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Supplementary Note 1. Introduction 

In this supplementary, we investigate more properties of the generated rotating-revolving 𝐿𝐺ℓ̅,0 beam that

combines two orbital-angular-momenta. Except for the results shown in the Article, we show: (i) the electric 

fields of the selected frequency comb lines for generating a rotating-revolving 𝐿𝐺3,0 beam; (ii) the approaches 

to independently control two orbital-angular-momenta of a generated rotating-revolving 𝐿𝐺ℓ̅,0 beams; and (iii)

the mode purity of a generated rotating-revolving 𝐿𝐺3,0 beam with respect to the frequency spectrum shape. 

These results show that: (a) each frequency comb line at 𝑓 carries multiple 𝐿𝐺ℓ,𝑝 modes with a different ℓ 

value, which is proportional to 𝑓; (b) independent control of two orbital-angular-momenta can be achieved by 

appropriate choosing the spatial 𝐿𝐺ℓ,𝑝 mode distribution and the frequency spacing. 

Supplementary Note 2. The generation of the rotating-revolving 𝐋𝐆𝟑,𝟎 beam

Except for the spatial 𝐿𝐺ℓ,𝑝 mode distribution as shown in Fig. 3 in the Article, we also simulate the spatial 

electric fields of the used frequency comb lines for generating a rotating-revolving 𝐿𝐺3,0 beam. As shown in 

Supplementary Figure 1, we calculate the electric fields of the selected frequency lines at distance 𝑧 = 0 and 

time 𝑡 = 0  by using ∑ 𝐶ℓ,𝑝𝐿𝐺ℓ,𝑝(𝑥, 𝑦, 0, 𝜔ℓ)25
𝑝=0 , which is modified from Eq. (2) for generating the 

spatiotemporal beam in Fig. 2 in the Article. As expected, each frequency line has a unique “twisting” phase 

profile. The azimuthal ℓ values carried by the spatial patterns located on the 10th to 45th frequency lines are -

20, -15, -10, -5, 0, +5, +10, and +15, respectively. These results clearly indicate that each frequency line has 

a helical phasefront of exp(𝑖ℓ̅𝜃), whose ℓ value is linearly dependent on the frequency. It can be noticed that 

some frequency comb lines have a multiple-concentric-ring intensity profile, and that the phase changes by 𝜋 

between neighboring rings along the radial direction. This can be explained by: (i) all the modes have the same 

helical phasefront of exp(𝑖ℓ̅𝜃) along the azimuthal direction, thus the interference of these modes still remains 

the same phasefront along the azimuthal direction; (ii) each mode carrying a different 𝑝 value has different 

radial amplitude and phase profiles along the radial direction, thus the interference further results in a unique 

radial intensity and phase distribution along the radial direction. 
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Supplementary Fig. 1 The spatial patterns on the selected frequency lines. The patterns for generating the 

rotating-revolving 𝐿𝐺3,0 beam in Fig. 2 in the Article. Each frequency comb line carries a superposition of 

multiple 𝐿𝐺ℓ,𝑝 modes with a different ℓ value and multiple 𝑝 values. 

Supplementary Note 3. Control the two orbital-angular-momenta 

We also  show more details about the approaches to independently control the two momenta of a rotating-

revolving 𝐿𝐺ℓ̅,0 beam, which are associated with the dynamic rotation and revolution, respectively. We show

the simulated phasefronts and amplitude envelopes of the generated spatiotemporal light beams with different 

values of the two orbital-angular-momenta, as shown in Fig. 3 in the Article. We describe the approaches to 

achieve such independent control in the following paragraphs. 

We first simulate the spatial 𝐿𝐺ℓ,𝑝  mode distributions for generating rotating-revolving 𝐿𝐺1,0  and 𝐿𝐺2,0 

beams and an array of four rotating-revolving 𝐿𝐺ℓ̅,0  beams with a revolving radius of 0.75 mm. The

corresponding phase and intensity profiles of these beams are shown in Fig. 5 in the Article. As shown in 

Supplementary Figure 2, for the case of generating a rotating-revolving 𝐿𝐺ℓ,0 beam with a non-zero rotating 
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ℓ̅ value, the spatial 𝐿𝐺ℓ,𝑝 mode distribution resembles a “heart” shape, which is then split into a number of ℓ̅

main parts. The reason that why the “heart” shape is split into ℓ̅ main parts might be explained by: the helical 

phasefront of exp(𝑖ℓ̅𝜃) has a periodic phase change (ℓ̅ periods) along the azimuthal direction; transforming 

such a periodic spatial shape into the 𝐿𝐺ℓ,𝑝 mode distribution is similar to a Fourier transformation, which 

splits the shape into ℓ̅ main parts. As for the case of generating an array of rotating-revolving 𝐿𝐺ℓ̅,0 beams

with multiple ℓ̅ values, there are several horizontal “noisy” lines in the “heart” shape, and most of its power 

