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Supplementary Note  1: Extended Details for the Material Featurisation 
The full feature set used in this study includes 165 descriptors for different domains of a MOF 
structure, namely geometric features of the pore, RACs chemical descriptors for metal chemistry, 
linker chemistry, and functional groups, and the cell volume. 

 

Supplementary Table 1. Full list of the descriptors used in this study.  

Material domain notes #descriptors 

Geometry - 8 

Metal chemistry Metal Center RACs 40 

Linker chemistry Linker Connecting and Full Linker RACs 68 

Functional groups chemistry Functional group RACs 48 

Others Cell Volume 1 

 Total: 165 
 
The geometric descriptors are largest included sphere (Di), largest free sphere (Df), largest 
included sphere along free path (Dif), crystal density (𝜌 ), volumetric surface area (VSA), 
gravimetric surface (GSA), volumetric pore volume (VPOV) and gravimetric pore volume 
(GPOV). Also, we include cell volume as a descriptor.  
 
To compute the RACs features, we use Supplementary Supplementary Equation (1) for the product 
RACs and equation 1 from the main text for difference RACs.  
 

𝑃!"#$%&'$()
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&'$()

-
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,

 Supplementary Equation (1) 

 
The list of start and scope atom lists used in our study are shown in Supplementary Table2. 
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Supplementary Table 2. Details of the RACs descriptors used in this study to describe MOF 
chemistry.  

RACs type Start Scope No. Atomic 
properties Max. Depth #descriptors 

Product 

Full linker Same Linker 5 3 20 
Linker connecting Same Linker 6 3 24 

Metal center Full MOF 5 3 20 
Functional group Same Linker 6 3 24 

Difference 
Linker connecting Same Linker 6 3 24 

Metal center Full MOF 5 3 20 
Functional group Same Linker 6 3 24 

 Total: 156 
 
To compute RACs, we start from the MOF crystal structure. We use pymatgen1 to convert the 
crystal to its primitive cell.2 The periodic pairwise distance matrix between all the atoms in the 
primitive cell is computed. The adjacency matrix is computed based on this pairwise distance 
matrix. Two atoms assigned to be bonded if their pairwise distance times a tuning factor is below 
the sum of their covalent radii (Supplementary Supplementary Equation (S 2)).  
 
𝑓 × 𝑟,,- < (𝑅/01,, + 𝑅/01,-) Supplementary Equation (S 2) 

The tuning factor is 0.9 for most cases except for the bonds between metals and organic atoms that 
we tune this factor slightly depending on the atom types.2 We do not allow metal-metal bonds. 
However, this tuning is not perfect and can lead to the incorrect adjacency matrix, specifically, in 
cases were the geometry of the atoms are not fully correct from the experimental crystal structure. 
We consider main group, alkali, alkaline earth, transition, metalloids, lanthanides, and actinides as 
metal in this study.3 
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Supplementary Note  2: Metal-Organic Framework Databases 
 
Supplementary Table 3.  The list of the databases investigated in this study.  
Name used in 
this manuscript 

Type Number of 
structures 

Notes and references 

CoRE-2019 Experimental ~12,000 

Computational Ready, 
Experimental MOFs initially 

developed4 and later extended5 
by Chung et al. 

CoRE-DDEC Experimental ~3,000 

The refined subset of CoRE-
MOF database with DDEC 

partial charges developed by 
Nazarian et al.6 

hMOF Hypothetical ~130,000 Hypothetical MOFs generated 
by Wilmer et al.7 

BW-DB Hypothetical ~300,000 Hypothetical MOFs generated 
by Boyd et al.8 

BW-20K Hypothetical ~20,000 A diverse subset of structures 
from BW-DB 

ToBaCCo Hypothetical ~13,000 Hypothetical MOFs generated 
by Gomez-Gualdron et al.9 

ARABG-DB Hypothetical ~400 Hypothetical MOFs generated 
by Anderson et al.10 
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Supplementary Note  3: Statistics and Parties of ML Models 
Supplementary Table 4.  Accuracy of kernel ridge regression (KRR) models in prediction of gas adsorption 
properties of CoRE-2019. The machine learning models were trained using ~7,000 training data randomly 
chosen, and the statistics are reported for the remaining structures as the test set (~2,500 structures). All 
numbers were averaged over 10 different train-test splitting of the data. Units are similar to the main text. 
Henry coefficient (kH), gas uptakes and deliverable capacity for CH4, and gas uptakes for CO2 are reported in 
mol.kg-1.Pa-1, vSTP/v, and mol.kg-1, respectively. MAE: mean absolute error; RMAE: relative mean absolute 
error (%), and SRCC: Spearman ranking correlation coefficient. 

