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Appendix: Uniqueness of the solution of the String Decomposition 
Problem 
Backtracking from one of the sinks to the source in the String Decomposition Graph reveals 

the sequence of block-switching edges in the backtracking path and thus provides a solution 

of the String Decomposition Problem (each block-switching edge is labeled by the 

corresponding block).  To check if this solution is unique we modify the standard 

backtracking procedure in sequence alignment (that arbitrarily selects a single backtracking 

path (Compeau and Pevzner, 2013)) by constructing the ​backtracking graph​ that contains all 

edges traversed by all backtracking paths from one of the sinks to the source. Two vertices 

in the backtracking graph are called ​close​ if there is a path between them that does not 

contain block-switching edges. We form the ​block-switching graph ​by gluing all close 

vertices in the backtracking graph and collapsing parallel identically labeled block-switching 

edges into a single edge. The String Decomposition Problem has a unique solution if the 

block-switching graph represents a single path.  

Appendix: SD implementation details 
run_decomposer.py script.​ StringDecomposer is publicly available at 
https://github.com/ablab/stringdecomposer​. The “run_decomposer.py” script accepts the 
following two files in fasta format as the Input:  (i) a file containing the read-set or a genomic 

https://github.com/ablab/stringdecomposer


sequence, and (ii) a file containing monomer sequences. It runs the SD algorithm 
(implemented in C++) and converts the alignment scores of individual monomers into 
percent identities​ ​using the Edlib library ​(Šošic and Šikic, 2017)​.​ ​The default indel and 
mismatch penalties for indel are equal to 1 but  the “run,decomposer.py” script allows one to 
assign arbitrary user-defined penalties. StringDecomposer saves the monomer alignments 
to a given read-set (or a genomic sequence) in the tsv-format. To generate the string 
decomposition described in the Results section commit 6fc0b4a64 was used.  
 
SD parallelization.​ The String Decomposition Graph becomes rather large in the case when 
the string ​R​ is long (e.g., when ​R​ is an ultralong read or an assembly of an entire 
centromere) or when the block-set is large, leading to a large memory footprint. To reduce 
the memory footprint, we represent the string ​R​ as a set of overlapping segments of length 
SegmentLength ​with default value ​SegmentLength =​ 5500 bp (the last segment can be 
shorter) so that the consecutive segments overlap by ​Overlap​ nucleotide (Figure S1). The 
default value ​Overlap​ (500 bp) is chosen to be larger than the monomer size and to ensure 
that each monomer is positioned fully inside at least one segment. Afterward, each segment 
of the read is processed separately and all segments are “glued” together.  

 
Fig. S1. Partitioning a read into overlapping segments. 

Appendix: Identification of reliable monomers 
 
In order to distinguish false monomer alignments (denoted by the gap-symbol “?”) from the 
true monomer alignments, we trained a logistic regression model with two features defined 
for each monomer-to-sequence alignment: 1) the identity score ​TopIdentity​ of the 
highest-scoring monomer, and 2) the difference ​IdentityDiff​ between ​TopIdentity​ and the 
identity of the second-highest scoring monomer. The simplest ​baseline ​ logistic regression 
model makes a decision solely on the ​TopIdentity ​value, i.e, classifies a monomer as reliable 
if ​TopIdentity​ exceeds a threshold ​MinTopIdentity​. Below we demonstrate the logistic 
regression model with two predictors (​TopIdentity​ and ​IdentityDiff​) improves on the baseline 
one-predictor logistic regression model.  
 
In order to train both models, we selected 1,000 ONT reads that were mapped to cenX by 
tandemQUAST (further referred as the CENX read-set) and 1,000 ONT reads from the same 
rel3 CHM13 dataset mapped to non-centromeric regions of chromosome X T2T assembly 
v0.7 with minimap2 (further referred as the NOTCENX read-set). Centromeric reads 
containing the LINE element were excluded from the CENX set. Only reads with alignment 
identity exceeding 80% and the fraction of aligned sequence exceeding 90% were included 
in the  NOTCENX set. We attempted to decompose each read from CENX and NOTCENX 
into the monomer alphabet. The training dataset ​TrainSet​ is constructed from 80% of CENX 
and NOTCENX reads. The test dataset ​TestSet​ is constructed from the remaining 20% of 
CENX and NOTCENX reads. Both baseline and two-predictor logistic regression models 
were trained on ​TrainSet​. 