is limited in a smaller number of 𝐿𝐺ℓ,𝑝 modes (Supplementary Figure 2c). Moreover, the generation method 

can be also extended to generate rotating-revolving 𝐿𝐺ℓ̅,𝑝̅ beams non-zero p̅ values and ℓ̅ values of >10. As

examples, we simulate spatial 𝐿𝐺ℓ,𝑝 mode distributions for generating rotating-revolving 𝐿𝐺3,5 and 𝐿𝐺80,0 

beams with  a beam waist of 0.3 mm and a revolving radius of 0.5 mm (Supplementary Figure 2d, 2e). To 

generate the rotating-revolving 𝐿𝐺3,5 beam, we combine < 60 frequency lines, with each carrying multiple 

𝐿𝐺ℓ,𝑝 modes with one ℓ value (-30 to +30) and multiple 𝑝 values (0 to 24);  For generating the rotating-

revolving 𝐿𝐺80,0 beam, we combine ~90 frequency lines with each carrying multiple 𝐿𝐺ℓ,𝑝 modes with one ℓ

value (-15 to +75) and multiple 𝑝 values (0 to 9). These results show that in order to change the rotating ℓ̅

value of the generated rotating-revolving 𝐿𝐺ℓ,𝑝 beam, we need to change both the amplitude and phase of the 

complex coefficients 𝐶ℓ,𝑝 of the spatial 𝐿𝐺ℓ,𝑝 mode distribution used for superposition. 

We also show the dependence of the revolving speed of the generated rotating-revolving 𝐿𝐺3,0 beam on the 

frequency spacing ∆𝑓, as shown in Supplementary Figure 3a. The corresponding amplitude envelope is shown 

in Fig. 4 in the Article. The revolving speed is tuned from 0.2 THz to 0.7 THz, which is equal to the frequency 

spacing ∆𝑓. This is because the dynamic revolution is introduced by the time-variant relative phase delay 

between neighbouring 𝐿𝐺ℓ,𝑝 modes (i.e., ∆ℓ = 1). The relative phase delay is equal to 2𝜋∆𝑓𝑡 such that the 

constructive interference of  all the modes and frequency comb lines results in an intensity profiles revolving 

at a speed of ∆𝑓. We can see from Supplementary Figure 2that the frequency spacing need to be controlled in 
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order to tune the revolution speed of a rotating-revolving 𝐿𝐺ℓ̅,0 beam. Additionally, we can independently

change the sign of the values for two momenta by two steps: (i) changing the modal combination 

∑ 𝐶ℓ,𝑝𝐿𝐺ℓ,𝑝(𝑥, 𝑦, 0, 𝜔ℓ)𝑝  carried by the frequency line on 𝜔ℓ = 𝜔0 + ℓ𝜔𝑟  to another modal combination

∑ 𝐶ℓ,𝑝𝐿𝐺−ℓ,𝑝(𝑥, 𝑦, 0, 𝜔ℓ)𝑝  (i.e., flipping the sign of ℓ value for each 𝐿𝐺ℓ,𝑝 mode); and/or (ii) reassigning each

modal combination ∑ 𝐶ℓ,𝑝𝐿𝐺ℓ,𝑝(𝑥, 𝑦, 0, 𝜔ℓ)𝑝 , which is originally carried by a frequency line on 𝜔ℓ = 𝜔0 +

ℓ𝜔rev , to be carried by the one on  𝜔0 − ℓ𝜔rev . As compared to the clockwise-revolving 𝐿𝐺3,0  beam in 

Supplementary Figure 3b, we flip: (a) only the sign of the rotating ℓ value using step (i) in Supplementary 

Figure 3c; (b) only the revolving direction using step (ii) in Supplementary Figure 3d; and (iii) both the sign 

of the rotating ℓ value and revolving direction using steps (i) and (ii) in Supplementary Figure 3e. 

Supplementary Fig. 2 Simulated results for controlling the 𝓵̅ and 𝒑̅ values for rotating-revolving 𝑳𝑮𝓵̅,𝒑̅

beams. (a-c) The spatial 𝐿𝐺ℓ,𝑝  mode distributions, namely the amplitude and phase of the complex 

coefficients 𝐶ℓ,𝑝  of all the 𝐿𝐺ℓ,𝑝  modes, for generating the three different rotating-revolving light beams 
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shown in Fig. 5c in the Article. For generating rotating-revolving (a) 𝐿𝐺1,0 and (b) 𝐿𝐺2,0 beams, the amplitude 

matrices of the spatial 𝐿𝐺ℓ,𝑝 mode distributions are split into two and three main parts, respectively. (c) The 

spatial 𝐿𝐺ℓ,𝑝  mode distribution for generating an array of four rotating-revolving 𝐿𝐺ℓ̅,𝑝̅  beams with ℓ̅ =