 Property Geo. Descriptors Geo. & Chem. Descriptors 
MAE RMAE (%) RMSE SRCC MAE RMAE (%) RMSE SRCC 

CH2 

log(kH) 0.29 4.77 0.43 0.67 0.20 3.26 0.35 0.84 
Upt@5.8 bar 19.59 7.34 27.15 0.75 12.94 4.85 19.41 0.88 
Upt@65 bar 19.94 5.36 27.26 0.92 16.64 4.47 25.02 0.94 

Del. Cap. 14.78 5.15 20.28 0.90 13.71 4.78 19.35 0.91 

CO3 
log(kH) 0.74 8.29 0.98 0.50 0.51 5.64 0.74 0.77 

Upt@0.15 bar 0.92 9.90 1.28 0.57 0.57 6.12 0.85 0.81 
Upt@16 bar 0.97 2.87 1.51 0.95 0.97 2.87 1.51 0.95 

Charges MPC 0.28 10.15 0.39 0.44 0.07 2.54 0.16 0.93 
MNC 0.17 5.98 0.26 0.30 0.11 3.97 0.20 0.75 

 
 

Supplementary Table 5.  Accuracy of random forest regression (RF) models in prediction of gas adsorption 
properties of CoRE-2019. The machine learning models were trained using ~7,000 training data randomly 
chosen, and the statistics are reported for the remaining structures as the test set (~2,500 structures). All 
numbers were averaged over 10 different train-test splitting of the data. Units are similar to the main text. 
Henry coefficient (kH), gas uptakes and deliverable capacity for CH4, and gas uptakes for CO2 are reported in 
mol.kg-1.Pa-1, vSTP/v, and mol.kg-1, respectively. MAE: mean absolute error; RMAE: relative mean absolute 
error (%), and SRCC: Spearman ranking correlation coefficient. 

 Property Geo. Descriptors Geo. & Chem. Descriptors 
MAE RMAE (%) RMSE SRCC MAE RMAE (%) RMSE SRCC 

CH2 

log(kH) 0.26 4.19 0.38 0.71 0.16 2.70 0.26 0.87 
Upt@5.8 bar 17.83 6.68 25.69 0.77 12.70 4.76 19.00 0.88 
Upt@65 bar 18.03 4.84 25.65 0.92 14.05 3.78 20.53 0.95 

Del. Cap. 13.23 4.61 18.81 0.91 10.95 3.81 15.92 0.94 

CO3 
log(kH) 0.66 7.40 0.91 0.59 0.42 4.63 0.63 0.83 

Upt@0.15 bar 0.89 9.54 1.23 0.60 0.56 6.05 0.85 0.82 
Upt@16 bar 0.83 2.46 1.30 0.96 0.65 1.92 1.05 0.97 

Charges MPC 0.26 9.09 0.36 0.51 0.06 2.06 0.13 0.95 
MNC 0.17 5.79 0.25 0.35 0.10 3.35 0.19 0.80 
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Supplementary Table 6.  Accuracy of gradient boosting regression (GBR) models in prediction of gas 
adsorption properties of CoRE-2019. The machine learning models were trained using ~7,000 training data 
randomly chosen, and the statistics are reported for the remaining structures as the test set (~2,500 structures). 
All numbers were averaged over 10 different train-test splitting of the data. Units are similar to the main text. 
Henry coefficient (kH), gas uptakes and deliverable capacity for CH4, and gas uptakes for CO2 are reported in 
mol.kg-1.Pa-1, vSTP/v, and mol.kg-1, respectively. MAE: mean absolute error; RMAE: relative mean absolute 
error (%), and SRCC: Spearman ranking correlation coefficient. 

 Property Geo. Descriptors Geo. & Chem. Descriptors 
MAE RMAE (%) RMSE SRCC MAE RMAE (%) RMSE SRCC 

CH2 

log(kH) 0.27 4.48 0.39 0.69 0.16 2.57 0.23 0.89 
Upt@5.8 bar 19.65 7.37 28.00 0.73 12.02 4.51 17.29 0.90 
Upt@65 bar 19.29 5.18 26.47 0.92 13.66 3.67 19.48 0.96 

Del. Cap. 14.02 4.88 19.23 0.91 10.84 3.78 15.40 0.94 

CO3 
log(kH) 0.72 8.04 1.00 0.49 0.42 4.66 0.62 0.83 

Upt@0.15 bar 0.96 10.29 1.38 0.51 0.54 5.80 0.80 0.84 
Upt@16 bar 0.89 2.62 1.35 0.96 0.58 1.73 0.95 0.98 

Charges MPC 0.27 9.59 0.39 0.45 0.06 2.16 0.13 0.95 
MNC 0.16 5.51 0.26 0.35 0.10 3.35 0.20 0.81 

 
 

Supplementary Table 7.  Accuracy of kernel ridge regression (KRR) models in prediction of gas adsorption 
properties of BW-20K. The machine learning models were trained using ~7,000 training data randomly chosen, 
and the statistics are reported for the remaining structures as the test set (~13,000 structures). All numbers were 
averaged over 10 different train-test splitting of the data. Units are similar to the main text. Henry coefficient 
(kH), gas uptakes and deliverable capacity for CH4, and gas uptakes for CO2 are reported in mol.kg-1.Pa-1, 
vSTP/v, and mol.kg-1, respectively. MAE: mean absolute error; RMAE: relative mean absolute error (%), and 
SRCC: Spearman ranking correlation coefficient. 

