| 1             |                                                                                                                                           |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| $\frac{2}{3}$ |                                                                                                                                           |
| 4             |                                                                                                                                           |
| 5<br>6        |                                                                                                                                           |
| 7             |                                                                                                                                           |
| 8<br>9        |                                                                                                                                           |
| 10            |                                                                                                                                           |
| 11<br>12      |                                                                                                                                           |
| 13            | Supplementary information to:                                                                                                             |
| 14            |                                                                                                                                           |
| 15            | Development of light-responsive protein binding in the monobody non-immunoglobulin                                                        |
| 16            | scaffold                                                                                                                                  |
| 17            | César Carrasco-López <sup>1,#</sup> , Evan M. Zhao <sup>1,#</sup> , Agnieszka A. Gil <sup>2,#</sup> , Nathan Alam <sup>1</sup> , Jared E. |
| 18            | Toettcher <sup>2,*</sup> and José. L. Avalos <sup>1,3,*</sup>                                                                             |
| 19            |                                                                                                                                           |
| 20            | <sup>1</sup> Department of Chemical and Biological Engineering                                                                            |
| 21            | Princeton University, Princeton NJ 08544                                                                                                  |
| 22            |                                                                                                                                           |
| 23            | <sup>2</sup> Department of Molecular Biology                                                                                              |
| 24            | Princeton University, Princeton NJ 08544                                                                                                  |
| 25            |                                                                                                                                           |
| 26            | <sup>3</sup> Andlinger Center for Energy and the Environment                                                                              |
| 27            | Princeton University, Princeton NJ 08544                                                                                                  |
| 28            |                                                                                                                                           |
| 29            | <sup>#</sup> These authors contributed to this work equally                                                                               |
| 30            |                                                                                                                                           |
| 31            | * Co-corresponding Authors                                                                                                                |
| 32            | toettcher@princeton.edu; javalos@princeton.edu                                                                                            |
| 33            |                                                                                                                                           |
| 34            |                                                                                                                                           |

| 35       | Supplementary Information                                                                                                |
|----------|--------------------------------------------------------------------------------------------------------------------------|
| 36       |                                                                                                                          |
| 37       | Supplementary Note 1                                                                                                     |
| 38       | The AsLOV2 sequence is highlighted in blue.                                                                              |
| 39<br>40 | HA4-AsLOV2 (SS58 insertion): αSH2-OptoMB<br>GSSVSSVPTKI EVVAATPTSI LISWDAPMSSSSVYYYRITYGETGGNSPVOFETVPYS <mark>GL</mark> |
| 41       | ERIEKNEVITDPRLPDNPIIFASDSFLOLTEYSREEILGRNCRFLOGPETDRATVRKIRDAID                                                          |
| 42       | NOTEVTVOLINYTKSGKKFWNLFHLOPMRDOKGDVOYFIGVOLDGTEHVRDAAEREG                                                                |
| 43       | VMLIKKTAENIDEAAGSSTATISGLSPGVDYTITVYAWGEDSAGYMFMYSPISINYRTC*                                                             |
| 44       |                                                                                                                          |
| 45       | HA4-AsLOV2 (MS29 insertion with residues removed from Loop AB):                                                          |
| 46       | GSSVSSVPTKLEVVAATPTSLLISWDAPMGLERIEKNFVITDPRLPDNPIIFASDSFLOLTE                                                           |
| 47       | YSREEILGRNCRFLQGPETDRATVRKIRDAIDNQTEVTVQLINYTKSGKKFWNLFHLQP                                                              |
| 48       | MRDQKGDVQYFIGVQLDGTEHVRDAAEREGVMLIKKTAENIDEAAGSVYYYRITYGET                                                               |
| 49       | GGNSPVQEFTVPYSSSTATISGLSPGVDYTITVYAWGEDSAGYMFMYSPISINYRTC*                                                               |
| 50       |                                                                                                                          |
| 51       | HA4-AsLOV2 (MS29 insertion):                                                                                             |
| 52       | GSSVSSVPTKLEVVAATPTSLLISWDAPM <mark>GLERIEKNFVITDPRLPDNPIIFASDSFLQLTE</mark>                                             |
| 53       | YSREEILGRNCRFLQGPETDRATVRKIRDAIDNQTEVTVQLINYTKSGKKFWNLFHLQP                                                              |
| 54       | MRDQKGDVQYFIGVQLDGTEHVRDAAEREGVMLIKKTAENIDEAAG <mark>SSSSVYYYR</mark> ITY                                                |
| 55       | GETGGNSPVQEFTVPYSSSTATISGLSPGVDYTITVYAWGEDSAGYMFMYSPISINYRTC                                                             |
| 56       | *                                                                                                                        |
| 57       |                                                                                                                          |
| 58       | HA4-AsLOV2 (GN46 insertion with residues removed from Loop CD):                                                          |
| 59       | GSSVSSVPTKLEVVAATPTSLLISWDAPMSSSSVYYYRITYGETG <mark>GLERIEKNFVITDPRL</mark>                                              |
| 60       | PDNPIIFASDSFLQLTEYSREEILGRNCRFLQGPETDRATVRKIRDAIDNQTEVTVQLINYT                                                           |
| 61       | KSGKKFWNLFHLQPMRDQKGDVQYFIGVQLDGTEHVRDAAEREGVMLIKKTAENIDE                                                                |
| 62       | AAGNSPVQEFTVPYSSSTATISGLSPGVDYTITVYAWGEDSAGYMFMYSPISINYRTC*                                                              |
| 63       |                                                                                                                          |
| 64       | HA4-ASLOV2 (1N45 insertion with residues removed from Loop CD):                                                          |
| 65       | GSSVSSVP1KLEVVAA1P1SLLISWDAPMSSSSVYYYKI1YGE1GLEKIEKNFVI1DPKLP                                                            |
| 66<br>67 | DNPIIFASDSFLQLTEY SKEEILGKNCKFLQGPETDKATVKKIKDAIDNQTEV TVQLINYTK                                                         |
| 0/<br>60 | SOKKFWNLFHLQPWKDQKODVQIFIOVQLDOTEHVKDAAEKEOVWLIKKTAENIDEA                                                                |
| 00<br>60 | AOINSPVQEFIVFISSSTATISOLSPOVDITIIVIAWOEDSAGIMFMISFISINIKIC                                                               |
| 70       | $HAA = A \le OV2$ (SP68 insertion with residues removed from L oon EE):                                                  |
| 70       | GSSVSSVPTKI EVVA A TPTSI I ISWDA PMSSSSVVVVRITVGETGGNSPVOFETVPVSSST                                                      |
| 72       | ATISGS GLERIEKNEVITOPRI PONPIJEASOSELOLTEVSREEJI GRNCRELOGPETORATV                                                       |
| 73       | RKIRDAIDNOTEVTVOLINYTKSGKKFWNLEHLOPMRDOKGDVOVFIGVOLDGTEHVR                                                               |
| 74       | DAAEREGVMLIKKTAENIDEAAGPVDYTITVYAWGEDSAGYMFMYSPISINYRTC*                                                                 |
| 75       |                                                                                                                          |
| 76       | HA4-AsLOV2 (PT18 insertion with residues removed from Loop AB):                                                          |
| 77       | GSSVSSVPTKLEVVAAPGLERIEKNFVITDPRLPDNPIIFASDSFLOLTEYSREEILGRNCRF                                                          |
| 78       | LQGPETDRATVRKIRDAIDNOTEVTVQLINYTKSGKKFWNLFHLQPMRDQKGDVQYFIG                                                              |

