Supplementary Information

Graphitic phosphorus coordinated single Fe atoms for hydrogenative transformations

Long et al

Supplementary Figures

Supplementary Figure 1. XPS survey spectra of the Fe-C₉₀₀-PCC, Fe-N₉₀₀-PCC and Fe-P₉₀₀-PCC. The main elemental contributions are indicated.

Supplementary Figure 2. Textural properties. N₂ adsorption-desorption isotherms (**a**) and pore size distribution curves (**b**) for Fe-C₉₀₀-PCC, Fe-N₉₀₀-PCC, and Fe-P₉₀₀-PCC.

Supplementary Figure 3. XRD patterns of the Fe-C₉₀₀**-PCC, Fe-N**₉₀₀**-PCC and Fe-P**₉₀₀**-PCC.** The diffraction peaks (002, 100) are labelled in the spectra.

Supplementary Figure 4. Raman spectra of the Fe-C₉₀₀**-PCC, Fe-N**₉₀₀**-PCC and Fe-P**₉₀₀**-PCC.** For all of the samples, only D-band (1338 cm⁻¹) and G-band (1589 cm⁻¹) of carbon have been detected.

Supplementary Figure 5. Morphology characterization of the catalysts. TEM images of (a) Fe-C900-PCC, (b) Fe-N900-PCC and (c) Fe-P900-PCC.

Supplementary Figure 6. HRTEM images of the catalysts. (a) Fe-C₉₀₀-PCC. **(b)** Fe-N₉₀₀-PCC. **(c)** Fe-P₉₀₀-PCC. Graphitic layers are highlighted by yellow arrows.

Supplementary Figure 7. Characterize the Fe single atoms in the Fe-N₉₀₀**-PCC. (a, c, e)** Representative AC-STEM images, Fe single atoms are highlighted by yellow circles. (b, d, f) Corresponding HRTEM images.

Supplementary Figure 8. Characterize the Fe single atoms in the Fe-P₉₀₀**-PCC. (a, c)** Representative AC-STEM images, Fe single atoms are highlighted by yellow circles. (b, d) Corresponding HRTEM images.

Supplementary Figure 9. Characterize the Fe nanoparticles in the Fe-N₉₀₀**-PCC.** (a) STEM image, Fe nanoparticles are highlighted by yellow arrows. (b) Corresponding HRTEM image.

Supplementary Figure 10. Characterize the Fe nanoparticles in the Fe-P₉₀₀**-PCC. (a)** STEM image. **(b)** Corresponding HRTEM image. Fe nanoparticles are highlighted by yellow arrows.

Supplementary Figure 11. Exploration of substrate scope for the hydrogenation of unsaturated N-heterocycles. Reaction conditions: 1 mmol substrate, 100 mg Fe-P₉₀₀-PCC, 2 mL solvent (heptane), 4 MPa H₂. Yields were determined by GC using dodecane as an internal standard.

Supplementary Figure 12. Characterizations of the Fe@Fe-C₉₀₀-PCC. (a, b) AC-STEM images, Fe single atoms are highlighted by yellow circles. (c) HRTEM image. (d) Fe K-edge EXAFS spectra of Fe@Fe-C₉₀₀-PCC and reference materials (Fe foil and Fe₂O₃).

Supplementary Figure 13. Characterizations of the Fe@Fe-N900-PCC. (a) AC-STEM image, Fe single atoms are highlighted by yellow circles. (b) Fe K-edge EXAFS spectra of Fe@Fe-N900-PCC and Fe foil.

Supplementary Figure 14. Chemical environment of the Fe@Fe-N₉₀₀-PCC. Fe K-edge EX-AFS analysis of the Fe@Fe-N₉₀₀-PCC at *k*-space (**a**) and R-space (**b**), respectively. The inset in (**b**) demonstrates the schematic model of Fe-N₄. The best-fit structural parameters are listed in Supplementary Table 6.

Supplementary Figure 15. Adsorption configurations of H₂ molecule on Fe-N₄ structure. (a) Top view. (b) Side view.

Supplementary Figure 16. Gas-phase isotopic H_2 - D_2 exchange experiments. (a) HD profiles of polymer derived catalysts (P₉₀₀-PCC-polymer, Fe-P₉₀₀-PCC-polymer). (b) HD profile of Fe-P₉₀₀-PCC.

Supplementary Figure 17. Fe 2p XPS spectrum of the Fe-P₉₀₀-PCC. The black vertical line indicate the binding energy of Fe 2p3/2 of Fe³⁺.

Supplementary Figure 18. P 2p XPS spectra of Fe-P₉₀₀**-PCC and Fe**_x/**Fe-P**₉₀₀**-PCC.** The P 2p XPS spectra of Fe-P₉₀₀**-**PCC have been changed by post-impregnation Fe species.