https://www.zotero.org/google-docs/?iOS201


 
The optimal ​MinTopIdentity​ threshold identified with the baseline model on the ​TrainSet​ is 
67.7%. At this threshold, the baseline model produces 0 false-positive and 241 
false-negative alignments out of 65,842 monomer alignments in ​TestSet​ (false-positive rate 
is 0%, false-negative rate is 0.37%). The two-predictor model showed superior results: 0 
false positive and 198 false negative alignments out of the same 65,842 monomer 
alignments in ​TestSet​ (false-positive rate is 0%, false-negative rate is 0.30%). Figure S2 
illustrates the results of the classification produced by the baseline and the two-predictor 
regression models. 

 

 
Fig. S2. The distribution of ​TopIdentity ​(x-axis)​ ​and ​IdentityDiff ​(y-axis) for monomer 
alignments in centromeric and non-centromeric regions. ​Each dot in the graph represents either 
a true monomer alignment that belongs to the centromeric region (blue dots) or false monomer 
alignment (red dots). The green line separates true and false monomers according to baseline 
classifier based on ​TopIdentity​ value of each alignment, while the yellow line separates the true and 
false monomers alignments according to the logistic regression trained on both ​TopIdentity​ and 
IdentityDiff​ values.  

Appendix: Processing gaps in the monomer alignments 
Some reads are translated into monoreads with gaps represented by the “?” symbols that              
reveal regions of low identity to all monomers. The SD algorithm generates a read              
decomposition where each position is covered by a monomer and replaces all unreliable             
monomers by the “?” symbol in the monoread. However, the number of the predicted “?”               
symbols in a monoread is not necessarily an accurate approximation of the total length of               
non-monomeric positions in a read. Additionally, the AC algorithm produces a           
decomposition that does not cover all positions of a read, resulting in ​non-covered positions              
in the AC monomer decomposition, with no monomer alignment covering these positions.  
 
We thus modified a transformation of a read ​R into a monoread ​mono(R) by replacing a run                 
of non-covered positions of length ​L by a run of the gap symbol “?” with length                
L/MonomerLength​, where ​MonomerLength ​is the  average length of monomers.  



Appendix: Benchmarking string decomposition tools 
 
Alpha-CENTAURI. ​Alpha-CENTAURI v.0.2 was run with default parameters. While HMMer 
search from the first stage of the Alpha-CENTAURI algorithm (partitioning a read into 
consequent monomers locations) was successful, the second stage (monomer sequences 
clustering and monomer identification) did not generate a precise read decomposition into 
monomers, reporting many abnormal HORs alignments, and was removed from further 
analysis.  
 
TandemRepeatsFinder. ​TRF 4.09 version was run with recommended parameters for 
human genome (​https://tandem.bu.edu/trf/trf.whatnew.html​). Though TRF has identified the 
correct monomer length (~170 bp) in all centromeric reads, its output is difficult to use for 
further analysis. In particular, it is not clear how to identify monomers from the putative 
positions identified by TRFs as these positions are often shifted. For example a read 
bcc5e5d2-f12f-4b59-b952-bd10f81ac89f​ in rel2 T2T dataset is fully covered by DXZ1* 
monomers both according to SD and TRF, but TRF alignments positions have a 40 bp shift 
with respect to SD positions, making it difficult to identify monomers with high identity scores. 
In contrast, TRF identified a rather small shift (~10-15 bp) in a read 
c500a3b1-f00c-40c1-94af-e33bae40ca71, ​resulting in a successful prediction of monomers 
from the TRF alignments. 
 
NCRF. ​We launched NCRF v1.01.02 to search for repeats of DXZ1* with parameters 
“--scoring=nanopore --minlength=5000”. Appendix  “Benchmarking NCRF” analyzes NCRF 
results using monomer-free metrics and compares it with other string decomposition 
approaches.  