| 79  | VQLDGTEHVRDAAEREGVMLIKKTAENIDEAA <mark></mark> GTSLLISWDAPMSSSSVYYYRITYGET    |
|-----|-------------------------------------------------------------------------------|
| 80  | GGNSPVQEFTVPYSSSTATISGLSPGVDYTITVYAWGEDSAGYMFMYSPISINYRTC*                    |
| 81  |                                                                               |
| 82  |                                                                               |
| 83  | AsLOV2 domain:                                                                |
| 84  | GLERIEKNFVITDPRLPDNPIIFASDSFLOLTEYSREEILGRNCRFLOGPETDRATVRKIRD                |
| 85  | AIDNOTEVTVOLINYTKSGKKFWNLFHLOPMRDOKGDVOYFIGVOLDGTEHVRDAAER                    |
| 86  | EGVMLIKKTAENIDEAAG                                                            |
| 87  |                                                                               |
| 88  | Monobody HA4:                                                                 |
| 89  | GSSVSSVPTKLEVVAATPTSLLISWDAPMSSSSVYYYRITYGETGGNSPVOEFTVPYSSST                 |
| 90  | ATISGLSPGVDYTITVYAWGEDSAGYMFMYSPISINYRTC*                                     |
| 91  |                                                                               |
| 92  | His <sub>6</sub> -YFP-SH2:                                                    |
| 93  | HHHHHHSSGENLYFOGHMASKVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDA                    |
| 94  | TYGKLTLKFICTTGKLPVPWPTLVTTFGYGLQCFARYPDHMKQHDFFKSAMPEGYVQE                    |
| 95  | RTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMA                   |
| 96  | DKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNE                   |
| 97  | KRDHMVLLEFVTAAGITLGMDELYKSLEKHSWYHGPVSRNAAEYLLSSGINGSFLVRES                   |
| 98  | ESSPGQRSISLRYEGRVYHYRINTASDGKLYVSSESRFNTLAELVHHHSTVADGLITTLH                  |
| 99  | YPAPKRNKPTVYGVSPNY*                                                           |
| 100 |                                                                               |
| 101 | HA4-AsLOV2 (SS30 insertion):                                                  |
| 102 | GSSVSSVPTKLEVVAATPTSLLISWDAPMS <mark>GLERIEKNFVITDPRLPDNPIIFASDSFLQLT</mark>  |
| 103 | <b>EYSREEILGRNCRFLQGPETDRATVRKIRD</b> AIDNQTEVTVQLINYTKSGKKFWNLFHLQP          |
| 104 | MRDQKGDVQYFIGVQLDGTEHVRDAAEREGVMLIKKTAENIDEAAG <mark>SSSVYYYR</mark> ITYG     |
| 105 | ETGGNSPVQEFTVPYSSSTATISGLSPGVDYTITVYAWGEDSAGYMFMYSPISINYRTC*                  |
| 106 |                                                                               |
| 107 | HA4-AsLOV2 (NS47 insertion):                                                  |
| 108 | GSSVSSVPTKLEVVAATPTSLLISWDAPMSSSSVYYYRITYGETGGN <mark>GLERIEKNFVITDP</mark>   |
| 109 | ${\it RLPDNPIIFASDSFLQLTEYSREEILGRNCRFLQGPETDRATVRKIRDAIDNQTEVTVQLIN}$        |
| 110 | YTKSGKKFWNLFHLQPMRDQKGDVQYFIGVQLDGTEHVRDAAEREGVMLIKKTAENI                     |
| 111 | DEAAG<br>SPVQEFTVPYSSSTATISGLSPGVDYTITVYAWGEDSAGYMFMYSPISINYRTC*              |
| 112 |                                                                               |
| 113 | HA4-AsLOV2 (SA84 insertion):                                                  |
| 114 | GSSVSSVPTKLEVVAATPTSLLISWDAPMSSSSVYYYRITYGETGGNSPVQEFTVPYSSST                 |
| 115 | ATISGLSPGVDYTITVYAWGEDS <mark>GLERIEKNFVITDPRLPDNPIIFASDSFLQLTEYSREEIL</mark> |
| 116 | GRNCRFLQGPETDRATVRKIRDAIDNQTEVTVQLINYTKSGKKFWNLFHLQPMRDQKG                    |
| 117 | DVQYFIGVQLDGTEHVRDAAEREGVMLIKKTAENIDEAAGAGYMFMYSPISINYRTC*                    |
| 118 |                                                                               |
| 119 | YFP-SH2:                                                                      |
| 120 | MASKVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPV                   |
| 121 | PWPTLVTTFGYGLQCFARYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVK                    |
| 122 | FEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIED                  |
| 123 | GSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITLG                   |