Supplementary Figure 19. Characterizations of spent Fe-P₉₀₀-**PCC. (a)** P 2p XPS spectra, the contents of different P species are listed in Supplementary Table 5. (b) Fe 2p XPS spectra. (c) STEM image of Fe-P₉₀₀-PCC-used. (d) Fe K-edge EXAFS spectra of Fe-P₉₀₀-PCC and Fe-P₉₀₀-PCC-used, as well as the reference sample Fe foil.

Supplementary Figure 20. ¹H NMR spectrum of compound 5n.

Supplementary Figure 21. ¹³C NMR spectrum of compound 5n.

Supplementary Figure 22. HRMS of compound 5n.

Supplementary Figure 23. Chiral HPLC data of compound **5n**. Peak 1: 12.596 min, area (65198511 mAU*s), area percentage (98.364%); peak 2: 13.476 min, area (1084165 mAU*s), area percentage (1.636%).

Supplementary Figure 24. ¹H NMR spectrum of compound 50.

Supplementary Figure 25. ¹³C NMR spectrum of compound 50.

Supplementary Figure 26. HRMS of compound 50.

Supplementary Figure 27. Chiral HPLC data of compound 50. Peak 1: 12.359 min, area (234963 mAU*s), area percentage (1.339%); peak 2: 13.351 min, area (17318351 mAU*s), area percentage (98.661%).

Supplementary Figure 28. ¹H NMR spectrum of compound 5p.

Supplementary Figure 29. ¹³C NMR spectrum of compound 5p.

Supplementary Figure 30. HRMS of compound 5p.

Supplementary Figure 31. ¹H NMR spectrum of compound 5q.

Supplementary Figure 32. ¹³C NMR spectrum of compound 5q.

Supplementary Figure 33. HRMS of compound 5q.

Supplementary Tables

Raw material	Fe content (wt%)
Silica colloid (Alfa Aesar)	3.5×10^{-4}
Sucrose (Macklin Biochemical Co. Ltd)	9.3×10^{-4}
Phytic acid solution (Aladdin Industrial Cooperation)	9.2×10^{-2}
Cyanamide (Alfa Aesar)	1.5×10^{-3}

Supplementary Table 1. The contents of Fe in raw materials.

Determined by ICP-MS. Company name of purchased raw materials are shown in parenthesis.

Catalyst	Fe content (wt%)
Fe-C ₉₀₀ -PCC	1.6×10^{-3}
Fe-N ₉₀₀ -PCC	2.3×10^{-3}
Fe-P ₉₀₀ -PCC	7.1×10^{-2}
Fe@Fe-C ₉₀₀ -PCC	3.8×10^{-2}
Fe@Fe-N ₉₀₀ -PCC	5.7×10^{-2}
P ₉₀₀ -PCC-polymer	2.3× 10 ⁻⁵
Fe-P ₉₀₀ -PCC-polymer	9.6×10^{-2}
Fe-P ₇₀₀ -PCC	7.2×10^{-3}
Fe-P ₈₀₀ -PCC	3.5×10^{-2}
Fe-P ₁₀₀₀ -PCC	1.1×10^{-1}
Fe-P ₁₁₀₀ -PCC	6.8×10^{-2}

Supplementary Table 2. The contents of Fe in the catalysts.

Determined by ICP-MS.

Catalant			XPS a	nalysis (atom	nic %)	
Cataryst	С	0	F	Fe	Ν	Р
Fe-C ₉₀₀ -PCC	91.02	6.08	2.6	0.3	-	-
Fe-N ₉₀₀ -PCC	81.69	6.24	0.92	0.16	10.99	-
Fe-P ₇₀₀ -PCC	86.23	10.66	0.91	0.16	-	2.04
Fe-P ₈₀₀ -PCC	81.86	12.97	1.43	0.26	-	3.48
Fe-P ₉₀₀ -PCC	84.55	11.55	0.96	0.20	-	2.74
Fe-P ₁₀₀₀ -PCC	86.81	9.68	1.2	0.26	-	2.04
Fe-P ₁₁₀₀ -PCC	91.47	6.45	1.01	0.15	-	0.91
Fe-P ₉₀₀ -PCC-H	93.05	5.64	0.33	0.14	-	0.98

Supplementary Table 3. Elemental compositions of catalysts (XPS results).

Catalyst	$S_{BET}^{\dagger} \left(m^2 g^{1}\right)$	$S_{micro}^{\ddagger}(m^2g^{-1})$	$V_{pore}^{\#}(m^3g^{-1})$	V_{micro} (m ³ g ⁻¹)	$D_{pore}^{\P}(nm)$
Fe-C ₉₀₀ -PCC	768	263	1.34	0.14	12.7
Fe-N ₉₀₀ -PCC	628	193	1.11	0.10	12.7
Fe-P ₉₀₀ -PCC	511	259	1.32	0.14	17.2
Fe-P ₇₀₀ -PCC	480	243	1.13	0.13	17.2
Fe-P ₈₀₀ -PCC	496	251	1.29	0.13	17.2
Fe-P ₁₀₀₀ -PCC	418	167	1.16	0.09	17.2
Fe-P ₁₁₀₀ -PCC	615	275	1.45	0.14	17.2

Supplementary Table 4. Structural properties of the catalysts.