0, 1,2, and 3. (d) and (e) The spatial 𝐿𝐺ℓ,𝑝 mode distribution for generating a rotating-revolving 𝐿𝐺3,5 beam 

and 𝐿𝐺80,0 beam, respectively. Scale bar, 1 mm. freq: frequency. 
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Supplementary Fig. 3 Simulated results for controlling the revolving speed and direction for rotating-

revolving 𝑳𝑮𝓵̅,𝒑̅ beams. (a) The revolving speed of such a rotating-revolving 𝐿𝐺3,0  beam is equal to the
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frequency spacing. (b-e) The spatial 𝐿𝐺ℓ,𝑝 mode distributions, namely the amplitude and phase of the complex 

coefficients 𝐶ℓ,𝑝 of all the 𝐿𝐺ℓ,𝑝 modes, for generating (b) clockwise-revolving 𝐿𝐺3,0, (c) clockwise-revolving 

𝐿𝐺−3,0, (d) counterclockwise-revolving 𝐿𝐺3,0, (e) counterclockwise -revolving 𝐿𝐺−3,0. Scale bar, 1 mm. freq: 

frequency. 

Supplementary Note 4. Mode purity of the generated spatiotemporal light beams 

We also characterize the quality of the generated beams by analyzing the mode purity respect to different 

frequency spectrum shapes (Supplementary Figure 4). We focus on the quality of the dynamic spatiotemporal 

beam with respect to the number of frequency comb lines, as shown in Fig. 3 in the Article. One more 

interesting issue is the influence of the frequency spectrum shape on the mode purity. We still calculate the 

mode purity as the normalized power weight coefficients of the generated vortices at distance 𝑧 = 0 and time 

𝑡 = 0. Each comb line carries the same spatial pattern, as shown in Fig. 3b in the Article (see selected patterns 

in Supplementary Figure 1), but the total power of each frequency line is varied. Supplementary Figure 4shows 

that changing the frequency spectrum shape will affect the mode purity if the generated spatiotemporal beam. 

The mode purity of the beam with the shape shown in Supplementary Figure 4dis ~ 96%. Such a shape is 

calculated based on the correlation between its spatial and frequency spectra, namely, that the frequency line 

at 𝜔ℓ  carries a superposition of spatial patterns ∑ 𝐶ℓ,𝑝𝐿𝐺ℓ,𝑝(𝑥, 𝑦, 0, 𝜔ℓ)24
𝑝=0 . However, the mode purity 

decreases to ~ 37%, 38%, and 3% for the shapes in Supplementary Figure 4a-c, respectively. The third shape 

has the lowest mode purity because it filters most of the power of  the 𝐿𝐺ℓ,𝑝 modes, leading to higher spatial 

phase distortion. Supplementary Figure  4shows that in order to generate a rotating-revolving 𝐿𝐺ℓ̅,0 beam with

high mode purity (> 90%), the frequency spectrum needs to be shaped based on the correlation between its 

spatial and frequency spectra. 
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Supplementary Fig. 4 Effect of the frequency spectrum shaping on the normalized power distributions 

of light beams with different rotating 𝓵̅ values. (a)-(d) and (e)-(h) are the frequency spectra with different 

shapes and the corresponding calculated normalized power distributions, respectively. These frequency comb 

lines are used to generate a rotating-revolving 𝐿𝐺3,0 beam.  (d) is the same one shown in Fig. 3 in the Article. 

Supplementary Note 5. Approximation of propagation for a single LG mode with small frequency 

shift 

 

Here, we show the calculation details for estimating the electric field of a single free-space propagating 𝐿𝐺ℓ,𝑝 mode 

with a small frequency shift. Specifically, when |𝑙𝜔rev| ≪ 𝜔0 , 𝐿𝐺ℓ,𝑝(𝑟, 𝜃, 𝑧; 𝜔0 + ℓ𝜔rev, 𝑤0) ≈

 𝐿𝐺ℓ,𝑝(𝑟, 𝜃, 𝑧; 𝜔0, 𝑤0)exp (−𝑖 ℓ𝜔rev𝑧 𝑐⁄ ) at least in the Rayleigh range within the paraxial approximation, where 

the parameters 𝑧 and 𝑟 have limited values. Such approximation may not hold when the values of 𝑧 and 𝑟 reach 

infinity. The approximation in the Rayleigh range within the paraxial approximation is calculated as the expression 

of  

lim
ℓ𝜔rev

𝜔0
→0

𝐿𝐺ℓ,𝑝(𝑟, 𝜃, 𝑧; 𝜔0 + ℓ𝜔rev, 𝑤0) = lim
ℓ𝜔rev

𝜔0
→0

|𝐿𝐺ℓ,𝑝(𝑟, 𝜃, 𝑧; 𝜔0 + ℓ𝜔rev, 𝑤0)|

× exp (𝑖∠ (𝐿𝐺ℓ,𝑝(𝑟, 𝜃, 𝑧; 𝜔0 + ℓ𝜔rev, 𝑤0)))                                                                            (1) 
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where applying the angle operator ∠ leads to the spatial phase of an 𝐿𝐺ℓ,𝑝 mode. 