124 MDELYKSLEKHSWYHGPVSRNAAEYLLSSGINGSFLVRESESSPGQRSISLRYEGRVYH

| 125<br>126<br>127 | $\label{eq:constraint} YRINTASDGKLYVSSESRFNTLAELVHHHSTVADGLITTLHYPAPKRNKPTVYGVSPNY*$ |
|-------------------|--------------------------------------------------------------------------------------|
| 127               | $Hig_{\ell-}H\Lambda\Lambda$                                                         |
| 120               | HIMHINGSCENI VECCHASCSSVSSVDTVI EVVAATDTSI I ISWDADMSSSSVVVVDITV                     |
| 129               | CETCCNSDUCEETUDVSSSTATISCI SDCUDVTITUVAWCEDSACVMEMVSDISINVDTC                        |
| 130               | *                                                                                    |
| 131               |                                                                                      |
| 132               |                                                                                      |
| 133               | HA4-ASLOV2 (1644 insertion):                                                         |
| 134               | GSSVSSVPIKLEVVAAIPISLLISWDAPMSSSSVYYYKIIIGEIGLEKIEKNFVIIDPKLP                        |
| 135               | DNPIIFASDSFLQLTEY SKEEILGKNCKFLQGPETDKATVKKIKDAIDNQTEVTVQLINY IK                     |
| 136               | SGKKFWNLFHLQPMKDQKGDVQYFIGVQLDGTEHVKDAAEKEGVMLIKKTAENIDEA                            |
| 13/               | AGGGNSPVQEFIVPYSSSIAIISGLSPGVDYIIIVYAWGEDSAGYMFMYSPISINYRIC*                         |
| 138               |                                                                                      |
| 139               | HA4-AsLOV2 (SG65 insertion):                                                         |
| 140               | GSSVSSVPIKLEVVAAIPISLLISWDAPMSSSSVYYYRIIYGEIGGNSPVQEFIVPYSSSI                        |
| 141               | ATISGLERIEKNFVITDPRLPDNPIIFASDSFLQLTEYSREEILGRNCRFLQGPETDRATVRK                      |
| 142               | IRDAIDNQTEVTVQLINYTKSGKKFWNLFHLQPMRDQKGDVQYFIGVQLDGTEHVRDA                           |
| 143               | <mark>AEREGVMLIKKTAENIDEAAG</mark> GLSPGVDYTITVYAWGEDSAGYMFMYSPISINYRTC*             |
| 144               |                                                                                      |
| 145               | HA4-AsLOV2 (DA26 insertion):                                                         |
| 146               | GSSVSSVPTKLEVVAATPTSLLISWD <mark>GLERIEKNFVITDPRLPDNPIIFASDSFLQLTEYSRE</mark>        |
| 147               | EILGRNCRFLQGPETDRATVRKIRDAIDNQTEVTVQLINYTKSGKKFWNLFHLQPMRDQ                          |
| 148               | KGDVQYFIGVQLDGTEHVRDAAEREGVMLIKKTAENIDEAAGAPMSSSSVYYYRITYGE                          |
| 149               | TGGNSPVQEFTVPYSSSTATISGLSPGVDYTITVYAWGEDSAGYMFMYSPISINYRTC*                          |
| 150               |                                                                                      |
| 151               | HA4-AsLOV2 (ED82 insertion):                                                         |
| 152               | GSSVSSVPTKLEVVAATPTSLLISWDAPMSSSSVYYYRITYGETGGNSPVQEFTVPYSSST                        |
| 153               | ATISGLSPGVDYTITVYAWGEGLERIEKNFVITDPRLPDNPIIFASDSFLQLTEYSREEILGR                      |
| 154               | NCRFLQGPETDRATVRKIRDAIDNQTEVTVQLINYTKSGKKFWNLFHLQPMRDQKGDV                           |
| 155               | QYFIGVQLDGTEHVRDAAEREGVMLIKKTAENIDEAAGDSAGYMFMYSPISINYRTC*                           |
| 156               |                                                                                      |
| 157               | HA4-AsLOV2 (DS83 insertion):                                                         |
| 158               | GSSVSSVPTKLEVVAATPTSLLISWDAPMSSSSVYYYRITYGETGGNSPVQEFTVPYSSST                        |
| 159               | ATISGLSPGVDYTITVYAWGEDGLERIEKNFVITDPRLPDNPIIFASDSFLQLTEYSREEILG                      |
| 160               | RNCRFLQGPETDRATVRKIRDAIDNQTEVTVQLINYTKSGKKFWNLFHLQPMRDQKGD                           |
| 161               | VQYFIGVQLDGTEHVRDAAEREGVMLIKKTAENIDEAAG <mark>SAGYMFMYSPISINYRTC*</mark>             |
| 162               |                                                                                      |
| 163               | HA4-AsLOV2 (GG45 insertion):                                                         |
| 164               | GSSVSSVPTKLEVVAATPTSLLISWDAPMSSSSVYYYRITYGET <mark>GGLERIEKNFVITDPRL</mark>          |
| 165               | PDNPIIFASDSFLQLTEYSREEILGRNCRFLQGPETDRATVRKIRDAIDNQTEVTVQLINYT                       |
| 166               | KSGKKFWNLFHLQPMRDQKGDVQYFIGVQLDGTEHVRDAAEREGVMLIKKTAENIDE                            |
| 167               | AAGGNSPVQEFTVPYSSSTATISGLSPGVDYTITVYAWGEDSAGYMFMYSPISINYRTC*                         |
| 168               |                                                                                      |
| 169               | HA4-AsLOV2 (PT18 insertion):                                                         |
| 170               | GSSVSSVPTKLEVVAATP <mark>GLERIEKNFVITDPRLPDNPIIFASDSFLQLTEYSREEILGRNCR</mark>        |

| 1 | FLQGPETDRATVRKIRDAIDNQTEVTVQLINYTKSGKKFWNLFHLQPMRDQKGDVQYFI                                                                                   |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | GVQLDGTEHVRDAAEREGVMLIKKTAENIDEAAGTSLLISWDAPMSSSSVYYYRITYGE                                                                                   |
| 3 | TGGNSPVQEFTVPYSSSTATISGLSPGVDYTITVYAWGEDSAGYMFMYSPISINYRTC*                                                                                   |
| 4 |                                                                                                                                               |
| 5 | HA4-AsLOV2 (SP68 insertion):                                                                                                                  |
| 5 | GSSVSSVPTKLEVVAATPTŚLLISWDAPMSSSSVYYYRITYGETGGNSPVQEFTVPYSSST                                                                                 |
|   | ATISGLSGLERIEKNFVITDPRLPDNPIIFASDSFLQLTEYSREEILGRNCRFLQGPETDRAT                                                                               |
|   | VRKIRDAIDNOTEVTVOLINYTKSGKKFWNLFHLOPMRDOKGDVOYFIGVOLDGTEHV                                                                                    |
|   | RDAAEREGVMLIKKTAENIDEAAGPGVDYTITVYAWGEDSAGYMFMYSPISINYRTC*                                                                                    |
|   |                                                                                                                                               |
|   | AsLOV2-HA4 (N-terminus):                                                                                                                      |
|   | GLERIEKNFVITDPRLPDNPIIFASDSFLQLTEYSREEILGRNCRFLQGPETDRATVRKIRD                                                                                |
|   | AIDNQTEVTVQLINYTKSGKKFWNLFHLQPMRDQKGDVQYFIGVQLDGTEHVRDAAER                                                                                    |
|   | EGVMLIKKTAENIDEAAGGSSVSSVPTKLEVVAATPTSLLISWDAPMSSSSVYYYRITYG                                                                                  |
|   | ETGGNSPVQEFTVPYSSSTATISGLSPGVDYTITVYAWGEDSAGYMFMYSPISINYRTC*                                                                                  |
|   |                                                                                                                                               |
|   | AsLOV2-HA4 (C-terminus):                                                                                                                      |
|   | GSSVSSVPTKLEVVAATPTSLLISWDAPMSSSSVYYYRITYGETGGNSPVOEFTVPYSSST                                                                                 |
|   | ATISGLSPGVDYTITVYAWGEDSAGYMFMYSPISINYRTCGLERIEKNFVITDPRLPDNPII                                                                                |
|   | FASDSFLOLTEYSREEILGRNCRFLOGPETDRATVRKIRDAIDNOTEVTVOLINYTKSGKK                                                                                 |
|   | FWNLFHLOPMRDOKGDVOYFIGVOLDGTEHVRDAAEREGVMLIKKTAENIDEAAG*                                                                                      |
|   |                                                                                                                                               |
|   | HA4-AsLOV2 (SS59 insertion):                                                                                                                  |
|   | GSSVSSVPTKLEVVAATPTSLLISWDAPMSSSSVYYYRITYGETGGNSPVOEFTVPYSS                                                                                   |
|   | LERIEKNFVITDPRLPDNPIIFASDSFLOLTEYSREEILGRNCRFLOGPETDRATVRKIRDAI                                                                               |
|   | DNOTEVTVOLINYTKSGKKFWNLFHLOPMRDOKGDVOYFIGVOLDGTEHVRDAAERE                                                                                     |
|   | GVMLIKKTAENIDEAAGSTATISGLSPGVDYTITVYAWGEDSAGYMFMYSPISINYRTC*                                                                                  |
|   |                                                                                                                                               |
|   | HA4-AsLOV2 (MY90 insertion).                                                                                                                  |
|   | GSSVSSVPTKLEVVAATPTSLLISWDAPMSSSSVYYYRITYGETGGNSPVOEFTVPYSSST                                                                                 |
|   | ATISGLSPGVDYTITVYAWGEDSAGYMFMGLERIEKNFVITDPRLPDNPIIFASDSFLOLT                                                                                 |
|   | EYSREEILGRNCRFLOGPETDRATVRKIRDAIDNOTEVTVOLINYTKSGKKFWNLFHLOP                                                                                  |
|   | MRDOKGDVOYFIGVOLDGTEHVRDAAEREGVMLIKKTAENIDEAAG <mark>YSPISINYRTC*</mark>                                                                      |
|   |                                                                                                                                               |
|   | Hise-HA4-AsLOV2 (SS58 insertion)                                                                                                              |
|   | HHHHHHSSGENLYFOGHASGSSVSSVPTKLEVVAATPTSLLISWDAPMSSSSVYYYRITY                                                                                  |
|   | GETGGNSPVOEFTVPYS <mark>GLERIEKNEVITDPRLPDNPIIFASDSFLOLTEYSREEILGRNCRE</mark>                                                                 |
|   | LOGPETDRATVRKIRDAIDNOTEVTVOLINYTKSGKKEWNLEHLOPMRDOKGDVOVEIG                                                                                   |
|   | VOLDGTEHVRDAAEREGVMLIKKTAENIDEAAGSSTATISGI SPGVDVTITVVAWGEDS                                                                                  |
|   | AGYMEMYSPISINYRTC*                                                                                                                            |
|   |                                                                                                                                               |
|   | HA4-AsIOV2 (VS57 insertion):                                                                                                                  |
|   | GSSVSSVPTKI EVVA A TPTSI I ISWDA PMSSSSVVVVPITVCETCCNSDVOEETVDVCI E                                                                           |
|   | DISTORY I TALLY VAATI ISLLIS WDATWISSSSY I I TATI I UETUUNSFY VEFTY I UL<br>PIEKNEVITOPPI DONDHEASOSELOL TEVSDEEH GONGDELOGDETOD ATVOKIDDADON |
|   | NIENNTYH DI NEI DINHII ASDSTEQUIE I SNEDILONNUKTEQUIE I DKATYKNIKDAIDN<br>OTEVTVOLINIVTZSCZZZWNI EULODMDDOZCDVOVELOVOLDCTEUVDDA AEDECV        |
|   | VILVIVUUVUTIKSUKKEWNLITILVPWKUVUUVVITIUVUUULEHVKUAAEKEGV                                                                                      |