[†]BET surface area.

[‡]Micropore surface area.

[#]Total pore volume.

§Pore volume for micropores.

[¶]Mean pore diameter.

	Total P	C-O-P (134.4 eV)		C-PO ₃ /C ₂ -PO ₂ (133.1 eV)		$P_{grap}(132.1 \text{ eV})$	
Catalyst	content (atomic %)	Percent- Content age (%) (atomic %)		Percent- age (%)	Content (atomic %)	Percent- age (%)	Content (atomic %)
Fe-P ₇₀₀ -PCC	2.04	28.3	0.58	71.7	1.46	0	0
Fe-P ₈₀₀ -PCC	3.48	24.0	0.84	70.0	2.43	6.0	0.21
Fe-P ₉₀₀ -PCC	2.74	27.2	0.75	57.8	1.58	15.0	0.41
Fe-P ₁₀₀₀ -PCC	2.04	31.2	0.64	51.4	1.05	17.4	0.35
Fe-P ₁₁₀₀ -PCC	0.91	23.1	0.21	54.2	0.49	22.7	0.21
Fe-Р ₉₀₀ -РСС- Н	0.98	16.1	0.16	43.7	0.43	40.2	0.39
Fe-P ₉₀₀ -PCC- used	1.51	23.5	0.35	49.0	0.75	27.5	0.41

Supplementary Table 5. The contents of different P species in catalysts.

Content of $P_{species}$ (atomic %) = Total P content (atomic %) × Percentage of $P_{species}$ (%)

Sample	Bond	CN	R (Å)	σ^2 (Å ²)	$\Delta E_0 (eV)$	R-factor
Fe@Fe-N900-PCC [†]	Fe-N	4.2 ± 0.4	1.95 ± 0.01	0.007 ± 0.001	-6.23 ± 1.1	0.004
Fe-P ₉₀₀ -PCC [‡]	Fe-P	4.0 ± 0.8	2.35 ± 0.02	0.014 ± 0.006	$\textbf{-0.96} \pm 0.3$	0.012
	Fe-O	2.0 ± 0.4	2.00 ± 0.03	0.004 ± 0.004	$\textbf{-0.96} \pm 0.3$	0.013

Supplementary Table 6. Fitting results of Fe K-edge EXAFS data for Fe@Fe-N900-PCC and Fe-P900-PCC.

The average lengths of Fe-N, Fe-P and Fe-O bonds and coordination numbers of Fe atoms are extracted from the curve fitting for Fe K-edge EXAFS data. CN, coordination number; R, distance between absorber and backscatter atoms; σ^2 , the Debye-Waller factor; ΔE_0 , inner potential correction; R-factor, indicate the goodness of the fit.

[†]For the EXAFS spectrum of Fe@Fe-N₉₀₀-PCC (Supplementary Fig. 14), only a strong Fe-N peak at 1.45 Å is observed. So, the fitting was performed by including a single Fe-N shell within the R-rang of 1.0 - 3.1 Å and *k*-rang of 1.42 Å⁻¹ - 9.62 Å⁻¹. The fitting results reveal that the coordination number of Fe center with surrounding N atoms is 4.2 ± 0.4 and the average Fe-N bond length is 1.95 ± 0.01 Å, suggesting the single Fe sites in Fe@Fe-N₉₀₀-PCC adopt a planar Fe-N₄ structure (as presented in Supplementary Fig. 14b).

[‡]The EXAFS spectrum of Fe-P₉₀₀-PCC shows that the main peak locates at 1.63 Å, ascribing to Fe-P first shell coordination. Furthermore, the Fe-O first shell coordination at 1.45 Å is also included in this broadening peak, which indicates that O need to be included in the curve fitting. On the other hand, a shoulder peak at 2.55 Å for Fe-C second shell coordination is also observed. Therefore, a three-shell structure model, including a Fe-P, a Fe-O and a Fe-C shell, is initially used to fit the EXAFS data of Fe-P₉₀₀-PCC within the R-rang of 1.0 - 3.1 Å and *k*-rang of 1.42 - 9.62 Å⁻¹. The best-fitting analyses manifests that the dominant contribution is given by Fe-P and Fe-O first shell coordination as presented in Manuscript Fig. 3c and 3d. The coordination numbers for P and O atoms are calculated as 4.0 ± 0.8 and 2.0 ± 0.4 , and the corresponding mean bond length of Fe-P and Fe-O are 2.35 ± 0.02 Å and 2.00 ± 0.03 Å, respectively. These results reveal that the single Fe atom in Fe-P₉₀₀-PCC coordinates with four P atoms and a dioxygen molecule (O₂-Fe-P₄). Because the atomic size of P (106 pm) is larger than C (75 pm), Fe center adopts a pyramidal geometry as shown in Manuscript Fig. 3e, this configuration is quite different from the planar structure of Fe-N₄.