 Property Geo. Descriptors Geo. & Chem. Descriptors 
MAE RMAE (%) RMSE SRCC MAE RMAE (%) RMSE SRCC 

CH2 

log(kH) 0.17 4.24 0.25 0.79 0.14 3.35 0.21 0.87 
Upt@5.8 bar 11.54 6.21 16.36 0.90 8.80 4.74 11.96 0.94 
Upt@65 bar 14.35 4.90 18.68 0.93 10.88 3.72 14.64 0.96 

Del. Cap. 9.90 4.39 13.12 0.97 9.90 4.39 13.12 0.97 

CO3 
log(kH) 0.31 4.60 0.45 0.82 0.24 3.57 0.36 0.89 

Upt@0.15 bar 0.43 5.21 0.64 0.83 0.30 3.59 0.45 0.92 
Upt@16 bar 1.15 3.33 1.78 0.98 0.74 2.16 1.11 0.99 

Charges MPC 0.11 4.92 0.16 0.63 0.05 2.01 0.07 0.90 
MNC 0.10 3.88 0.12 0.35 0.07 2.70 0.09 0.71 
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Supplementary Table 8.  Accuracy of random forest regression (RF) models in prediction of gas adsorption 
properties of BW-20K. The machine learning models were trained using ~7,000 training data randomly chosen, 
and the statistics are reported for the remaining structures as the test set (~13,000 structures). All numbers were 
averaged over 10 different train-test splitting of the data. Units are similar to the main text. Henry coefficient 
(kH), gas uptakes and deliverable capacity for CH4, and gas uptakes for CO2 are reported in mol.kg-1.Pa-1, 
vSTP/v, and mol.kg-1, respectively. MAE: mean absolute error; RMAE: relative mean absolute error (%), and 
SRCC: Spearman ranking correlation coefficient. 

 Property Geo. Descriptors Geo. & Chem. Descriptors 
MAE RMAE (%) RMSE SRCC MAE RMAE (%) RMSE SRCC 

CH2 

log(kH) 0.17 4.12 0.24 0.79 0.12 3.02 0.19 0.88 
Upt@5.8 bar 11.58 6.23 16.46 0.89 8.69 4.68 12.53 0.93 
Upt@65 bar 14.27 4.87 18.67 0.93 11.57 3.95 15.43 0.95 

Del. Cap. 10.03 4.44 13.22 0.97 8.31 3.68 11.16 0.98 

CO3 
log(kH) 0.31 4.59 0.45 0.81 0.23 3.31 0.33 0.90 

Upt@0.15 bar 0.44 5.29 0.66 0.83 0.32 3.80 0.48 0.91 
Upt@16 bar 1.16 3.36 1.78 0.98 0.86 2.50 1.29 0.99 

Charges MPC 0.11 4.75 0.16 0.64 0.03 1.43 0.05 0.94 
MNC 0.10 3.90 0.12 0.34 0.07 2.80 0.10 0.68 

 

Supplementary Table 9.  Accuracy of gradient boosting regression (GBR) models in prediction of gas 
adsorption properties of BW-20K. The machine learning models were trained using ~7,000 training data 
randomly chosen, and the statistics are reported for the remaining structures as the test set (~13,000 structures). 
All numbers were averaged over 10 different train-test splitting of the data. Units are similar to the main text. 
Henry coefficient (kH), gas uptakes and deliverable capacity for CH4, and gas uptakes for CO2 are reported in 
mol.kg-1.Pa-1, vSTP/v, and mol.kg-1, respectively. MAE: mean absolute error; RMAE: relative mean absolute 
error (%), and SRCC: Spearman ranking correlation coefficient. 

 Property Geo. Descriptors Geo. & Chem. Descriptors 
MAE RMAE (%) RMSE SRCC MAE RMAE (%) RMSE SRCC 

CH2 

log(kH) 0.17 4.22 0.25 0.79 0.12 2.97 0.18 0.89 
Upt@5.8 bar 11.80 6.35 16.66 0.89 8.08 4.35 11.42 0.94 
Upt@65 bar 14.34 4.90 18.65 0.93 10.73 3.66 14.31 0.96 

Del. Cap. 10.11 4.48 13.30 0.97 8.08 3.58 10.78 0.98 

CO3 
log(kH) 0.32 4.63 0.46 0.81 0.23 3.31 0.34 0.90 

Upt@0.15 bar 0.44 5.31 0.68 0.82 0.32 3.85 0.50 0.91 
Upt@16 bar 1.17 3.40 1.80 0.98 0.76 2.21 1.12 0.99 

Charges MPC 0.11 4.73 0.17 0.65 0.03 1.43 0.05 0.95 
MNC 0.10 3.92 0.13 0.31 0.07 2.71 0.10 0.68 
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Supplementary Figure 1. Two-dimensional histogram parity plots and statistics of the accuracy of random forest 
regression in predictions of the CH4 adsorption properties for the test set from CoRE-2019. ~7,000 structures were 
used for training and the remaining ~2,500 structures were used for test. Statistics were reported as average over 
10 separate random seeds for train-test splitting. Color-bar shows number of structures in each cell of the histogram.  
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Supplementary Figure 2. Two-dimensional histogram parity plots and statistics of the accuracy of random forest 
regression in predictions of the CO2 adsorption properties for the test set from CoRE-2019. ~7,000 structures were 
used for training and the remaining ~2,500 structures were used for test. Statistics were reported as average over 
10 separate random seeds for train-test splitting. Color-bar shows number of structures in each cell of the histogram. 
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Supplementary Figure 3. Two-dimensional histogram parity plots and statistics of the accuracy of random forest 
regression in predictions of the CH4 adsorption properties for the test set from BW-20K. ~7,000 structures were 
used for training and the remaining ~13,000 structures were used for test. Statistics were reported as average over 
10 separate random seeds for train-test splitting. Color-bar shows number of structures in each cell of the histogram.  
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Supplementary Figure 4. Two-dimensional histogram parity plots and statistics of the accuracy of random forest 
regression in predictions of the CO2 adsorption properties for the test set from BW-20K. ~7,000 structures were 
used for training and the remaining ~13,000 structures were used for test. Statistics were reported as average over 
10 separate random seeds for train-test splitting. Color-bar shows number of structures in each cell of the histogram. 