216 MLIKKTAENIDEAAGSSSTATISGLSPGVDYTITVYAWGEDSAGYMFMYSPISINYRTC\*

- 218 His<sub>6</sub>-HA4-AsLOV2 (SS58 insertion, C450V mutant): HHHHHHSSGENLYFQGHASGSSVSSVPTKLEVVAATPTSLLISWDAPMSSSSVYYYRITY 219 220 GETGGNSPVQEFTVPYSGLERIEKNFVITDPRLPDNPIIFASDSFLQLTEYSREEILGRNVR FLOGPETDRATVRKIRDAIDNOTEVTVOLINYTKSGKKFWNLFHLOPMRDOKGDVOYFI 221 GVQLDGTEHVRDAAEREGVMLIKKTAENIDEAAGSSTATISGLSPGVDYTITVYAWGED 222 223 SAGYMFMYSPISINYRTC\* 224 225 SH2-PDC1: 226 MGSLEKHSWYHGPVSRNAAEYLLSSGINGSFLVRESESSPGQRSISLRYEGRVYHYRINT 227 ASDGKLYVSSESRFNTLAELVHHHSTVADGLITTLHYPAPKRNKPTVYGVSPNYASSEIT 228 LGKYLFERLKQVNVNTVFGLPGDFNLSLLDKIYEVEGMRWAGNANELNAAYAADGYA 229 RIKGMSCIITTFGVGELSALNGIAGSYAEHVGVLHVVGVPSISAOAKOLLLHHTLGNGDF 230 TVFHRMSANISETTAMITDIATAPAEIDRCIRTTYVTQRPVYLGLPANLVDLNVPAKLLQ 231 TPIDMSLKPNDAESEKEVIDTILALVKDAKNPVILADACCSRHDVKAETKKLIDLTQFPA 232 FVTPMGKGSIDEQHPRYGGVYVGTLSKPEVKEAVESADLILSVGALLSDFNTGSFSYSY 233 KTKNIVEFHSDHMKIRNATFPGVQMKFVLQKLLTTIADAAKGYKPVAVPARTPANAAV 234 PASTPLKOEWMWNOLGNFLOEGDVVIAETGTSAFGINOTTFPNNTYGISOVLWGSIGFT 235 TGATLGAAFAAEEIDPKKRVILFIGDGSLQLTVQEISTMIRWGLKPYLFVLNNDGYTIEKL 236 IHGPKAQYNEIQGWDHLSLLPTFGAKDYETHRVATTGEWDKLTQDKSFNDNSKIRMIEI 237 MLPVFDAPQNLVEQAKLTAATNAKQ\* 238 239 His<sub>6</sub>-SUMO-HA4-AsLOV2 (SS58 insertion, V416I, G528A, N538E mutant): HHHHHHGSGSGSDQEAKPSTEDLGDKKEGEYIKLKVIGQDSSEIHFKVKMTTHLKKLKE 240 241 SYCQRQGVPMNSLRFLFEGQRIADNHTPKELGMEEEDVIEVYQEQTGGHMASKGSSVSS 242 VPTKLEVVAATPTSLLISWDAPMSSSSVYYYRITYGETGGNSPVOEFTVPYS<mark>GLERIEKN</mark> FIITDPRLPDNPIIFASDSFLOLTEYSREEILGRNCRFLOGPETDRATVRKIRDAIDNOTEVT 243 244 VOLINYTKSGKKFWNLFHLOPMRDOKGDVOYFIGVOLDGTEHVRDAAEREAVMLIKK 245 TAEEIDEAAGSSTATISGLSPGVDYTITVYAWGEDSAGYMFMYSPISINYRTC\* 246 247 His<sub>6</sub>-HA4-AsLOV2 (SS58 insertion, V416I mutant): HHHHHHSSGENLYFQGHASGSSVSSVPTKLEVVAATPTSLLISWDAPMSSSSVYYYRITY 248 GETGGNSPVQEFTVPYSGLERIEKNFIITDPRLPDNPIIFASDSFLQLTEYSREEILGRNCRF 249 LQGPETDRATVRKIRDAIDNQTEVTVQLINYTKSGKKFWNLFHLQPMRDQKGDVQYFIG 250 251 VQLDGTEHVRDAAEREGVMLIKKTAENIDEAAGSSTATISGLSPGVDYTITVYAWGEDS 252 AGYMFMYSPISINYRTC\* 253 254 HA4-irFP 255 MGSSVSSVPTKLEVVAATPTSLLISWDAPMSSSSVYYYRITYGETGGNSPVQEFTVPYSS 256 STATISGLSPGVDYTITVYAWGEDSAGYMFMYSPISINYRTCGGGAEGSVARQPDLLTC 257 DDEPIHIPGAIOPHGLLLALAADMTIVAGSDNLPELTGLAIGALIGRSAADVFDSETHNRL 258 TIALAEPGAAVGAPITVGFTMRKDAGFIGSWHRHDQLIFLELEPPQRDVAEPQAFFRRTN 259 SAIRRLQAAETLESACAAAAQEVRKITGFDRVMIYRFASDFSGEVIAEDRCAEVESKLGL 260 HYPASTVPAQARRLYTINPVRIIPDINYRPVPVTPDLNPVTGRPIDLSFAILRSVSPVHLEF 261 MRNIGMHGTMSISILRGERLWGLIVCHHRTPYYVDLDGRQACELVAQVLAWQIGVMEE
- 262 AAATPTCNMRD\*