$\begin{array}{c c} & & & \\ \hline & & \\$							
Entry	Catalyst	Temperature (°C)	Conversion (%)	Yield (%)			
1	Fe _{0.11} /Fe-P ₉₀₀ -PCC	150	19	18			
2	Fe _{0.2} /Fe-P ₉₀₀ -PCC	150	13	11			
3	Fe _{0.4} /Fe-P ₉₀₀ -PCC	150	7	7			
4	Fe _{0.95} /Fe-P ₉₀₀ -PCC	150	5	5			

Supplementary Table 7. Hydrogenation of quinoline catalyzed by Fe_x/Fe-P₉₀₀-PCC.

Reaction conditions: 1 mmol quinoline, 100 mg catalyst, 2 mL solvent (heptane), 4 MPa H₂, 12 h. The conversion and yield were determined by GC using dodecane as an internal standard.

Number	Reactions	$E_{a}\left(eV ight)$	$E_r (eV)$
1	$H_2(g) \rightarrow H_2^*$	-	-0.407
2	$C_9H_7N + H_2^* \rightarrow C_9H_7N^* + H_2^*$	-	-0.687
3	$C_9H_7N^* + H_2^* \rightarrow C_9H_8N^* + H(Fe)^*$	0.220	-0.004
4	$C_9H_8N^* + H(Fe)^* \rightarrow C_9H_9N^*$	0.380	-0.348
5	$C_9H_9N^* + H_2(g) \twoheadrightarrow C_9H_9N^* + H_2^*$	-	-0.025
6	$C_9H_9N^* + H_2^* \rightarrow C_9H_{10}N^* + H(Fe)^*$	0.728	0.432
7	$C_9H_{10}N^* + H(Fe)^* \rightarrow C_9H_{11}N$	0.132	-1.331

Supplementary Table 8. Step by step barrier (E_a , eV) and reaction energy (E_r , eV) for hydrogenation of quinoline (C_9H_7N) over Fe-P₉₀₀-PCC.

Label	Species	E (eV)	$E_{rel} (eV)^{\dagger}$
IS	$C_9H_7N + H_2(g)$	-635.885	0.000
int-1	$C_9H_7N + H_2*$	-643.051	-0.407
int-2	$C_9H_7N^{\boldsymbol{*}}+H_2^{\boldsymbol{*}}$	-758.800	-1.094
TS1	-	-	-
int-3	$C_9H_8N^* + H(Fe)^*$	-758.804	-1.098
TS2	-	-	-
int-4	C ₉ H ₉ N*	-759.152	-1.446
int-5	$C_9H_9N^* + H_2^*$	-765.936	-1.471
TS3	-	-	-
int-6	$C_9H_{10}N^* + H(Fe)^*$	-765.504	-1.039
TS4	-	-	-
int-7	$C_9H_{11}N$	-766.836	-2.370
FS	-	-635.885	-1.801

Supplementary Table 9. The energies of species in the processes of hydrogenation of quinoline (C₉H₇N).

[†]The E_{rel} refers to the energy of species labelled IS.

IS: initial state. int: intermediate. TS: transition state. FS: final state.

			Catalyst H ₂			
Entry	Catalyst	NP†/	Reaction	Yield	TOF#	Ref
Linu y	Catalyst	SA [‡]	conditions	(%)	(h ⁻¹)	Rei.
1	Fe-Poo-PCC	SA	150 °C heptane 4 MPa H ₂ 12 h	92	60.4	This
1	101900100	5/1	156° C, neptane, 4 101 a 11 ₂ , 12 h	12	00.4	work
2	Co_3O_4 - $Co/NGr@\alpha$ - Al_2O_3	NP	120 °C, toluene, 2 MPa H ₂ , 48 h	98	0.5	Ref ¹
3	Co ₁ /h-NC	SA	120 °C, THF, 3.5 MPa H ₂ , 10 h	56	5.6	Ref ²
4	Co@NGS-800-NL	NP	140 °C, isopropanol, 4 MPa H2, 24 h	96	0.4	Ref ³
5	CoO _x @CN	NP	120 °C, methanol, 3.5 MPa H_2 , 3 h	91	6.6	Ref ⁴
6	Fe(1)/L4(4.5)@C-800(12)	NP	130 °C, isopropanol-H2O, 4 MPa H2, 56 h	87	0.1	Ref ⁵
7	Ni NPs/[BMIM][Pro]	NP	75 °C, ethanol, 3 MPa H_2 , 10 h	99	28.8	Ref ⁶

Supplementary Table 10. Catalytic performances for non-precious metal catalyzed heterogeneous hydrogenation of quinoline in earlier literatures.