We separately calculate the approximation for the amplitude part |𝐿𝐺ℓ,𝑝(𝑟, 𝜃, 𝑧; 𝜔0 + ℓ𝜔rev, 𝑤0)| and the phase 

part ∠ (𝐿𝐺ℓ,𝑝(𝑟, 𝜃, 𝑧; 𝜔0 + ℓ𝜔rev, 𝑤0)): 

(i) Limit calculation for the amplitude profile of the electric field.  

We first consider the limit of the ratio of the beam waist parameters  𝑤(𝑧, 𝜔0 + ℓ𝜔rev)/𝑤(𝑧, 𝜔0), which is 

lim
ℓ𝜔rev

𝜔0
→0

𝑤(𝑧,𝜔0+ℓ𝜔rev)

𝑤(𝑧,𝜔0)
= lim

ℓ𝜔rev
𝜔0

→0

√
1+(

𝑧

𝑧R(𝜔0+ℓ𝜔rev,𝑤0)
)

2

1+(
𝑧

𝑧R(𝜔0,𝑤0)
)

2 =

lim
ℓ𝜔rev/𝜔0→0

√1 +
(

𝑧

𝑤0
2 2𝑐⁄

)
2

(
1

𝜔0+𝑙𝜔rev
+

1

𝜔0
)

1

(𝜔0+ℓ𝜔rev)

−ℓ𝜔rev
𝜔0

1+(
𝑧

𝜔0𝑤0
2 2𝑐⁄

)
2 = 1                                                                                (2) 

where c is the light speed in vacuum. Therefore, lim
ℓ𝜔rev/𝜔0→0

𝑤(𝑧, 𝜔0 + ℓ𝜔rev) = 𝑤(𝑧, 𝜔0). Because 𝑤(𝑧, 𝜔) is 

the only frequency-dependent parameter in the expression for the amplitude of the electric field of 𝐿𝐺ℓ,𝑝 mode, then 

the limitation 

lim
ℓ𝜔rev/𝜔0→0

|𝐿𝐺ℓ,𝑝(𝑟, 𝜃, 𝑧; 𝜔0 + ℓ𝜔rev, 𝑤0)|

= lim
ℓ𝜔rev/𝜔0→0

𝐶ℓ,𝑝
LG

𝑤(𝑧, 𝜔0 + ℓ𝜔rev)
(

𝑟√2

𝑤(𝑧, 𝜔0 + ℓ𝜔rev)
)

|ℓ|

exp (−
𝑟2

𝑤2(𝑧, 𝜔0 + ℓ𝜔rev)
) 𝐿𝑝

|ℓ|
(

2𝑟2

𝑤2(𝑧, 𝜔0 + ℓ𝜔rev)
)

=
𝐶ℓ,𝑝

LG

𝑤(𝑧, 𝜔0)
(

𝑟√2

𝑤(𝑧, 𝜔0)
)

|ℓ|

exp (−
𝑟2

𝑤2(𝑧, 𝜔0)
) 𝐿𝑝

|ℓ|
(

2𝑟2

𝑤2(𝑧, 𝜔0)
) = |𝐿𝐺ℓ,𝑝(𝑟, 𝜃, 𝑧; 𝜔0, 𝑤0)|                     (3) 

(ii) Limit calculation for the phase profile of the electric field.  

We then consider the limit of the phase term of the electric field of  an 𝐿𝐺ℓ,𝑝 mode. The phase term can be written 

as 

∠ (𝐿𝐺ℓ,𝑝(𝑟, 𝜃, 𝑧; 𝜔, 𝑤0)) = −𝑘
𝑟2

2𝑅(𝑧,𝜔)
− 𝑘𝑧 + ℓθ + 𝜓(𝑧, 𝜔) = −

𝜔

𝑐

𝑟2

2𝑅(𝑧,𝜔)
−

𝜔

𝑐
𝑧 + ℓθ + 𝜓(𝑧, 𝜔)           (4) 
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where the term ℓ𝜃 is a constant. To calculate the limit of the phase term, we separately calculate the limit of three 

frequency-dependent phase components:    

(a) For the part of  𝜓(𝑧, 𝜔), we have  

∆𝑝ℎ𝑎𝑠𝑒1 = lim
ℓ𝜔rev

𝜔0
→0

𝜓(𝑧, 𝜔0 + ℓ𝜔rev) − 𝜓(𝑧, 𝜔0)

= lim
ℓ𝜔rev

𝜔0
→0

(|ℓ| + 2𝑝 + 1) (arctan (
𝑧

𝑧R(𝜔0 + ℓ𝜔rev, 𝑤0)
) − arctan (

𝑧

𝑧R(𝜔0, 𝑤0)
))