263 264 265 266 HA4-AsLOV2-irFP (SS58 insertion) MGSSVSSVPTKLEVVAATPTSLLISWDAPMSSSSVYYYRITYGETGGNSPVOEFTVPYS<mark>G</mark> 267 268 LERIEKNFVITDPRLPDNPIIFASDSFLQLTEYSREEILGRNCRFLQGPETDRATVRKIRDAI 269 DNQTEVTVQLINYTKSGKKFWNLFHLQPMRDQKGDVQYFIGVQLDGTEHVRDAAERE <u>GVMLIKKTAENIDEAA</u>GSSTATISGLSPGVDYTITVYAWGEDSAGYMFMYSPISINYRTC 270 271 GGGAEGSVARQPDLLTCDDEPIHIPGAIQPHGLLLALAADMTIVAGSDNLPELTGLAIGA 272 LIGRSAADVFDSETHNRLTIALAEPGAAVGAPITVGFTMRKDAGFIGSWHRHDQLIFLEL 273 **EPPQRDVAEPQAFFRRTNSAIRRLQAAETLESACAAAAQEVRKITGFDRVMIYRFASDFS** 274 GEVIAEDRCAEVESKLGLHYPASTVPAQARRLYTINPVRIIPDINYRPVPVTPDLNPVTGR 275 PIDLSFAILRSVSPVHLEFMRNIGMHGTMSISILRGERLWGLIVCHHRTPYYVDLDGROA 276 CELVAQVLAWQIGVMEEAAATPTCNMRD\* 277 278 SH2-mCherry-CAAX 279 MSLEKHSWYHGPVSRNAAEYLLSSGINGSFLVRESESSPGQRSISLRYEGRVYHYRINTA 280 SDGKLYVSSESRFNTLAELVHHHSTVADGLITTLHYPAPKRNKPTVYGVSPNYVSKGEE 281 DNMAIIKEFMRFKVHMEGSVNGHEFEIEGEGEGRPYEGTQTAKLKVTKGGPLPFAWDIL 282 SPQFMYGSKAYVKHPADIPDYLKLSFPEGFKWERVMNFEDGGVVTVTQDSSLQDGEFI

- 283 YKVKLRGTNFPSDGPVMQKKTMGWEASSERMYPEDGALKGEIKQRLKLKDGGHYDAE
  284 VKTTYKAKKPVQLPGAYNVNIKLDITSHNEDYTIVEQYERAEGRHSTGGMDELYKGSG
  285 SGSKKKKKKSKTKCVIM
  286
- 287

### 288 Supplementary Note 2

289 We performed a search for monobodies in the Protein Data Bank (PDB), using "monobody" as

290 key word. Our search resulted in a total of 51 different structures of monobodies, each one in

291 complex with their cognate target. From this total, only 32 were monobodies with unique protein

- sequences, which are included in Supplementary Table 3. A close inspection of the mode of
- binding of each unique monobody in complex with its target revealed that 23 (72%) of them bind
- their cognate targets in a side-binding mode, including monobody HA4 (see Supplementary
- Figure 6). The side-binding mode involves the Loop FG, one or more of the  $\beta$ -strands from  $\beta$ S2
- and, occasionally, the CD loop.
- 297
- 298
- 299
- 300
- 301

## **302** Supplementary Tables

303

### 304 Supplementary Table 1. List of HA4-AsLOV2 chimeras showing insertion positions.

| Chimera Name | Positions in HA4 where AsLOV2 was inserted               |
|--------------|----------------------------------------------------------|
| SS30         | Inserted between S30 and S31                             |
| NS47         | Inserted between N47 and S48                             |
| SA84         | Inserted between S84 and A85                             |
| TG44         | Inserted between T44 and G45                             |
| SS58         | Inserted between S58 and S59                             |
| SG65         | Inserted between S65 and G66                             |
| DA26         | Inserted between D26 and A27                             |
| MS29         | Inserted between M29 and S30                             |
| MS29-3       | Inserted between M29 and S33 residues 30-32 were removed |
| ED82         | Inserted between E82 and D83                             |
| DS83         | Inserted between D83 and S84                             |
| GG45         | Inserted between G45 and G46                             |
| GN45         | Inserted between G45 and N48 residues 46-47 were removed |
| TN44         | Inserted between T44 and N48 residues 45-47 were removed |
| PT18         | Inserted between P18 and T19                             |
| SP68         | Inserted between S68 and P69                             |
| SP68-1       | Inserted between S68 and P69 residue 67 was removed      |
| N-terminus   | Inserted at N-terminus                                   |
| C-terminus   | Inserted at C-terminus                                   |
| SS59         | Inserted between S59 and S60                             |
| PT18         | Inserted between P18 and T19 residue 17 was removed      |
| MY90         | Inserted between M90 and Y91                             |
| YS57         | Inserted between Y57 and S58                             |

305

• • •

306

### 307 Supplementary Table 2. Rate and dissociation constants from all individual BLI

308 experiments.

| Variant                            | State measured    | Illumination | kon (μM <sup>-1</sup> s <sup>-1</sup> ) | $k_{\rm off}(\rm s^{-1})$ | $K_d(\mu M)$ |
|------------------------------------|-------------------|--------------|-----------------------------------------|---------------------------|--------------|
| Monobody HA4                       | -                 | ambient      | 0.0631                                  | 0.0145                    | 0.23         |
| OptoMB 1                           | Lit conformation  | ambient*     | < 0.001                                 | 0.34                      | >100         |
| OptoMB 2                           | Lit conformation  | 450 nm light | < 0.001                                 | 0.21                      | >100         |
| OptoMB <sub>C450V</sub> 1          | Dark conformation | ambient**    | 0.11                                    | 0.006                     | 0.06         |
| OptoMB <sub>C450V</sub> 2          | Dark conformation | ambient**    | 0.056                                   | 0.013                     | 0.23         |
| OptoMB <sub>C450V</sub> 3          | Dark conformation | 450 nm light | 0.048                                   | 0.013                     | 0.27         |
| OptoMB <sub>V416L</sub> 1          | Lit conformation  | ambient*     | 0.0029                                  | 0.25                      | 87           |
| OptoMB <sub>V416L</sub> 2          | Lit conformation  | 450 nm light | 0.0033                                  | 0.20                      | 60           |
| OptoMB <sub>V416L</sub> 3          | Lit conformation  | 450 nm light | 0.0058                                  | 0.24                      | 42           |
| <b>#</b> OptoMBv416I_G528A_N538E 1 | Lit conformation  | ambient*     | < 0.001                                 | 0.10                      | >100         |
| #OptoMBv416I_G528A_N538E 2         | Lit conformation  | ambient*     | < 0.001                                 | 0.13                      | >100         |

309 \*Due to the sensitivity of these constructs, ambient light in the laboratory as well as internal light from the digital

310 panels of the Octet (BLI instrument) was sufficient to trigger the lit conformation.\*\*This is a light-insensitive mutant

and neither ambient nor LED light affected its basal dark conformation.