[†]Nanoparticle catalyst

[‡]Single atom catalyst

 $TOF = mol_{yield of tetrahydroquinoline} / (mol_{metal} \cdot h)$

		NO	$\xrightarrow{\text{Catalyst}}_{\text{H}_2} \xrightarrow{\text{NH}_2}$			
Entry	Catalyst	NP [†] /SA [‡]	Reaction conditions	Yield (%)	TOF# (h ⁻¹)	Ref.
1	Fe-P ₉₀₀ -PCC	SA	100 °C, toluene, 4 MPa H ₂ , 18 h	99	43.7	This work
2	Fe-phen/C-800	NP	120 °C, H ₂ O-THF, 5 MPa H ₂ ,15 h	98	1.5	Ref ⁷
3	Co-L1/carbon	NP	110 °C, H ₂ O, 5 MPa H ₂ , 4 h	99	24.8	Ref ⁸
4	Co@mesoNC	SA	110 °C, ethanol, 3 MPa H ₂ , 2 h	55	42	Ref ⁹
5	Co-SiCN	NP	110 °C, ethanol-H ₂ O, 5 MPa H ₂ , 15 h	99	1.4	Ref ¹⁰
6	CoO _x @NCNTs	NP	110 °C, ethanol, 3 MPa H ₂ , 3 h	99	8.3	Ref ¹¹
7	Co ₃ O ₄ /NGr@C	NP	110 °C, THF-H ₂ O, 5 MPa H ₂ , 4 h	95	25	Ref ¹²
8	Fe-N-C@CNTs-1.5	NP	110 °C, THF-H2O, 5 MPa H2, 6 h	99	46.8	Ref ¹³
9	Fe ₃ C@G-CNT-700	NP	40 °C, ethanol, 2 MPa H ₂ , 4.5 h	98	22	Ref ¹⁴
10	Fe/N-C-500	NP	120 °C, ethyl acetate, 4 MPa H ₂ , 15 h	99	0.6	Ref ¹⁵
11	Co-Co ₃ O ₄ @carbon-700	NP	110 °C, ethanol-H ₂ O, 4 MPa H ₂ , 15 h	99	3.9	Ref ¹⁶
12	Fe ₂ O ₃ @G-C-900	NP	70 °C, ethanol, 2 MPa H ₂ , 2 h	95	46.6	Ref ¹⁷
13	Co@NC-800	NP	110 °C, ethanol, 3 MPa H ₂ , 3 h	99	8	Ref ¹⁸
14	Co@NMC-800	NP	80 °C, ethanol, 1 MPa H ₂ , 80 min	99	37.5	Ref ¹⁹
15	Co ₂ P/CN _x	NP	60 °C, THF-H ₂ O, 5 MPa H ₂ , 6 h	99	1.5	Ref ²⁰
16	Zr ₁₂ -TPDC-CoCl	SA	110 °C, toluene, 4 MPa H ₂ , 42 h	99	4.8	Ref ²¹
17	Ni/SiO ₂	NP	110 °C, ethanol, 2.5 MPa H ₂ , 7 h	99	1.2	Ref ²²
18	Ni@PS ₆₀ SiCN	NP	110 °C, ethanol-H ₂ O, 5 MPa H ₂ , 20 h	99	5	Ref ²³
19	7.2%Ni/Mo ₂ C	NP	80 °C, ethanol-H ₂ O, 2 MPa H ₂ , 1.5 h	99	32.3	Ref ²⁴
20	Ni/C-300	NP	140 °C, ethanol, 2 MPa H ₂ , 2 h	71	17.7	Ref ²⁵
21	Ni/AC _{OX}	NP	40 °C, toluene, 0.3 MPa H ₂ , 190 min	95	1.8	Ref ²⁶
22	30.0 wt% Ni/C ₆₀ -Ac-B-4	NP	110 °C, ethanol, 2 MPa H ₂ , 5 h	99	6.3	Ref ²⁷
23	Ni-NiO/NGr@C	NP	110 °C, THF-H2O, 5 MPa H2, 8 h	98	2.5	Ref ²⁸
24	Ni/NGr@OMC-800	NP	100 °C, H ₂ O, 5 MPa H ₂ , 2 h	99	17.2	Ref ²⁹
25	Ni-phen@SiO ₂ -1000	NP	40 °C, methanol-H ₂ O, 1 MPa H ₂ , 20 h	99	1.3	Ref ³⁰

Supplementary Table 11. Catalytic performances for non-precious metal catalyzed heterogeneous hydrogenation of nitrobenzene in earlier literatures.