 
 
 
 
  



                                            13 

Supplementary Note  4: Partial Atomic Charges 
The partial atomic charges for the CoRE MOF database (CoRE-2019)4,5 were derived using the 
extended charge equilibration (EQeq) method.11,12 We use random forest regression models to 
predict the maximum positive charge (MPC) and minimum negative charge (MNC) of the 
frameworks using only geometric, and geometric and chemical descriptors. We observe the 
chemical descriptors are able to learn and predict these attributes of the MOF structures in the 
CoRE-2019 with high accuracies. 
 

 Geo. Descriptors Geo. & Chem. Descriptors 
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Supplementary Figure 5. Two-dimensional histogram parity plots and statistics of the accuracy in machine learning 
predictions of the framework maximum positive charge (MPC) and minimum negative charge (MNC) using 
geometric or geometric and chemical descriptors for test set from CoRE-2019. Partial atomic charges were derived 
using EQeq method for this database. Random forest regressions were trained using ~7,000 structures and the 
remaining structures (~2,500 structures) were used as test set. Statistics were reported as average over 10 separate 
random seeds for train-test splitting. Color-bar shows number of structures in each cell of the histogram. 
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For a subset of the structures in the CoRE MOF database (~2900 structures – CoRE-DDEC), 
Nazarian et al.6 performed DFT calculations and derived DDEC charges. Comparing DDEC 
charges with EQeq is instructive. The correlation between these charges are poor which shows the 
intrinsic problem with machine learning representations using method dependent features (see 
Supplementary Figure 6). We see in Supplementary Figure 7 that our chemical descriptors are able 
to learn the charges derived with both EQeq and DDEC approaches. We note that our prediction 
accuracies are higher for DDEC charges. This might be due to more smooth behaving of the DFT 
derived charges which ease the learning process. 
 

 
(a) 

 
(b) 

Supplementary Figure 6. Two-dimensional histogram parity plots and statistics of correlations between two 
methods for deriving partial atomic charges, namely extended charge equilibration (EQeq) and density derived 
electrostatics and chemical (DDEC) methods. (a) maximum positive charge of the framework and (b) minimum 
negative charge of the framework.    
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Supplementary Figure 7. Two-dimensional histogram parity plots and statistics of the accuracy in machine learning 
predictions of the framework maximum positive charge (MPC) and minimum negative charge (MNC) derived from 
two different approaches, DDEC and EQeq, for the CoRE-DDEC. The DDEC charges were obtained from ref.6 
Random forest regressions were trained using ~2,000 structures and the remaining structures (~800 structures) were 
used as test set. Statistics were reported as average over 10 separate random seeds for train-test splitting. Color-bar 
shows number of structures in each cell of the histogram. 
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Supplementary Note  5: Importance of Variables for Gas Adsorption 
Properties 

 

Supplementary Figure 8. Feature importance for CO2 adsorption properties. Pie charts showing the SHAP 
values (importance of variables). SHAP values were computed for the random forest regression models using a 
training set of CORE-2019 and BW-20K, and all structures in ARABG-DB. For the chemical features, the 
importance of variables was summed over all RAC depths for each of the heuristic atomic properties. See method 
section for the meaning of the labels. 
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Supplementary Figure 9. Feature importance for CH4 adsorption properties. Pie charts showing the SHAP 
values (importance of variables). SHAP values were computed for the random forest regression models using a 
training set of CORE-2019 and BW-20K, and all structures in ARABG-DB. For the chemical features, the 
importance of variables was summed over all RAC depths for each of the heuristic atomic properties. See method 
section for the meaning of the labels. 
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Supplementary Figure 10. Comparing different methods for evaluating importance of variables for the low-pressure 
CO2 adsorption in materials in CoRE-2019. The pie charts are color-coded with MOF material domains; purple: 
pore geometry, red: metal chemistry, blue: linker chemistry, and green: functional groups. For the chemical 
features, the importance of variables was summed over all RAC depths for each heuristic atomic property.  
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Supplementary Figure 11. Comparing different methods for evaluating importance of variables for the low-pressure 
CO2 adsorption in materials in BW-20K. The pie charts are color-coded with MOF material domains; purple: pore 
geometry, red: metal chemistry, blue: linker chemistry, and green: functional groups. For the chemical features, the 
importance of variables was summed over all RAC depths for each heuristic atomic property.  
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Supplementary Figure 12. Comparing different methods for evaluating importance of variables for the low-pressure 
CO2 adsorption in materials in ARABG-DB using all the materials in the database. The pie charts are color-coded 
with MOF material domains; purple: pore geometry, red: metal chemistry, blue: linker chemistry, and green: 
functional groups. For the chemical features, the importance of variables was summed over all RAC depths for 
each heuristic atomic property.  
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Supplementary Note  6: PCA/TSNEs 
 

 
Supplementary Figure 13. The t-SNE maps showing the distribution of the materials in each database. Each database is 
overlaid using colored dots over the current chemical space that is shown in gray. 
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Supplementary Figure 14. The PCA maps showing the distribution of the materials in each database. Each database is overlaid 
using colored dots over the current chemical space that is shown in gray. 
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(a) 

 
(b) 

  
(c) 

Supplementary Figure 15. The t-SNE representation of different domains of MOF chemistry. (a) metal center descriptors 
color-coded with the coordination number of the metal (b) linker chemistry color-coded with size of the linker, and (c) 
functional groups color-coded with electronegativity of the group. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Supplementary Figure 16. The PCA representation of the different domains of MOF descriptors. (a) geometric 
descriptors color-coded with size of the pore, (b) metal center descriptors color-coded with the coordination number 
of the metal (c) linker chemistry color-coded with size of the linker, and (d) functional groups color-coded with 
electronegativity of the group. 