312 #SUMO tagged

# 313 Supplementary Table 3. Structurally characterized monobodies and their target binding

# 314 mode (source: PDB).

| PDB  | Monobody | Target                                   | Binding          | Library*         | Ref.                                              |
|------|----------|------------------------------------------|------------------|------------------|---------------------------------------------------|
| code |          |                                          | Mode             |                  |                                                   |
| 20CF | E2#23    | Human estrogen receptor                  | Side<br>Binding  | FG-Loop<br>(FG7) | Koide <i>et al.</i> , 2002 <sup>1</sup>           |
| 3K2M | HA4      | Abl1 SH2 domain                          | Side<br>Binding  | Loops-only       | Wojcik <i>et al.</i> , 2010 <sup>2</sup>          |
| 3QHT | ySMB-1   | Yeast SUMO                               | Side<br>Binding  | Loops-only       | Gilbreth <i>et al.</i> , 2011 <sup>3</sup>        |
| 3RZW | ySMB-9   | Human SUMO                               | Loops<br>Binding | Loops-only       | Koide <i>et al.</i> , 2012 <sup>4</sup>           |
| 3T04 | 7c12     | Abl1 SH2 domain                          | Side<br>Binding  | Loops-only       | Grebien <i>et al.</i> , 2011 <sup>5</sup>         |
| 3UYO | SH13     | Abl1 SH2 domain                          | Side<br>Binding  | Side and<br>Loop | Koide <i>et al.</i> , 2012 <sup>4</sup>           |
| 4HUK | MbMATE1  | MATE multidrug<br>transporter            | Side<br>Binding  | Loops-only       | Lu <i>et al.</i> , 2013 <sup>6</sup>              |
| 4JE4 | NSa1     | NHP2 N-SH2 domain                        | Side<br>Binding  | Side and<br>Loop | Sha <i>et al.</i> , 2013 <sup>7</sup>             |
| 4JEG | CS1      | NHP2 C-SH2 domain                        | Side<br>Binding  | Side and<br>Loop | Sha <i>et al.</i> , 2013 <sup>7</sup>             |
| 5A40 | Bpe-S7   | Fluoride Ion channel                     | Side<br>Binding  | Side and<br>Loop | Stockbridge <i>et al.</i> , $2014^8$ and $2015^9$ |
| 5A43 | Bpe-L2   | Fluoride Ion channel                     | Loops<br>Binding | Loops-only       | Stockbridge <i>et al.</i> , $2014^8$ and $2015^9$ |
| 5DC0 | GG3      | Abl1 SH2 domain                          | Side<br>Binding  | Side and<br>Loop | Wojcik <i>et al.</i> , 2016 <sup>10</sup>         |
| 5DC4 | AS25     | Abl1 SH2 domain                          | Side<br>Binding  | Side and<br>Loop | Wojcik <i>et al.</i> , 2016 <sup>10</sup>         |
| 5E95 | NS1      | H-RAS                                    | Side<br>Binding  | Side and<br>Loop | Spencer-Smith et al., 2017 <sup>11</sup>          |
| 5ECJ | S4       | Prdm14                                   | Side<br>Binding  | Not<br>specified | Nady <i>et al.</i> , 2015 <sup>12</sup>           |
| 5G15 | Mb1      | Aurora A                                 | Loops<br>Binding | Not<br>specified | Zorba <i>et al.</i> , 2019 <sup>13</sup>          |
| 5KBN | S9       | Fluoride channel F80I<br>Mutant          | Loops<br>Binding | Side and<br>Loop | Last <i>et al.</i> , 2016 <sup>14</sup>           |
| 5KVM | α5       | GPR56 ERC                                | Side<br>Binding  | Side and<br>Loop | Salzman <i>et al.</i> , 2016 <sup>15</sup>        |
| 5MTJ | Yes_1    | Yes1-SH2                                 | Side<br>Binding  | Side and<br>Loop | Kükenshöner et al., 2017 <sup>16</sup>            |
| 5MTM | Lck_3    | Lck-SH2                                  | Side<br>Binding  | Side and<br>Loop | Kükenshöner et al., 2017 <sup>16</sup>            |
| 5MTN | Lck_3    | Lck-SH2                                  | Side<br>Binding  | Side and<br>Loop | Kükenshöner et al., 2017 <sup>16</sup>            |
| 5N7E | Bcr-DH_4 | Dbl homology domain<br>of Bcr-Abl        | Side<br>Binding  | Side and<br>Loop | Reckel <i>et al.</i> , 2017 <sup>17</sup>         |
| 5NKQ | Ec2-S9   | Fluoride Ion channel                     | Side<br>Binding  | Side and<br>Loop | Stockbridge et al., 20159                         |
| 50C7 | Bcr-PH_4 | Pleckstrin-homology<br>domain of Bcr-Abl | Side<br>Binding  | Not<br>specified | Reckel <i>et al.</i> , 2017 <sup>17</sup>         |

| 5V7P | MbRas1 | Ras Methyltransferase | Loops   | Not        | Diver <i>et al.</i> , 2018 <sup>18</sup>    |
|------|--------|-----------------------|---------|------------|---------------------------------------------|
|      |        | ICMT                  | Binding | specified  |                                             |
| 6APX | YSX1   | Human phosphatase 1   | Loops   | Loops-only | Gumpena <i>et al.</i> , 2017 <sup>19</sup>  |
|      |        | catalytic domain      | Binding |            |                                             |
| 6BQO | Bpe-S8 | Fluoride Ion channel  | Side    | Side and   | Stockbridge et al., 20148 and               |
|      |        |                       | Binding | Loop       | MclIwain <i>et al.</i> , 2017 <sup>20</sup> |
| 6BX4 | S9m    | Fluoride Ion channel  | Loops   | Side and   | Turman <i>et al.</i> , 2018 <sup>21</sup>   |
|      |        |                       | Binding | Loop       |                                             |
| 6BX5 | S12    | Fluoride Ion channel  | Loops   | Side and   | Turman <i>et al.</i> , 2018 <sup>21</sup>   |
|      |        |                       | Binding | Loop       |                                             |
| 6BYN | S4     | WDR5                  | Side    | Side and   | Gupta et al., 2018 <sup>22</sup>            |
|      |        |                       | Binding | Loop       | -                                           |
| 6C83 | Mb2    | Aurora A              | Loops   | Not        | Zorba <i>et al.</i> , 2019 <sup>13</sup>    |
|      |        |                       | Binding | specified  |                                             |
| 6D0J | X1     | CLC-Fluoride proton   | Side    | Not        | Last <i>et al.</i> , 2018 <sup>23</sup>     |
|      |        | antiporter            | Binding | specified  |                                             |

315 \*Loops-only library diversified Loops BC, DE and FG; the Side and Loop libraries have at least two versions reported,

one includes diversification of FG loop and several positions in  $\beta$ S2; another library diversifies the Loop CD in addition to FG and the positions in  $\beta$ S2; the FG-Loop library diversifies only the Loop FG.