[†]Nanoparticle catalyst

[‡]Single atom catalyst

 $^{\text{\#}}\text{TOF} = \text{mol}_{\text{yield of aniline}} / (\text{mol}_{\text{metal}} \bullet h)$

	R ¹		$\begin{array}{c} \text{Catalyst} \\ \hline \text{NH}_3 \end{array} \qquad R^1 \longrightarrow \begin{array}{c} \text{NH}_2 \\ R^2 \end{array}$			
Entry	Catalyst	NP [†] /SA [‡]	Reaction conditions	Yield (%)	TOF# (h ⁻¹)	Ref.
1ª	Fe-P ₉₀₀ -PCC	SA	75 °C, H ₂ O, 6 MPa H ₂ , 30 h	98	173	This work
2 ^b	Co-DABCO-TPA@C-800	NP	120 °C, t-BuOH, 4 MPa H ₂ , 15 h	88	1.7	Ref ³¹
3°	Ni-TA@SiO2-800	NP	120 °C, t-BuOH, 2 MPa H ₂ , 24 h	98	0.7	Ref ³²
4 ^d	Ni/gama-Al ₂ O ₃	NP	80 °C, H ₂ O, 1 MPa H ₂ , 20 h	99	4.2	Ref ³³
5 ^e	Fe/(N)SiC	NP	130 °C, H ₂ O, 6.5 MPa H ₂ , 20 h	89	0.4	Ref ³⁴
6 ^f	Fe/(N)SiC	NP	140 °C, H ₂ O, 6.5 MPa H ₂ , 20 h	99	0.5	Ref ³⁴
7 ⁹	Co/N-C-800	NP	110 °C, H ₂ O, 0.5 MPa H ₂ , 4 h	92	1.8	Ref ³⁵
8^{h}	Raney Ni	-	120 °C, methanol, 1 MPa H ₂ , 2 h	65	1.0	Ref ³⁶
9 ⁱ	Raney Co	-	120 °C, methanol, 1 MPa H ₂ , 2 h	98	3.1	Ref ³⁶
10 ^j	Ni ₆ AlO _x	NP	100 °C, H ₂ O, 0.1 MPa H ₂ , 6 h	99	0.3	Ref ³⁷
11 ^k	Co@NC-800	NP	130 °C, ethanol, 1 MPa H ₂ , 12 h	97	11.9	Ref ³⁸

Supplementary Table 12. Catalytic performances for non-precious metal catalyzed heterogeneous reductive amination of carbonyl compounds in earlier literatures.

[†]Nanoparticle catalyst [‡]Single atom catalyst [#]TOF = mol_{yield of product} / (mol_{metal} • h) ^aSubstrate: R^1 = COOH, R^2 = H ^bSubstrate: R^1 = COOCH₃, R^2 = H ^cSubstrate: R^1 = CH₃, R^2 = H ^dSubstrate: R^1 = H, R^2 = H ^fSubstrate: R^1 = H, R^2 = H ^fSubstrate: R^1 = H, R^2 = CH₃ ^gSubstrate: R^1 = H, R^2 = H ^hSubstrate: 2-furaldehyde ^jSubstrate: 5-hydroxymethylfurfural ^kSubstrate: R^1 = H, R^2 = H

Supplementary Methods

¹H NMR and ¹³C NMR spectra were recorded at room temperature on Zhongke-Niujin 400 using CDCl₃, D₂O solvents. High resolution mass spectra (HRMS) were tested on Agilent 6530 Accurate-Mass Q-TOF LC/MS with ESI mode. High Performance Liquid Chromatography (HPLC) analysis for the ee values was performed on a SHIMADZU system (SHIMADZU LC-20AT pump, SHIMADZU LC-20A Absorbance Detector).

(R)-N-benzyl-1-phenylethan-1-amine (5n)

¹H NMR (400 MHz, CDCl₃) 7.35-7.21(m, 10H), 3.79 (q, J = 6.6 Hz, 1H), 3.69 – 3.53 (m, 2H), 1.59 (s, 1H), 1.34 (d, J = 6.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 145.71, 140.79, 128.60, 128.48, 128.25, 127.05, 126.96, 126.83, 57.63, 51.79, 24.65. HRMS (ESI) Calcd for C₁₅H₁₇N [M+H]⁺ 212.1439; found 212.1459. HPLC (Daicel Chiralcel OD-H, 25 °C, n-heptane/i-PrOH = 99/1, flow rate 0.5 mL/min, $\lambda = 210$ nm). Colorless oil.

(S)-N-benzyl-1-phenylethan-1-amine (50)

¹**H NMR (400 MHz, CDCl₃)** δ 7.35-7.21 (m, 10H), 3.79 (q, J = 6.6 Hz, 1H), 3.61 (q, J = 13.1 Hz, 2H), 1.60 (s, 1H), 1.35 (dd, J = 6.6, 1.0 Hz, 3H). ¹³**C NMR (101 MHz, CDCl₃)** δ 145.67, 140.75, 128.53, 128.42, 128.19, 126.99, 126.90, 126.77, 57.57, 51.74, 24.58. **HRMS (ESI)** Calcd for C₁₅H₁₇N [M+H]⁺ 212.1439; found 212.1446. **HPLC** (Daicel Chiralcel OD-H, 25 °C, n-heptane/i-PrOH = 99/1, flow rate 0.5 mL/min, $\lambda = 210$ nm). **Colorless oil.**