= lim
ℓ𝜔rev

𝜔0
→0

(|ℓ| + 2𝑝 + 1) × arctan

𝑧
𝑧R(𝜔0 + ℓ𝜔rev, 𝑤0)

−ℓ𝜔rev

𝜔0

1 +
𝑧

𝑧R(𝜔0 + ℓ𝜔rev, 𝑤0)
𝑧

𝑧R(𝜔0, 𝑤0)

= 0                                                                                                                                         (5) 

 

(b) For the part of  −
𝜔

𝑐
𝑧, we have 

∆𝑝ℎ𝑎𝑠𝑒2 = lim
ℓ𝜔rev/𝜔0→0

(−
𝜔0+ℓ𝜔rev

𝑐
𝑧) − (−

𝜔0

𝑐
𝑧) = lim

ℓ𝜔rev/𝜔0→0
−

ℓ𝜔rev

𝑐
𝑧 = −

ℓ𝜔rev

𝑐
𝑧                                        

(6) 

Note the limit ℓ𝜔rev/𝜔0 → 0 is not equivalent to the limit ℓ𝜔rev → 0. 

 
 

(c) For the part of  −
𝜔

𝑐

𝑟2

2𝑅(𝑧,𝜔)
, we have 
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∆𝑝ℎ𝑎𝑠𝑒3 = lim
ℓ𝜔rev

𝜔0
→0

(−
𝜔0 + ℓ𝜔rev

𝑐

𝑟2

2𝑅(𝑧, 𝜔0 + ℓ𝜔rev)
) − (−

𝜔0

𝑐

𝑟2

2𝑅(𝑧, 𝜔0)
)

= lim
ℓ𝜔rev

𝜔0
→0

𝑟2 (−
1

2𝑐𝑧
𝜔0 + ℓ𝜔rev

+
𝜔0 + ℓ𝜔rev

2𝑐𝑧 𝑤0
4

+
1

2𝑐𝑧
𝜔0

+
𝜔0

2𝑐𝑧 𝑤0
4

)

= lim
ℓ𝜔rev

𝜔0
→0

𝑟2
−

2𝑐𝑧
𝜔0 + ℓ𝜔rev

ℓ𝜔rev

𝜔0
+

ℓ𝜔rev

2𝑐𝑧 𝑤0
4

(
2𝑐𝑧

𝜔0 + ℓ𝜔rev
+

𝜔0 + ℓ𝜔rev

2𝑐𝑧 𝑤0
4) (

2𝑐𝑧
𝜔0

+
𝜔0

2𝑐𝑧 𝑤0
4)

= lim
ℓ𝜔rev

𝜔0
→0

𝑟2

ℓ𝜔rev

2𝑐𝑧 𝑤0
4

(
2𝑐𝑧

𝜔0 + ℓ𝜔rev
+

𝜔0 + ℓ𝜔rev

2𝑐𝑧 𝑤0
4) (

2𝑐𝑧
𝜔0

+
𝜔0

2𝑐𝑧 𝑤0
4)

                                                                   (7) 

 

Because 

0 ≤ ∆𝑝ℎ𝑎𝑠𝑒3 ≤ lim
ℓ𝜔rev

𝜔0
→0

𝑟2
ℓ𝜔rev

2𝑐𝑧
𝑤0

4

(
𝜔0
2𝑐𝑧

𝑤0
4)

2 = lim
ℓ𝜔rev

𝜔0
→0

𝑟2 2𝑐𝑧

𝜔0𝑤0
4

ℓ𝜔rev

𝜔0
= 0                             (8) 

 

we then get the limit ∆𝑝ℎ𝑎𝑠𝑒3 = 0.  

(iii) Approximation of the complex electric field.  

lim
ℓ𝜔rev

𝜔0
→0

𝐿𝐺ℓ,𝑝(𝑟, 𝜃, 𝑧; 𝜔0 + ℓ𝜔rev, 𝑤0)

𝐿𝐺ℓ,𝑝(𝑟, 𝜃, 𝑧; 𝜔0, 𝑤0)

= lim
ℓ𝜔rev

𝜔0
→0

|𝐿𝐺ℓ,𝑝(𝑟, 𝜃, 𝑧; 𝜔0 + ℓ𝜔rev, 𝑤0)|

|𝐿𝐺ℓ,𝑝(𝑟, 𝜃, 𝑧; 𝜔0, 𝑤0)|

× exp(𝑖(∆𝑝ℎ𝑎𝑠𝑒1 + ∆𝑝ℎ𝑎𝑠𝑒2 + ∆𝑝ℎ𝑎𝑠𝑒3)) = exp (−𝑖𝑙
𝜔rev𝑧

𝑐
)                                         (9) 

 

Therefore, for |ℓ𝜔rev| ≪ 𝜔0 , 𝐿𝐺ℓ,𝑝(𝑟, 𝜃, 𝑧; 𝜔0 + ℓ𝜔rev, 𝑤0) ≈  𝐿𝐺ℓ,𝑝(𝑟, 𝜃, 𝑧; 𝜔0, 𝑤0)exp (− 𝑖ℓ𝜔rev𝑧 𝑐⁄ )  at 

least in the Rayleigh range within the paraxial approximation, where the parameters 𝑧 and 𝑟 have limited 

values. The approximation needs to be further considered when the beam is outside the Rayleigh range. 