| Plasmid | Tag              | Protein                                                  | Marker     | Vector type |
|---------|------------------|----------------------------------------------------------|------------|-------------|
| EZ-L663 | None             | HA4                                                      | Kanamycin  | pCri-7b     |
| EZ-L664 | His <sub>6</sub> | YFP-SH2                                                  | Kanamycin  | pCri-8b     |
| EZ-L703 | None             | YFP-SH2                                                  | Kanamycin  | pCri-7b     |
| EZ-L704 | His <sub>6</sub> | HA4                                                      | Kanamycin  | pCri-8b     |
| EZ-L706 | None             | HA4-AsLOV2 (SS58 insertion)                              | Kanamycin  | pCri-7b     |
| EZ-L736 | None             | HA4-AsLOV2 (MS29 insertion, residues 30-32 were removed) | Kanamycin  | pCri-7b     |
| EZ-L747 | None             | HA4-AsLOV2 (SS59 insertion)                              | Kanamycin  | pCri-7b     |
| EZ-L765 | His <sub>6</sub> | HA4-AsLOV2 (SS58 insertion)                              | Kanamycin  | pCri-8b     |
| EZ-L830 | His6-SUMO        | HA4-AsLOV2 (SS58 insertion, V416L mutant)                | Kanamycin  | pCri-11b    |
| EZ-L884 | His <sub>6</sub> | HA4-AsLOV2 (SS58 insertion,<br>C450V mutant)             | Kanamycin  | pCri-8b     |
| EZ-L886 | None             | SH2-PDC1                                                 | Kanamycin  | pCri-7b     |
| EZ-L889 | His6-SUMO        | HA4-AsLOV2 (SS58 insertion, V416I, G528A, N538E mutant)  | Kanamycin  | pCri-11b    |
| EZ-L892 | His <sub>6</sub> | HA4-AsLOV2 (SS58 insertion,<br>V416I mutant)             | Kanamycin  | pCri-8b     |
| AG-pHR1 | None             | HA4-iRFP                                                 | Ampicillin | pHR         |
| AG-pHR2 | None             | HA4-AsLOV2-iRFP (SS58 insertion)                         | Ampicillin | pHR         |
| AG-pHR3 | CAAX             | SH2-mCherry-CAAX                                         | Ampicillin | pHR         |

# 348 Supplementary Table 4. Constructs used in this study.

### 358 Supplementary Figures



360 Supplementary Fig. 1: Representative SDS-PAGE gels of pull-down screens of HA4-

361 AsLOV2 chimeras. a, Complete SDS-PAGE gel of the results shown in Fig. 1d, including

chimeras with the AsLOV2 domain inserted in positions SS58, SS59 and MS29 of HA4 (with

- residues S30 to S32 of Loop BC deleted). **b-d**, A representative sample of SDS-PAGE gels of
- 364 other chimeras with the AsLOV2 domain inserted in different positions that either do not bind or
- 365 bind poorly to SH2 (TG44, NS47, SA84, YS57 and PT18) including at two positions in Loop EF
- 366 (SG65, SP68); or bind well to SH2, but show no difference in binding between light conditions
- 367 (SS30). All pull-downs were repeated at least twice observing similar results.

368



| 370 | Supplementary Fig. 2: In vitro characterization of OptoMB binding. a, Time course of                                                          |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 371 | fluorescence microscopy images of YFP-SH2 binding to agarose beads conjugated with                                                            |
| 372 | OptoMB <sub>V416L</sub> (left panel) or HA4 as control (right panel). Starting with beads incubated in the                                    |
| 373 | dark, time course begins upon blue light stimulation ( $t = 0$ ), followed by a sequence of images                                            |
| 374 | taken every 2 min for a total of 8 min. Scale bar (white) represents 100 µm. b, BLI                                                           |
| 375 | measurements of binding (left) and unbinding (right) of YFP-SH2 to immobilized monobody                                                       |
| 376 | HA4, and several replicates for OptoMB, OptoMB <sub>C450V</sub> , OptoMB <sub>V416L</sub> and                                                 |
| 377 | OptoMB <sub>V416I_G528A_N538E</sub> in different light conditions (see Supplementary Table 2). $c$ ,                                          |
| 378 | Comparison of binding $(k_{on})$ , unbinding $(k_{off})$ , and dissociation $(K_d)$ constants calculated from                                 |
| 379 | BLI measurements for different OptoMB variants, corresponding to dark (gray or black) or lit                                                  |
| 380 | (blue) states, including replicates. The red asterisks highlight measurements of $k_{on}$ below the                                           |
| 381 | limit of detection of 0.001 $\mu$ M <sup>-1</sup> s <sup>-1</sup> . To calculate $K_d$ values from measurements below this limit,             |
| 382 | we used $k_{on} = 0.001 \ \mu M^{-1} s^{-1}$ . OptoMB <sub>Triple</sub> refers to the OptoMB <sub>V416I_G528A_N538E</sub> variant. <b>d</b> , |
| 383 | Comparison of the binding and unbinding rate constants, $k_{on}$ and $k_{off}$ , for replicate measurements                                   |
| 384 | of the different OptoMB variants in their respective dark (black points) or lit (blue points) states.                                         |
| 385 | Measurements of $k_{on}$ below the limit of detection (red dashed line) where assigned the limit $k_{on} =$                                   |
| 386 | 0.001 $\mu$ M <sup>-1</sup> s <sup>-1</sup> (red points). Source data are provided as a Source Data file.                                     |
| 387 |                                                                                                                                               |
| 388 |                                                                                                                                               |
| 389 |                                                                                                                                               |
| 390 |                                                                                                                                               |
| 391 |                                                                                                                                               |
| 392 |                                                                                                                                               |
| 393 |                                                                                                                                               |
| 394 |                                                                                                                                               |
| 395 |                                                                                                                                               |
| 396 |                                                                                                                                               |
| 397 |                                                                                                                                               |
| 398 |                                                                                                                                               |
| 399 |                                                                                                                                               |



401 Supplementary Fig. 3: In vitro characterization of OptoMB binding in solution by size 402 exclusion chromatography. a, Experimental setup for dark or lit size exclusion chromatography 403 experiments using a Superdex 200 16/300 column (GE®). For experiments in the dark (left), the 404 column was wrapped with thick aluminum foil, and the chromatography refrigerator covered 405 with a black blanket to avoid light contamination (not shown). For experiments in the light 406 (right), the column was wrapped with blue LEDs. b, Size exclusion chromatography control 407 experiments for SUMO-tagged OptoMB<sub>V416I</sub> G528A N538E (OptoMB<sub>Triple</sub>) in light (blue) and dark 408 (red). c, Size exclusion chromatography control experiments to show identical elution profiles 409 for the HA4-YFP-SH2 complex in dark (black) or light (blue) conditions. Purified YFP-SH2 410 (yellow) and HA4 monobody (red) are also shown as controls. Source data are provided as a 411 Source Data file.