1-(4-(tert-butyl)benzyl)-4-((4-chlorophenyl)(phenyl)methyl)piperazine (5p)

¹**H NMR (400 MHz, CDCl₃)** δ 7.34-7.28 (m, 6H), 7.25 - 7.15 (m, 6H), 7.15 - 7.10 (m, 1H), 4.18 (s, 1H), 3.46 (s, 2H), 2.41 (d, *J* = 27.7 Hz, 8H), 1.28 (s, 9H). ¹³**C NMR (101 MHz, CDCl₃)** δ 149.98, 142.31, 141.54, 135.02, 132.61, 129.38, 129.14, 128.73, 128.66, 128.03, 127.22, 125.17, 75.58, 62.81, 53.43, 51.94, 34.56, 31.57. **HRMS (ESI)** Calcd for C₂₈H₃₃ClN₂ [M+H]⁺ 433.2411; found 433.2400. **Brown gum.**

4-(aminomethyl)benzoic acid (5q)

¹H NMR (400 MHz, D₂O) δ 7.71-7.86(m, 2H), 7.32-7.30(m,2H), 4.06(s,2H). ¹³C NMR (101 MHz, D₂O) 175.02, 136.95, 135.29, 129.40, 128.53, 42.71. HRMS (ESI) Calcd for C₈H₁₀NO₂ [M+H]⁺ 152.0712; found 152.0705. White solid.

Supplementary References

- 1. Chen, F. et al. Selective catalytic hydrogenation of heteroarenes with N-graphene-modified cobalt nanoparticles (Co₃O₄-Co/NGr@α-Al₂O₃). J. Am. Chem. Soc. 137, 11718-11724 (2015).
- Huang, R. et al. Integration of metal single atoms on hierarchical porous nitrogen-doped carbon for highly efficient hydrogenation of large-sized molecules in the pharmaceutical industry. ACS Appl. Mater. Interfaces 12, 17651-17658 (2020).
- 3. Li, J. et al. Different active sites in a bifunctional Co@N-doped graphene shells based catalyst for the oxidative dehydrogenation and hydrogenation reactions. J. Catal. 355, 53-62 (2017).
- 4. Wei, Z. et al. Cobalt encapsulated in N-doped graphene layers: an efficient and stable catalyst for hydrogenation of quinoline compounds. *ACS Catal.* **6**, 5816-5822 (2016).
- 5. Sahoo, B. et al. A robust iron catalyst for the selective hydrogenation of substituted (iso)quinolones. *Chem. Sci.* 9, 8134-8141 (2018).
- Jiang, H. -Y., Zhang, S. -S. & Sun, B. Highly selective hydrogenation with ionic liquid stabilized nickel nanoparticles. *Catal. Lett.* 148, 1336-1344 (2018).
- 7. Jagadeesh, R. V. et al. Nanoscale Fe₂O₃-based catalysts for selective hydrogenation of nitroarenes to anilines. *Science* **342**, 1073-1076 (2013).
- 8. Westerhaus, F. A. et al. Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes. *Nat. Chem.* 5, 537-543 (2013).
- 9. Sun, X. et al. Single cobalt sites in mesoporous N-doped carbon matrix for selective catalytic hydrogenation of nitroarenes. J. Catal. 357, 20-28 (2018).
- Schwob, T. & Kempe, R. A reusable Co catalyst for the selective hydrogenation of functionalized nitroarenes and the direct synthesis of imines and benzimidazoles from nitroarenes and aldehydes. *Angew. Chem. Int. Ed.* 55, 15175-15179 (2016).
- 11. Wei, Z. et al. In situ-generated Co⁰-Co₃O₄/N-doped carbon nanotubes hybrids as efficient and chemoselective catalysts for hydrogenation of nitroarenes. *ACS Catal.* **5**, 4783-4789 (2015).
- Jagadeesh, R. V. et al. Cobalt-based nanocatalysts for green oxidation and hydrogenation processes. *Nat. Protocols* 10, 916-926 (2015).
- Chen, J. et al. A highly active non-precious metal catalyst based on Fe-N-C@CNTs for nitroarene reduction. RSC Adv. 6, 96203-96209 (2016).
- 14. Shi, J., Wang, Y., Du, W. & Hou, Z. Synthesis of graphene encapsulated Fe₃C in carbon nanotubes from biomass and its catalysis application. *Carbon* **99**, 330-337 (2016).
- 15. Xu, S., Yu, D., Liao, S., Ye, T. & Sheng, H. Nitrogen-doped carbon supported iron oxide as efficient catalysts for chemoselective hydrogenation of nitroarenes. *RSC Adv.* **6**, 96431-96435 (2016).
- Sahoo, B. et al. Biomass-derived catalysts for selective hydrogenation of nitroarenes. *ChemSusChem* 10, 3035-3039 (2017).
- 17. Wang, Y. et al. Carbon film encapsulated Fe₂O₃: an efficient catalyst for hydrogenation of nitroarenes. *Chinese*. *J. Catal.* **38**, 1909-1917 (2017).
- 18. Sun, X. et al. Metal-organic framework mediated cobalt/nitrogen-doped carbon hybrids as efficient and chemoselective catalysts for the hydrogenation of nitroarenes. *ChemCatChem* **9**, 1854-1862 (2017).
- 19. Zhang, F. et al. In situ mosaic strategy generated Co-based N-doped mesoporous carbon for highly selective hydrogenation of nitroaromatics. *J. Catal.* **348**, 212-222 (2017).
- Yang, S. et al. MOF-derived cobalt phosphide/carbon nanocubes for selective hydrogenation of nitroarenes to anilines. *Chem. -Eur. J.* 24, 4234-4238 (2018).