Supplementary Note 6. Generalization for the generation of rotating-revolving LG beams   

Here, we show more analytical details for generalizing our method of generating rotating-revolving 𝐿𝐺ℓ̅,𝑝̅ 

beams with arbitrary ℓ̅ and 𝑝̅ values. First, we consider a beam carrying a single 𝐿𝐺ℓ̅,𝑝̅ mode on a single 

angular frequency 𝜔0  with an electric field of 𝐿𝐺ℓ̅,𝑝̅
Cartesian(𝑥, 𝑦, 0; 𝜔0, 𝑤0)exp (𝑖𝜔0𝑡) , where 
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𝐿𝐺ℓ̅,𝑝̅
Cartesian(𝑥, 𝑦, 0; 𝜔0, 𝑤0) is the electric field of an 𝐿𝐺ℓ̅,𝑝̅  mode in Cartesian coordinates, which equals 

𝐿𝐺ℓ̅,𝑝̅(𝑟, 𝜃, 0; 𝜔, 𝑤0) with 𝑟 = √𝑥2 + 𝑦2  and 𝜃 = arctan(𝑦 𝑥⁄ ). The beam is then made offset along the 

negative x axis by a distance of R. The electric field 𝐸0(𝑥, 𝑦, 0, 𝑡) = 𝜓(𝑥, 𝑦, 0)exp(𝑖𝜔0𝑡) of the offset beam 

can be written in two forms: (i) offsetting the electric field of a conventional 𝐿𝐺ℓ̅,𝑝̅ beam with its center on the 

origin; and (ii) expressing the electric field as a combination of multiple 𝐿𝐺ℓ,𝑝 modes [1,2,3]. Therefore, 

𝐸0(𝑥, 𝑦, 0, 𝑡) = 𝐿𝐺ℓ̅,𝑝̅
Cartesian(𝑥 + 𝑅, 𝑦, 0; 𝜔0, 𝑤0) exp(𝑖𝜔0𝑡) =

∑ ∑ 𝐶ℓ,𝑝𝐿𝐺ℓ,𝑝
Cartesian(𝑥, 𝑦, 0; 𝜔0, 𝑤0)exp(𝑖𝜔0𝑡)ℓ,𝑝                                                                                        (10) 

where 𝐶ℓ,𝑝 = ∬ 𝐿𝐺ℓ̅,𝑝̅
Cartesian(𝑥 + 𝑅, 𝑦, 0; 𝜔0, 𝑤0) (𝐿𝐺ℓ,𝑝

Cartesian(𝑥, 𝑦, 0; 𝜔0, 𝑤0))
∗

𝑑𝑥𝑑𝑦 is a time-independent 

complex coefficient. 

We then consider the case that the above offset beam revolves clockwise around the origin (i.e., the central 

axis) at a speed of 𝑓rev revolutions per second. Namely, the beam dynamically revolves clockwise around the 

origin to an angle of 𝜑(𝑡) = 𝜔rev𝑡 = 2𝜋𝑓rev𝑡. The effect of this motion can be mathematically expressed as a 

time-dependent coordinate rotation operator 𝑇𝜑(𝑡) , which is defined as 𝑇𝜑(𝑡)(𝑓(𝑟, 𝜃)) = 𝑓(𝑟, 𝜃 + 𝜑(𝑡)) in 

cylindrical coordinates and 𝑇𝜑(𝑡)(𝑓(𝑥, 𝑦)) = 𝑓(𝑥 cos 𝜑(𝑡) − 𝑦 sin 𝜑(𝑡) , 𝑥 sin 𝜑(𝑡) + 𝑦 cos 𝜑(𝑡))  in 

Cartesian coordinates. After applying the coordinate rotation 𝑇𝜑(𝑡) to both sides of Supplementary Eq. (10), we 

realise two forms of the electric field 𝐸1(𝑥, 𝑦, 0, 𝑡) of the dynamically rotating-revolving 𝐿𝐺ℓ̅,𝑝̅ beam as  

𝑇𝜑(𝑡)(𝐸0(𝑥, 𝑦, 0, 𝑡)) = 𝐸0(𝑥 cos 𝜑(𝑡) − 𝑦 sin 𝜑(𝑡) , 𝑥 sin 𝜑(𝑡) + 𝑦 cos 𝜑(𝑡) , 0, 𝑡) =

