-OH)_8(\mu_2-OH)_6$ metal-organic framework nodes for highly active hydrogenation of nitroarenes, nitriles, and isocyanides. *J. Am. Chem. Soc.* **139**, 7004-7011 (2017).
- 22. Zheng, Y. et al. A green reduction of aromatic nitro compounds to aromatic amines over a novel $Ni/SiO₂$ catalyst passivated with a gas mixture. *Catal. Lett.* **124**, 268-276 (2008).
- 23. Hahn, G., Ewert, J. -K., Denner, C., Tilgner, D. & Kempe, R. A reusable mesoporous nickel nanocomposite catalyst for the selective hydrogenation of nitroarenes in the presence of sensitive functional groups. *ChemCatChem* **8**, 2461-2465 (2016).
- 24. Shu, Y. et al*.* Ni/Mo2C nanowires and their carbon-coated composites as efficient catalysts for nitroarenes hydrogenation. *Appl. Surf. Sci.* **396**, 339-346 (2017).
- 25. Zhang, P. et al*.* Magnetically recoverable Ni/C catalysts with hierarchical structure and high-stability for selective hydrogenation of nitroarenes. *Phys. Chem. Chem. Phys.* **17**, 145-150 (2015).
- 26. Ren, Y. et al. Oxygen surface groups of activated carbon steer the chemoselective hydrogenation of substituted nitroarenes over nickel nanoparticles. *Chem. Comm.* **53**, 1969-1972 (2017).
- 27. Qu, Y., Yang, H., Wang, S., Chen, T. & Wang, G. Hydrogenation of nitrobenzene to aniline catalyzed by C₆₀stabilized Ni. *Catal. Comm.* **97**, 83-87 (2017).
- 28. Pisiewicz, S. et al*.* Synthesis of nickel nanoparticles with N-doped graphene shells for catalytic reduction reactions. *ChemCatChem* **8**, 129-134 (2016).
- 29. Huang, H. et al*.* Nitrogen-doped graphene-activated metallic nanoparticle-incorporated ordered mesoporous carbon nanocomposites for the hydrogenation of nitroarenes. *RSC Adv.* **8**, 8898-8909 (2018).
- 30. Ryabchuk, P. et al*.* Intermetallic nickel silicide nanocatalyst-A non-noble metal-based general hydrogenation catalyst. *Sci. Adv.* **4**, eaat0761 (2018).
- 31. Jagadeesh, R. V. et al*.* MOF-derived cobalt nanoparticles catalyze a general synthesis of amines. *Science* **358**, 326-332 (2017).
- 32. Murugesan, K., Beller, M. & Jagadeesh, R. V. Reusable nickel nanoparticles-catalyzed reductive amination for selective synthesis of primary amines. *Angew. Chem. Int. Ed.* **58**, 5064-5068 (2019).
- 33. Hahn, G., Kunnas, P., de Jonge, N. & Kempe, R. General synthesis of primary amines via reductive amination employing a reusable nickel catalyst. *Nat. Catal.* **2**, 71-77 (2019).
- 34. Bäumler, C., Bauer, C. & Kempe, R. The synthesis of primary amines through reductive amination employing an iron catalyst. *ChemSusChem* **13,** 3110-3114 (2020).
- 35. Liu, X., Wang, Y., Jin, S., Li, X. & Zhang, Z. High performance of nitrogen-doped carbon-supported cobalt catalyst for the mild and selective synthesis of primary amines. *Arab. J. Chem.* **13**, 4916-4925 (2020).
- 36. Zhou, K. et al. Selective synthesis of furfurylamine by reductive amination of furfural over Raney cobalt. *ChemCatChem* **11**, 5562-5569 (2019).
- 37. Yuan, H. et al. Reductive amination of furanic aldehydes in aqueous solution over versatile Ni_vAlO_x catalysts. *ACS Omega* **4**, 2510-2516 (2019).
- 38. Yuan, Z., Liu, B., Zhou, P., Zhang, Z. & Chi, Q. Preparation of nitrogen-doped carbon supported cobalt catalysts and its application in the reductive amination. *J. Catal.* **370**, 347-356 (2019).