Appendix: Benchmarking NCRF 
We compared NCRF with the AC and SD approaches using the dataset ​Reads defined in               
the Results section and analyzing two monomer-free metrics:  

● read coverage, ​the fraction of reads’ length partitioned into monomers for (AC and             
SD approaches) or covered by the DXZ1* HOR (NCRF approach). 

● percentage of unaligned segments. Two consecutive aligned monomers in a read are            
separated by an unaligned segment if the distance from the end of the first monomer               
alignment to the start of the second monomer alignment exceeds          
MinUnalignedLength (default value ​MinUnalignedLength​=10 bp). Since NCRF       
reports HORs without spaces in the alignment, it has 0 unaligned segments. 
 

Table S1 illustrates that NCRF has lower ​read coverage ​than the SD and AC approaches               
but improves on these approaches with respect to the number of unaligned segments.  
 
  
 

Approach read coverage (%) % unaligned 
segments 
(#unaligned segments 
/ #monomers) 

https://tandem.bu.edu/trf/trf.whatnew.html


AC 98 2.95 

NCRF 92 0 

SD 99 0.14 

 
Table S1. Monomer-free metrics for the AC, NCRF and SD tools. 

Appendix: cenX monomers  

In order to extract twelve monomer sequences we launched “chop,to,monomers.py” script            
from Alpha-CENTAURI v.0.2G on the consensus monomer HMM        
(​https://github.com/volkansevim/alpha-CENTAURI/blob/master/example/alpha.hmm​) and a   
concatenation of two DXZ1* sequences derived in Bzikadze and Pevzner, 2019. The twelve             
cenX monomers are derived from the Alpha-CENTAURI output. The twelve monomers           
forming cenX HOR monomers are usually reported as CDEABCDEABCD since this           
sequence of monomers reflects the ancestral pentamer structure (CDEAB) of the HOR from             
which cenX HOR (DXZ1) originated. Since this representation is inconvenient for analyzing            
string decomposition of cenX, we instead represent DXZ1 as ABCDEFGHIKL.  

Appendix: Generating accurate read alignments to cenX 
In order to generate a set of accurate alignments, positions of alignments generated by the               
TandemMapper tool (Mikheenko et al., 2020) were compared to the positions of read             
alignments in the cenX assembly generated by centroFlye. It turned out that some             
TandemMapper alignments differ from centroFlye alignments. This is likely caused either by            
an incorrect mapping of some reads to centromere (generated by TandemMapper) or by an              
erroneous recruitment of non-cenX reads to cenX (provided by centroFlye). We thus filtered             
out reads with differing starting positions (by more than 2 kbp) of TandemMapper and              
centroFlye alignments, resulting in 1442 read alignments. 
 
Appendix: Errors in monoread-to-monocentromere alignments  

 
Fig. S3. Monoread-to-monocentromere alignments. ​The first row represents ​mono(origin(Read))​,         
the second row represents ​mono(Read)​. The matching positions are shown in black and positions              
with errors are shown in red. The following types of errors are shown: gap-monomer mismatch (1),                
monomer-insertion (2), monomer-monomer mismatch (3), monomer-gap mismatch (4),        
monomer-deletion (5), gap-deletion (6), gap-insertion (7).  

Appendix: Detailed analysis of errors in string decomposition 
Most alignment errors between monoreads and monocentromere for both SD and AC 
approaches occur due to inconsistencies between (inaccurate) reads and (accurate) 
centromere assembly.  
 

https://github.com/volkansevim/alpha-CENTAURI/blob/master/example/alpha.hmm


Since 91% of mismatches for the AC approach are ​monomer-gap mismatches ​(Table 1), we 
analyzed monomers predicted by SD but missed by AC. All SD monomer alignments that 
have overlap longer than 100 bp with some gap symbol (“?”) output by AC were considered. 
All monomer predicted by SD were divided into three groups: (i) the highest-scoring 
monomer is a true monomer, (ii) the second highest-scoring monomer is a true monomer, 
and (iii) none of the two highest-scoring monomers is a true monomer. Figure ​S4​ presents 
the scatter-plot of the scores of the highest-scoring and the second highest-scoring 
monomers for each group (left) and the distribution of their differences (right). All alignments 
have relatively low identity (below 85%) as compared to the average identity of all monomers 
(93%). However, the highest-scoring monomer is correct in ~99% of cases and the 
difference in identity between the highest-scoring and the second-highest scoring monomers 
is rather substantial (more than 4% in most cases). Both the highest-scoring and the 
second-highest scoring monomers are incorrect in approximately 0.3% of cases.  
 