 
 
 
  



Supplementary Note  7: Mining Metal Nodes from CoRE-MOF Database 

 
Supplementary Figure 17. Inorganic SBUs mined from CoRE-2019 and their corresponding linkers. 
These are examples of inorganic SBUs that are missing in hypothetical MOF databases. The CSD 
names and metal types are shown below each  
 
 
                                                                              25 



                                            26 

 

 

Supplementary Figure 18. Inorganic SBUs mined from CoRE-2019 and their corresponding linkers. 
These are examples of inorganic SBUs that are missing in hypothetical MOF databases. The CSD 
names and metal types are shown below each SBU. 
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Supplementary Note  8: Notes on KRR Models 
The hyperparameters of KRR models were selected based on recursive feature addition (RFA) or 
threshold explained variance methods. For the RFA method,13,14 we use the ranking based on Gini 
importance15 of variables derived from random forest models. We keep adding features until the 
improvement in CV score remains below 0.1% (see figure below as an example). For the explained 
variance method, we use threshold of 0.95 for feature selection. For hyperparameter optimization 
we use a combination of Tree of Parzen Estimators (TPE), annealing, and random search with a 
ratio of 0.7,0.15, and 0.15, respectively, with maximum 150 evaluation. The hyperparameters for 
the models and the number of selected features is show in Tables below.  

 
Supplementary Figure 19. The cross-validation score optimization using RFA method. 

 
 
Supplementary Table 10. The hyperparameters and number of selected features for training KRR models to predict 
different properties of BW20K. kH: Henry coefficient, LP: low pressure, HP: high pressure, DC: deliverable capacity, 
MPC: maximum positive charge, MNC: minimum negative charge. 

 CH! CO" Charge 
kH LP HP DC kH LP HP MPC MNC 

𝛼 0.0025 0.0021 0.0070 0.0039 0.0232 0.0846 0.0149 0.0034 0.0021 

𝛾 0.0007 0.0014 0.0024 0.2029 0.0025 0.0388 0.0096 0.0001 0.0047 
N features 35 36 41 7 28 33 36 41 40 
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Supplementary Table 11. The hyperparameters and number of selected features for training KRR models to predict 
different properties of CoRE2019. kH: Henry coefficient, LP: low pressure, HP: high pressure, DC: deliverable 
capacity, MPC: maximum positive charge, MNC: minimum negative charge. 

 CH! CO" Charge 
kH LP HP DC kH LP HP MPC MNC 

𝛼 0.0030 0.0419 0.0103 0.0089 0.0030 0.1586 0.0068 0.0866 0.2822 

𝛾 0.0088 0.0286 0.0127 0.0649 0.0086 0.0820 0.0898 2.0313 0.0634 

N features 39 41 33 11 39 36 5 4 26 
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Supplementary Note  9: Notes on RF and GBR models 
For the gradient boosted regressor (GBR) and random forest (RF) models we use all the features. 
To find the hyperparameters of the models, we perform exhaustive grid search14 over the grids of 
parameters shown in the lists below: 

a) GBR: 
1. Learning rate: [0.001,0.01,0.05,0.1,0.2,0.5,1.0] 
2. Number of trees: [50,100,200,300] 
3. Subsample: [0.9,1.0] 
4. Minimum split: [2,3] 
5. Max depth: [3,4,5] 

b) RF: 
1. Max depth: [5,10,20,40] 
2. Number of trees: [50,100,150,200,250,300] 
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Supplementary Note  10: Structure Refining Steps  
To prepare the data for featurization and gas adsorption calculations, we carried out a series of 
steps for cleaning the databases we studied (see figure below). As a first step, we check if the 
occupancies of the .cif file is correct while parsing the structures. We exclude all the .cif files that 
are too large, or they do not contain any metals. Then, we compute the periodic pairwise distance 
matrix between all atoms of the framework and identified cases with atomic overlap when the 
pairwise distance between two atoms is less than the covalent radii of each atom. After assigning 
the adjacency matrix (See Supplementary Note  1), we check each of the connected components 
of this matrix, and the structures with a connected component that does not contain a metal are 
identified with having floating atoms (e.g., a solvent molecule) and excluded. If a structure passes 
all these steps, we perform geometric and RACs featurization for it. 
The next step is to filter materials for gas adsorption calculation. All the structures that are non-
porous to a probe radius of 1.86 Å are excluded for the gas adsorption calculations. We perform 
partial atomic charges assignment in this step. The structures that take framework maximum 
positive charge bigger than 3 or minimum positive charge smaller than -3 are recognized to be 
unrealistic and were excluded.  The number of structures from each of the databases studied in this 
work that passed this database refinement protocol are listed in Supplementary Table 12. 