𝐿𝐺ℓ̅,𝑝̅
Cartesian(𝑥 cos 𝜑(𝑡) − 𝑦 sin 𝜑(𝑡) + 𝑅, 𝑥 sin 𝜑(𝑡) + 𝑦 cos 𝜑(𝑡) , 0; 𝜔0, 𝑤0) exp(𝑖𝜔0𝑡)                     (11)                                                    

𝑇𝜑(𝑡)(∑ ∑ 𝐶ℓ,𝑝𝐿𝐺ℓ,𝑝
Cartesian(𝑥, 𝑦, 0; 𝜔0, 𝑤0)exp(𝑖𝜔0𝑡)ℓ,𝑝 ) = 𝑇𝜑(𝑡)(∑ ∑ 𝐶ℓ,𝑝𝑈(𝑟, 𝑧 =ℓ,𝑝

0; 𝜔0, 𝑤0)exp (𝑖ℓ𝜃)exp(𝑖𝜔0𝑡)) = ∑ ∑ 𝐶ℓ,𝑝𝑈(𝑟, 𝑧 = 0; 𝜔0, 𝑤0) exp (𝑖ℓ(𝜃 + 𝜑(𝑡))) exp(𝑖𝜔0𝑡)ℓ,𝑝 =
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∑ ∑ 𝐶ℓ,𝑝𝑈(𝑟, 𝑧 = 0; 𝜔0 + ℓ𝜔rev, 𝑤0) exp(𝑖ℓ𝜃) exp (𝑖(𝜔0 + ℓ𝜔rev)𝑡)ℓ,𝑝 = ∑ ∑ 𝐶ℓ,𝑝𝐿𝐺ℓ,𝑝(𝑟, 𝜃, 0; 𝜔0 +ℓ,𝑝

ℓ𝜔𝑟 , 𝑤0)exp (𝑖(𝜔0 + ℓ𝜔rev)𝑡)                                                                                                                         (12)  

where the complex term 𝑈(𝑟, 𝑧 = 0; 𝜔, 𝑤0) =
𝐶ℓ,𝑝

LG

𝑤0
(

𝑟√2

𝑤0
)

|ℓ|

exp (−
𝑟2

𝑤0
2) 𝐿𝑝

|ℓ|
(

2𝑟2

𝑤0
2) is frequency independent so 

that 𝑈(𝑟, 𝑧 = 0; 𝜔0, 𝑤0) = 𝑈(𝑟, 𝑧 = 0; 𝜔0 + ℓ𝜔rev, 𝑤0) . Supplementary Eq. (12) indicates that a rotating-

revolving 𝐿𝐺ℓ̅,𝑝̅ beam can be generated by combining multiple frequency comb lines with each carrying multiple 

𝐿𝐺ℓ,𝑝 modes. It also shows that the revolution motion of the rotating-revolving beam introduces a frequency shift 

of ℓ𝜔𝑟  (i.e., 𝜔0 → 𝜔0 + ℓ𝜔rev )  to each 𝐿𝐺ℓ,𝑝  mode [4,5]. Note that Supplementary Eqs. (11) and (12) are 

equivalent to each other, and there does not appear to be a strict limitation on the ℓ̅ and 𝑝̅ values if we select the 

coefficient 𝐶ℓ,𝑝 to be an integral ∬ 𝜓(𝑥, 𝑦, 0) (𝐿𝐺ℓ,𝑝(𝑟, 𝜃, 0; 𝜔0, 𝑤0))
∗

𝑑𝑥𝑑𝑦 [2,3].  

Supplementary Note 7. Diffraction of rotating-revolving 𝐿𝐺 beams 

We have shown in the Results Section the diffraction effects on the free-space propagation of a special example (i.e., 

a rotating-revolving 𝐿𝐺3,0 beam) in the Article, and it may be interesting to provide an estimation of diffraction effects 

for the cases with other modal indices ℓ̅ and 𝑝̅.  

The free-space propagation of a rotating-revolving/conventional 𝐿𝐺ℓ̅,𝑝̅ beam can be understood by analyzing the 

propagation of each  𝐿𝐺ℓ,𝑝 mode carried by the beam. The propagation of a single 𝐿𝐺ℓ,𝑝 mode on a single 

frequency line is described in Eq. (3) in the Method Section in the Article. Specifically, after propagation from 

0 to a distance z, the electric filed 𝐿𝐺ℓ,𝑝(𝑟, 𝜃, 0; 𝜔, 𝑤0) exp(𝑖𝜔𝑡) evolves to 𝐿𝐺ℓ,𝑝(𝑟, 𝜃, 𝑧; 𝜔, 𝑤0) exp(𝑖𝜔𝑡) 