412

413 Supplementary Fig. 4: Light-Controlled Affinity Chromatography (LCAC) to purify SH2tagged proteins using OptoMB immobilized on Co<sup>2+</sup> agarose beads. a, Schematic diagram of 414 LCAC procedure using a column packed with OptoMB-coated agarose beads. After flowing 415 416 through crude extract and washing in the dark, elution is carried out by applying blue light to the 417 surface of the column. b, SDS-PAGE gel of YFP-SH2 purified using a column packed with 418 OptoMB agarose beads. c, SDS-PAGE gel of YFP-SH2 purified using a column packed with 419 SUMO-tagged OptoMB<sub>V416I</sub> G528A N538E (OptoMB<sub>Triple</sub>) agarose beads. d, SDS-PAGE gel of 420 SH2-Pdc1p purified using a column packed with SUMO-tagged OptoMB<sub>V416I</sub> G528A N538E agarose 421 beads. The "negative control" c,d, are final elutions from columns that were not exposed to 422 crude extracts, but were otherwise treated the same. Purifications were repeated at least three 423 times observing similar results.



424

425 Supplementary Fig. 5: Light-controlled affinity chromatography to purify SH2-tagged

426 proteins using cyanogen bromide (CNBr)-conjugated OptoMB. a, Schematic diagram of

427 OptoMBv416I\_G528A\_N538E with SUMO tag (S) covalently linked to CNBr beads through surface-

428 exposed primary amines, and their use in LCAC as described before. **b**, **c**, SDS-PAGE gel of

429 YFP-SH2 (b) or SH2-PDC1 (c) purified using SUMO-tagged OptoMB<sub>V416I\_G528A\_N538E</sub>

430 conjugated to CNBr beads, in batch. Molecular weight markers (M), lysate (L), unbound flow

431 through (FT), washing step in the dark (Dark Wash), two consecutives light elution aliquots

432 (Light Elution 1 and 2) and heat-treated beads resolved in SDS-PAGE gel (12%

433 polyacrylamide). Purifications were repeated at least three times observing similar results.

- 435
- 436
- 437
- 438



Supplementary Fig. 6: Structures of the other twenty-two unique monobodies displaying
side-binding modes. Each monobody is shown (cartoons) in complex with their cognate targets
(white surfaces) and labeled with their corresponding PDB code. The regions involved in targetbinding interactions (orange) and the DE loop (red loop) where AsLOV2 is inserted in our
OptoMB are highlighted.

#### 445 Supplementary References

- 446
- Koide, A., Abbatiello, S., Rothgery, L. & Koide, S. Probing protein conformational
   changes in living cells by using designer binding proteins: Application to the estrogen
   receptor. *Proc. Natl. Acad. Sci. U. S. A.* 99, 1253–1258 (2002).
- 450 2. Wojcik, J. *et al.* A potent and highly specific FN3 monobody inhibitor of the Abl SH2
  451 domain. *Nat. Struct. Mol. Biol.* 17, 519–527 (2010).
- 452 3. Gilbreth, R. N. *et al.* Isoform-specific monobody inhibitors of small ubiquitin-related
  453 modifiers engineered using structure-guided library design. *Proc. Natl. Acad. Sci. U. S. A.*454 108, 7751–7756 (2011).
- 4. Koide, A., Wojcik, J., Gilbreth, R. N., Hoey, R. J. & Koide, S. Teaching an old scaffold
  new tricks: Monobodies constructed using alternative surfaces of the FN3 scaffold. *J. Mol. Biol.* 415, 393–405 (2012).
- 458 5. Grebien, F. *et al.* Targeting the SH2-kinase interface in Bcr-Abl inhibits leukemogenesis.
  459 *Cell* 147, 306–319 (2011).
- 460 6. Lu, M. *et al.* Structures of a Na+-coupled, substrate-bound MATE multidrug transporter.
  461 *Proc. Natl. Acad. Sci. U. S. A.* **110**, 2099–2104 (2013).
- 462 7. Sha, F. *et al.* Dissection of the BCR-ABL signaling network using highly specific
  463 monobody inhibitors to the SHP2 SH2 domains. *Proc. Natl. Acad. Sci. U. S. A.* 110,
  464 14924–14929 (2013).
- 8. Stockbridge, R. B., Robertson, J. L., Kolmakova-Partensky, L. & Miller, C. A family of
  fluoride-specific ion channels with dual-topology architecture. *Elife* 2, 1–14 (2013).
- 467 9. Stockbridge, R. B. *et al.* Crystal structures of a double-barrelled fluoride ion channel.
  468 *Nature* 525, 548–551 (2015).
- 469 10. Wojcik, J. *et al.* Allosteric inhibition of Bcr-Abl kinase by high affinity monobody
  470 inhibitors directed to the Src homology 2 (SH2)-kinase interface. *J. Biol. Chem.* 291,
  471 8836–8847 (2016).
- 472 11. Spencer-Smith, R. *et al.* Inhibition of RAS function through targeting an allosteric
  473 regulatory site. *Nat. Chem. Biol.* 13, 62–68 (2017).
- 12. Nady, N. *et al.* ETO family protein Mtgr1 mediates Prdm14 functions in stem cell
  maintenance and primordial germ cell formation. *Elife* 4, 1–28 (2015).

- 476 13. Zorba, A. *et al.* Allosteric modulation of a human protein kinase with monobodies. *Proc.*477 *Natl. Acad. Sci. U. S. A.* 116, 13937–13942 (2019).
- 478 14. Last, N. B., Kolmakova-Partensky, L., Shane, T. & Miller, C. Mechanistic signs of
  479 double-barreled structure in a fluoride ion channel. *Elife* 5, 1–10 (2016).
- 480 15. Salzman, G. S. *et al.* Structural Basis for Regulation of GPR56/ADGRG1 by Its
- 481 Alternatively Spliced Extracellular Domains. *Neuron* **91**, 1292–1304 (2016).
- 482 16. Kükenshöner, T. *et al.* Selective Targeting of SH2 Domain–Phosphotyrosine Interactions
  483 of Src Family Tyrosine Kinases with Monobodies. *J. Mol. Biol.* 429, 1364–1380 (2017).
- 484 17. Reckel, S. *et al.* Structural and functional dissection of the DH and PH domains of
  485 oncogenic Bcr-Abl tyrosine kinase. *Nat. Commun.* 8, (2017).
- 18. Diver, M. M., Pedi, L., Koide, A., Koide, S. & Long, S. B. Atomic structure of the
  eukaryotic intramembrane RAS methyltransferase ICMT. *Nature* 553, 526–529 (2018).
- 488 19. Gumpena, R. *et al.* Crystal structure of the human dual specificity phosphatase 1 catalytic
  489 domain. *Protein Sci.* 27, 561–567 (2018).
- 490 20. McIlwain, B. C., Newstead, S. & Stockbridge, R. B. Cork-in-Bottle Occlusion of Fluoride
  491 Ion Channels by Crystallization Chaperones. *Structure* 26, 635-639.e1 (2018).
- 492 21. Turman, D. L., Cheloff, A. Z., Corrado, A. D., Nathanson, J. T. & Miller, C. Molecular
  493 Interactions between a Fluoride Ion Channel and Synthetic Protein Blockers. *Biochemistry*494 57, 1212–1218 (2018).
- 495 22. Gupta, A. *et al.* Facile target validation in an animal model with intracellularly expressed
  496 monobodies. *Nat. Chem. Biol.* 14, 895–900 (2018).
- 497 23. Last, N. B. *et al.* A CLC-type F-/H+ antiporter in ion-swapped conformations. *Nat. Struct.*498 *Mol. Biol.* 25, 601–606 (2018).