 

Supplementary Figure 20 A flowchart representation of the database refinement carried out in this study. 
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Supplementary Table 12. The number of structures from each database that pass the 
refinement steps and the final dataset sizes. 
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CoRE-2019 11920 0 60 4 1108 136 4 2 10606 752 
16

3 
166 9525 

CoRE-DDEC 2932 1 0 3 42 78 0 0 2808 313 13 0 2795 

hMOF 137953 0 0 0 1786 15527 0 45 120595 8418    

BW-DB 324426 133 5 0 159 367 0 
13

6 
323626 4032    

ToBaCCo 13514 4 1354 301 133 179 0 0 11543 13    

BW-20K 20000 77 0 0 20 30 0 0 19873 484 4 6 19387 

ARABG-DB 426 0 37 0 0 0 0 0 389 2 0 0 387 
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Supplementary Note  11: Molecular Simulation Parameter Sets 

Supplementary Table 13. The Lennard-Jones parameters of the framework atoms extracted from UFF16 and 
TraPPE17 force fields.  

Atom 𝜀	[K] 𝜎(Å) Atom 𝜀	[K] 𝜎(Å) Atom 𝜀	[K] 𝜎(Å) Atom 𝜀	[K] 𝜎(Å) 

Ac 16.608 3.0985 Cm 6.5425 2.9631 Ho 3.5229 3.0371 Sc 9.5622 2.9355 
Ag 18.1178 2.8045 Co 7.0458 2.5587 I 170.609 4.009 Se 146.4519 3.7462 
Al 254.152 4.0082 Cr 7.5491 2.6932 In 301.4595 3.9761 Si 202.315 3.8264 
Am 7.0458 3.0121 Cs 22.6472 4.0242 Ir 36.7388 2.5302 Sm 4.0262 3.136 
Ar 93.1052 3.446 Cu 2.5164 3.1137 K 17.6145 3.3961 Sn 285.3548 3.9128 
As 155.5108 3.7685 Dy 3.5229 3.054 Kr 110.7197 3.6892 Sr 118.2687 3.2438 
At 142.929 4.2318 Er 3.5229 3.021 La 8.5556 3.1377 Ta 40.765 2.8241 
Au 19.6276 2.9337 Es 6.0393 2.9391 Li 12.5818 2.1836 Tb 3.5229 3.0745 
B 90.5888 3.6375 Eu 4.0262 3.1119 Lr 5.536 2.8829 Tc 24.157 2.6709 
Ba 183.1907 3.299 F 25.1636 2.997 Lu 20.6341 3.2429 Te 200.302 3.9823 
Be 42.7781 2.4455 Fe 6.5425 2.5943 Md 5.536 2.9168 No 5.536 2.8936 
Bi 260.6945 3.8932 Fm 6.0393 2.9275 Mg 55.8631 2.6914 Np 9.5622 3.0504 
Bk 6.5425 2.9747 Fr 25.1636 4.3654 Mn 6.5425 2.638 O 30.1963 3.1181 
Br 126.3211 3.732 Ga 208.8576 3.9048 Mo 28.1832 2.719 Os 18.621 2.7796 
C 52.8435 3.4309 Gd 4.5294 3.0005 N 34.7257 3.2607 Rh 26.6734 2.6094 
Ca 119.7786 3.0282 Ge 190.7398 3.813 Na 15.0981 2.6576 Rn 124.8113 4.2451 
Cd 114.7458 2.5373 H 22.1439 2.5711 Nb 29.693 2.8197 Ru 28.1832 2.6397 
Ce 6.5425 3.168 He 28.1832 2.1043 Nd 5.0327 3.185 S 137.8963 3.5948 
Cf 6.5425 2.9515 Hf 36.2355 2.7983 Ne 21.1374 2.8892 Sb 225.9688 3.9378 
Cl 114.2426 3.5164 Hg 193.7594 2.4099 Ni 7.5491 2.5248 Y 36.2355 2.9801 
P 153.4977 3.6946 Th 13.0851 3.0255 Pt 40.2617 2.4535 Yb 114.7458 2.989 
Pa 11.072 3.0504 Ti 8.5556 2.8286 Pu 8.0523 3.0504 Zn 62.4056 2.4616 
Pb 333.6688 3.8282 Tl 342.2245 3.8727 Ra 203.3216 3.2758 Zr 34.7257 2.7832 
Pd 24.157 2.5827 Tm 3.0196 3.0059 Rb 20.1309 3.6652 Po 163.5632 4.1952 
Pm 4.5294 3.16 U 11.072 3.0246 Re 33.2159 2.6317 Pr 5.0327 3.2126 
Xe 167.0861 3.9235 V 8.0523 2.801 W 33.7192 2.7342    

𝐂!"! 27.0 2.8 𝐎!"! 79.0 3.05 𝐂𝐇𝟒 148.0 3.73    
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Supplementary Note  12: Details of the Partial Charge Calculation using the 
EQeq method 
The extended charge equilibration method11 was used to compute the partial charges of the atoms 
in the frameworks of the MOFs. This method is the most suitable choice for the investigation of 
the tens of thousands of structures we considered in this study,12 as DFT alternative methods, albeit 
more accurate, are prohibitive for this large number of structures. Moreover, this method can be 
applied to any MOF, being it consistently parametrized for all the elements up to Polonium. As for 
the selection of the reference charge centers, which informs the electronegativity and idempotential 
inputs for the program, we chose for each element the lowest common oxidation state: this protocol 
was used for the benchmark of EQeq in our previous work.12 Oxidation states are listed in Table 
below. The values for the electronegativity and idempotential are computed from experimental 
data.18 The code is available from the GitHub repository 
https://github.com/danieleongari/EQeq/releases/tag/v1.1.0, and the default settings from the 
release v1.1.0 have been used for all the calculations.   

Supplementary Table 14. list of lowest common oxidation states selected as charge center for the EQeq 
calculations. 