(i.e., z-dependent electric field) [6]. Based on this point, if we replace the electric filed at 𝑧 = 0 of each 𝐿𝐺ℓ,𝑝 

mode in Supplementary Eq. (10) with the z-dependent one, the z-dependent electric field of an offset 

conventional 𝐿𝐺ℓ̅,𝑝̅ beam in Supplementary Eq. (10) then takes the form  

𝐸0(𝑥, 𝑦, 𝑧, 𝑡) = 𝐿𝐺ℓ̅,𝑝̅
Cartesian(𝑥 + 𝑅, 𝑦, 𝑧; 𝜔0, 𝑤0) exp(𝑖𝜔0𝑡) =

∑ ∑ 𝐶ℓ,𝑝𝐿𝐺ℓ,𝑝
Cartesian(𝑥, 𝑦, 𝑧; 𝜔0, 𝑤0)exp(𝑖𝜔0𝑡)ℓ,𝑝                                                                                          (13) 
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Furthermore, we consider the propagation of a rotating-revolving 𝐿𝐺ℓ̅,𝑝̅ beam. Based on Supplementary Eq. 

(12), each 𝐿𝐺ℓ,𝑝 mode is carried by a different frequency line on  𝜔0 + ℓ𝜔rev. Similarly, if we replace the 

electric filed at 𝑧 = 0 of each 𝐿𝐺ℓ,𝑝 mode on the right side in Supplementary Eq. (12) with the z-dependent 

one, the z-dependent electric field of a rotating-revolving 𝐿𝐺ℓ̅,𝑝̅ beam in Supplementary Eq. (12) then takes the 

form  

𝐸1(𝑥, 𝑦, 𝑧, 𝑡) = ∑ ∑ 𝐶ℓ,𝑝𝐿𝐺ℓ,𝑝(𝑟, 𝜃, 𝑧; 𝜔0 + ℓ𝜔rev, 𝑤0) exp(𝑖(𝜔0 + ℓ𝜔rev)𝑡)ℓ,𝑝                                       (14)                       

When |ℓ𝜔rev| ≪ 𝜔0 , 𝐿𝐺ℓ,𝑝(𝑟, 𝜃, 𝑧; 𝜔0 + ℓ𝜔rev, 𝑤0) ≈  𝐿𝐺ℓ,𝑝(𝑟, 𝜃, 𝑧; 𝜔0, 𝑤0)exp (− 𝑖𝑧 𝑐⁄ )  at least in the 

Rayleigh range within the paraxial approximation (See Supplementary Note 5 for the approximation details). Such 

approximation may not hold when the values of 𝑧 or 𝑟 reach infinity. Moreover, based on Supplementary Eq. (12), 

the effect of delaying the electric field of  𝐿𝐺ℓ,𝑝(𝑟, 𝜃, 𝑧; 𝜔0, 𝑤0) by exp(𝑖ℓ𝜑(𝑡, 𝑧)) is equivalent to that of rotating 

the coordinate by an angle 𝜑(𝑡, 𝑧) (See Supplementary Note 6 for details). Thus, Supplementary Eq. (14) can be 

rewritten as  

𝐸1(𝑥, 𝑦, 𝑧, 𝑡) ≈ ∑ ∑ 𝐶ℓ,𝑝𝐿𝐺ℓ,𝑝(𝑟, 𝜃, 𝑧; 𝜔0, 𝑤0) exp(𝑖ℓ𝜔rev(𝑡 − 𝑧
𝑐⁄ )) exp(𝑖𝜔0𝑡)ℓ,𝑝 =

𝑇𝜑(𝑡,𝑧)=𝜔rev(𝑡−𝑧
𝑐⁄ )(∑ ∑ 𝐶ℓ,𝑝𝐿𝐺ℓ,𝑝(𝑟, 𝜃, 𝑧; 𝜔0, 𝑤0) exp(𝑖𝜔0𝑡)ℓ,𝑝 ) = 𝑇𝜑(𝑡,𝑧)=𝜔rev(𝑡−𝑧

𝑐⁄ )(𝐸0(𝑥, 𝑦, 𝑧, 𝑡))    (15)                              

where the coordinate rotation operator 𝑇𝜑(𝑡,𝑧)=𝜔rev(𝑡−𝑧
𝑐⁄ )(𝑓(𝑟, 𝜃)) = 𝑓(𝑟, 𝜃 + 𝜑(𝑡, 𝑧))indicates that: after 

propagation in free space for a distance z at least within the Rayleigh range, the intensity and phase profiles of the 

generated spatiotemporal beam could be approximated as those of an offset conventional 𝐿𝐺ℓ̅,𝑝̅ beam, whose 

center revolves around the origin by an angle of 𝜔rev(𝑡 − 𝑧
𝑐⁄ ). However, such approximation might not hold 

(i) with further propagation at far-field and (ii) as the frequency difference ℓ𝜔𝑟 increases. In these two cases, 

there might be a larger difference between the diffraction effects of the same mode carried by the frequency lines on 

𝜔0 and 𝜔0 + ℓ𝜔rev. As a result, the superposition of multiple modes carried by multiple frequency lines is 

distorted and thus the mode purity might decrease.  
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