- 21. Ji, P. et al. Single-site cobalt catalysts at new $Zr_{12}(\mu_3-O)_8(\mu_3-OH)_8(\mu_2-OH)_6$ metal-organic framework nodes for highly active hydrogenation of nitroarenes, nitriles, and isocyanides. J. Am. Chem. Soc. **139**, 7004-7011 (2017).
- Zheng, Y. et al. A green reduction of aromatic nitro compounds to aromatic amines over a novel Ni/SiO₂ catalyst passivated with a gas mixture. *Catal. Lett.* 124, 268-276 (2008).
- 23. Hahn, G., Ewert, J. -K., Denner, C., Tilgner, D. & Kempe, R. A reusable mesoporous nickel nanocomposite catalyst for the selective hydrogenation of nitroarenes in the presence of sensitive functional groups. *ChemCatChem* **8**, 2461-2465 (2016).
- 24. Shu, Y. et al. Ni/Mo₂C nanowires and their carbon-coated composites as efficient catalysts for nitroarenes hydrogenation. *Appl. Surf. Sci.* **396**, 339-346 (2017).
- Zhang, P. et al. Magnetically recoverable Ni/C catalysts with hierarchical structure and high-stability for selective hydrogenation of nitroarenes. *Phys. Chem. Chem. Phys.* 17, 145-150 (2015).
- 26. Ren, Y. et al. Oxygen surface groups of activated carbon steer the chemoselective hydrogenation of substituted nitroarenes over nickel nanoparticles. *Chem. Comm.* 53, 1969-1972 (2017).
- 27. Qu, Y., Yang, H., Wang, S., Chen, T. & Wang, G. Hydrogenation of nitrobenzene to aniline catalyzed by C₆₀-stabilized Ni. *Catal. Comm.* **97**, 83-87 (2017).
- Pisiewicz, S. et al. Synthesis of nickel nanoparticles with N-doped graphene shells for catalytic reduction reactions. *ChemCatChem* 8, 129-134 (2016).
- 29. Huang, H. et al. Nitrogen-doped graphene-activated metallic nanoparticle-incorporated ordered mesoporous carbon nanocomposites for the hydrogenation of nitroarenes. *RSC Adv.* **8**, 8898-8909 (2018).
- 30. Ryabchuk, P. et al. Intermetallic nickel silicide nanocatalyst-A non-noble metal-based general hydrogenation catalyst. *Sci. Adv.* **4**, eaat0761 (2018).
- 31. Jagadeesh, R. V. et al. MOF-derived cobalt nanoparticles catalyze a general synthesis of amines. *Science* **358**, 326-332 (2017).
- Murugesan, K., Beller, M. & Jagadeesh, R. V. Reusable nickel nanoparticles-catalyzed reductive amination for selective synthesis of primary amines. *Angew. Chem. Int. Ed.* 58, 5064-5068 (2019).
- Hahn, G., Kunnas, P., de Jonge, N. & Kempe, R. General synthesis of primary amines via reductive amination employing a reusable nickel catalyst. *Nat. Catal.* 2, 71-77 (2019).
- Bäumler, C., Bauer, C. & Kempe, R. The synthesis of primary amines through reductive amination employing an iron catalyst. *ChemSusChem* 13, 3110-3114 (2020).
- Liu, X., Wang, Y., Jin, S., Li, X. & Zhang, Z. High performance of nitrogen-doped carbon-supported cobalt catalyst for the mild and selective synthesis of primary amines. *Arab. J. Chem.* 13, 4916-4925 (2020).
- Zhou, K. et al. Selective synthesis of furfurylamine by reductive amination of furfural over Raney cobalt. ChemCatChem 11, 5562-5569 (2019).
- Yuan, H. et al. Reductive amination of furanic aldehydes in aqueous solution over versatile Ni_yAlO_x catalysts. ACS Omega 4, 2510-2516 (2019).
- 38. Yuan, Z., Liu, B., Zhou, P., Zhang, Z. & Chi, Q. Preparation of nitrogen-doped carbon supported cobalt catalysts and its application in the reductive amination. *J. Catal.* **370**, 347-356 (2019).