Atom 
type 

Oxidatio
n state 

Atom 
type 

Oxidatio
n state 

Atom 
type 

Oxidatio
n state 

Atom 
type 

Oxidatio
n state 

Atom 
type 

Oxidatio
n state 

Atom 
type 

Oxidatio
n state 

H 0 S 0 Ge 0 Ag 1 Sm 1 Ir 0 

He 0 Cl 0 As 0 Cd 2 Eu 1 Pt 1 

Li 1 Ar 0 Se 0 In 3 Gd 1 Au 1 

Be 2 K 1 Br 0 Sn 2 Tb 1 Hg 1 

B 0 Ca 2 Kr 0 Sb 0 Dy 1 Tl 1 

C 0 Sc 3 Rb 1 Te 0 Ho 1 Pb 2 

N 0 Ti 4 Sr 2 I 0 Er 1 Bi 3 

O 0 V 4 Y 3 Xe 0 Tm 2 Po 0 

F 0 Cr 3 Zr 4 Cs 1 Yb 2 Ga 3 

Ne 0 Mn 2 Nb 4 Ba 1 Lu 1 P 0 

Na 1 Fe 2 Mo 4 La 2 Hf 3 Zn 2 

Mg 2 Co 2 Tc 2 Ce 3 Ta 0 Pd 2 

Al 3 Ni 2 Ru 2 Pr 3 W 0 Pm 1 

Si 0 Cu 2 Rh 2 Nd 1 Re 0 Os 0 
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Supplementary Note  13: Including hMOF in the Design Space 
Here we show how hMOF is covering the design space. We included 10,000 structures sampled 
from this database using MaxMin method to the structures from CoRE-2019, BW-DB, ToBaCCo. 
In Supplementary Figure 21, we show the pore geometry maps for this more populated space. The 
difference between the shape of maps in this figure and the figures in the main text is due to the 
stochastic nature of t-SNE method. However, the same information is encoded in the figures, e.g., 
CoRE-2019 is mainly in small pore regions and ToBaCCo is covering the large pore region. The 
distribution of the geometric features in hMOF is very similar to those from BW-DB.  
In Supplementary Figure 22, we show the coverage of the three chemistry domains by hMOF. We 
see that this hypothetical database has similar distribution as BW-DB. Very little coverage of the 
metal chemistry and good coverage of functional groups and linker chemistry. The hMOF covers 
more in the metal chemistry map. This is simply an artefact as many structures are unphysical. 
These unphysical structures are present in the database since the structures were not geometry 
optimized and there are many clashing/close contacts atoms. Despite using only 5 metal centers, 
our unique graph identification method finds more than 1200 unique metal centers in this database. 
We show examples for these unphysical structures in Supplementary Figure 23 for each of the 
original metal centers. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Supplementary Figure 21 The t-SNE representation of the geometric descriptors for the databases 
including hMOF. Top left figure is color coded with the largest included sphere. (b), (c), (d), and 
(e) show the distribution of CoRE-2019, BW-DB, ToBaCCo, and hMOF, respectively. 
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(a) 

 
(b) 

 
(c) 

Supplementary Figure 22. The t-SNE representation of the coverage of the three different domains of MOF chemistry 
by hMOF: (a) linker chemistry, (b) functional groups, (c) metal centers. The large number of points from hMOF in 
the metal center map is an artifact of the unphysical chemistry in the database. 
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Supplementary Figure 23. Examples of unphysical structures in hMOF for each of the metal 
centers. The atoms up to the second coordination shell are shown in this figure. The number 
next to the representations correspond to the structure number in hMOF. The central metal of 
each complex is specified with a gold + sign. 
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Supplementary Note  14: Metal Type Variation in Databases  

 
Supplementary Figure 24. The distribuion of the metal types in the MOF databases.  
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Supplementary Note  15: Distribution of Adsorption Properties of Databases 
 

  

  
Supplementary Figure 25. Distribution of methane adsorption properties in BW-DB and CoRE-
2019. 
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Supplementary Figure 26. Distribution of carbon dioxide adsorption properties in BW-DB and 
CoRE-2019. 

 

  
Supplementary Figure 27. Distribution of partial atomic charges in BW-DB and CoRE-2019. 
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Supplementary Note  16: Diversity Metrics 
We describe diversity with three metrics: variety, balance, and disparity. For variety and balance, 
we first split the space to 1000 bins using k-means method. Variety is the number of sampled bins 
by each database, i.e., how many district types of structure exist in a database normalized with the 
1000 unique bins. Balance shows how the evenness of the distribution of structures among the 
sample bins. Different methods exist for computing evenness which are all transformation of 
Shannon entropy. Shannon entropy measures the stochastic nature of data by computing the 
relative chance that a sample from a distribution would be from a given kind and it is computed 
as: 
𝐻(𝑋) = −∑𝑃(x4)log	 𝑃(x4) Supplementary Equation (S 3) 

Based on this equation, the maximum entropy would be achieved when all bins are equally likely, 
i.e., uniform distribution. Therefore, a metric for evenness is relative entropy that is normalizing 
the entropy of the system with the maximum entropy (the entropy of a uniform distribution): 

𝐻567(𝑋) =
exp	(𝐻(𝑋))
exp(𝐻89:)

 Supplementary Equation (S 4) 

Here, we normalize with exponential of max entropy distribution because this term becomes linear 
with respect to the size of system, i.e., number of bins. Another flavor of the relative entropy is 
Kullback-Leibler divergence which measures the difference between two probability distributions: 

𝐷;<(𝑃||𝑄) = ∑𝑃(x4) log
𝑃(𝑥,)
𝑄(𝑥,)

.		 Supplementary Equation (S 5) 

A nice behaving transformation of entropy was introduced by Pielou: 

𝑃𝐿567(𝑋) =
1 − exp	(𝐻(𝑋))
1 − exp(𝐻89:)

 Supplementary Equation (S 6) 

In this work, we use 1 − 𝑃𝐿567(𝑋) to have a measure of evenness of distribution such that 1 is the 
maximum evenness, i.e., the uniform distribution.  
In figures below, the distribution of structures among the sampled bins are shown.  
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(a) 

 
(b) 

 
(c) (d) 

Supplementary Figure 28. Evenness of distribution of structures among the sampled bins for 
by each database. A flat distribution would lead to perfect evenness, i.e., Pielou’s evenness 
factor of 1. (a) geometry, (b) metal chemistry, (c) linker chemistry, and (d) functional groups. 
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Variety KL Relative 
Entropy 

Pielou’s 
Evenness Disparity 

CoRE-2019 0.57 (0. 011) 0.51 (0.017) 0.955 (0.0027) 0.60 (0.010) 0.68 

BW-DB 0.62 (0.009) 0.30 (0.007) 0.974 (0.0011) 0.74 (0.005) 0.54 

ToBaCCo 0.82 (0.013) 0.34 (0.008) 0.973 (0.0013) 0.71 (0.005) 0.83 
 

Supplementary Figure 29. Diversity metrics for the geometric features of the three databases. 
The numbers in parantesis show the standard deviation of the metrics for changing the number 
of bins from 800 to 1200.  
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Variety KL Relative 

Entropy 
Pielou’s 
Evenness Disparity 

CoRE-2019 0.977 (0.015) 0.72 (0.023) 0.942 (0.000) 0.48 (0.012) 0.997 

BW-DB 0.035 (0.002) 0.85 (0.039) 0.785 (0.003) 0.41 (0.016) 0.039 

ToBaCCo 0.034 (0.004) 1.05 (0.009) 0.717 (0.000) 0.32 (0.003) 0.046 
 

Supplementary Figure 30. Diversity metrics for the metal center features of the three databases. 
The numbers in parantesis show the standard deviation of the metrics for changing the number 
of bins from 800 to 1200. 
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Variety KL Relative 
Entropy 

Pielou’s 
Evenness Disparity 

CoRE-2019 0.58 (0.020) 1.08 (0.035) 0.900 (0.005) 0.34 (0.013) 0.74 

BW-DB 0.55 (0.004) 0.25 (0.011) 0.978 (0.001) 0.78 (0.008) 0.70 

ToBaCCo 0.18 (0.005) 0.24 (0.009) 0.971 (0.001) 0.78 (0.007) 0.17 
 

Supplementary Figure 31. Diversity metrics for the linker chemistry features of the three 
databases. The numbers in parantesis show the standard deviation of the metrics for changing 
the number of bins from 800 to 1200. 

 
 
 
 
 
 
 
 



                                            46 

 
 

Variety KL Relative 
Entropy 

Pielou 
Evenness Disparity 

CoRE-2019 0.54 (0.018) 1.98 (0.050) 0.794 (0.002) 0.14 (0.007) 0.89 

BW-DB 0.62 (0.006) 0.21 (0.004) 0.982 (0.001) 0.81 (0.003) 0.75 

ToBaCCo 0.12 (0.007) 1.84 (0.043) 0.687 (0.004) 0.15 (0.007) 0.18 
 

Supplementary Figure 32. Diversity metrics for the functional group features of the three 
databases. The numbers in parantesis show the standard deviation of the metrics for changing 
the number of bins from 800 to 1200. 
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Supplementary Note  17: Learning Curves for Different Train Sets 
Using a diverse set for training ML models should in principle help us to have a more efficient 
learning.  Here, we show this using learning curves of random forest (RF) and k-nearest-neighbors 
(k-NN) models. The k-NN model is particularly illustrative because this model only uses the k 
neighbors in feature space for predictions, and therefore, the distribution of the train set in the 
entire feature space would significantly influence the performance of this model. Figures below 
show that both RF and k-NN (n=5, using Euclidian distances) models trained using the diverse set 
are significantly more transferable to both databases. In contrast, the models trained on one 
database have very poor transferability to the other databases.  
 
Moreover, the steepness and saturation point of the learning curve can provide an indication of 
minimum database size. For the properties that depend only on a few structural parameters, e.g., 
the high-pressure gas uptake that mainly rely on the pore volume, the learning curve is very steep 
and saturates very fast. For such properties, the number of structures that diversely sample the 
range of pore volumes is indeed smaller than for those properties that rely on many structural 
parameters, e.g., low-pressure CO2 uptake that rely on both geometry and chemistry. 
 

 
Supplementary Figure 33. Learning curves of RF and kNN models for predictions of CO2 uptake 
at low pressures using different training sets.  
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Supplementary Figure 34. Learning curves of RF and kNN models for predictions of CO2 uptake 
at high pressures using different training sets.  
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Supplementary Figure 35. Learning curves of RF and kNN models for predictions of methane 

uptake at low pressures using different training sets.  
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Supplementary Figure 36. Learning curves of RF and kNN models for predictions of methane 
uptake at high pressures using different training sets.  
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