 
Fig. S4. Statistics of scores for monomers that the AC approach failed to predict. ​(Left) Analysis                
of underpredicted monomers that were classified as monomer-gap mismatches: the scatter-plot of the             
highest monomer score and the second-highest monomer score for three cases: the highest-scoring             
monomer is correct (blue), the second highest-scoring monomer is correct (green), neither the             
highest-scoring nor the second highest-scoring monomer is correct (red). The intensity of the color              
reflects the number of points with such identity values. (Right) Distribution of differences between the               
identity of the highest-scoring and the second highest-scoring monomers. 
 
SD and AC made 18 (20) gap-insertions, 0(6) monomer-insertions, and 117 (154) 
monomer-deletions. Most such errors arise in corrupted regions of reads with low alignment 
quality —  the identities of  flanking monomers located next to such regions usually falls 
below 80%. AC has more insertions (deletions) than SD, as the run of “?” identified by AC 
are sometimes longer (shorter) than the correct number of monomers in the run. 
 
 

Appendix: Most frequent human monomers  
It turned out that 21 out of 965 monomers in the set ​AllMonomers​ do not appear in any 
monoreads. Figure S5 presents the histogram of frequencies of the remaining 965-21=944 
monomers. Table S2 presents frequencies of 100 most frequent monomers in the set 
MonoReads​. 



 
  
Fig. S5. Histogram of frequencies 944 monomers with non-zero frequencies in the set 
MonoReads​. ​The x-axis shows the monomer frequency (in thousands) and the height of each bar 
represents the number of monomers with this frequency (The bin size is 50).  
 

Monomer Frequency  Monomer Frequency  Monomer Frequency  Monomer Frequency  Monomer Frequency  

1 314720 21 49294 41 36522 61 35598 81 29801 

2 229898 22 46100 42 36519 62 35555 82 29718 

3 93658 23 45628 43 36509 63 35344 83 27612 

4 93124 24 43689 44 36480 64 34449 84 26599 

5 92475 25 42939 45 36474 65 34059 85 25583 

6 92044 26 42093 46 36435 66 34054 86 25148 

7 90964 27 38588 47 36414 67 34005 87 24961 

8 90839 28 38582 48 36098 68 33513 88 24563 

9 81976 29 38575 49 35970 69 33485 89 24521 

10 81947 30 38545 50 35967 70 33436 90 24486 

11 81169 31 38463 51 35932 71 33393 91 24485 

12 81155 32 38461 52 35903 72 33264 92 24286 

13 81126 33 37400 53 35862 73 33148 93 24177 

14 80986 34 37321 54 35763 74 32778 94 24167 

15 80885 35 36794 55 35722 75 31031 95 23505 

16 80768 36 36754 56 35717 76 30763 96 22792 

17 64762 37 36746 57 35708 77 30452 97 22786 

18 59226 38 36731 58 35674 78 29971 98 22727 

19 58511 39 36567 59 35672 79 29954 99 22724 

20 51012 40 36529 60 35612 80 29807 100 22642 

 
Table S2. Frequencies of 100 most frequent monomers in the set ​MonoReads​. ​The total number 
of identified monomers is 7,577,262. 40 monomers have frequency below 10, and 9 of them have 
frequency 1. 33 monomers out of 40 have very low average alignment identity (below 75%).  



Appendix: Most frequent putative human HORs 
 
Table S3 presents information about 100 most frequent HORs in the set ​MonoReads​. 
 

ID Size HOR TandemCount Count 

1 2 _1_2_ 179339 214076 

2 6 _3_4_6_8_7_5_ 67874 80205 

3 8 _10_9_12_11_16_15_14_13_ 59607 71244 

4 4 _1_24_25_17_ 23364 39748 

5 12 _37_41_42_44_39_47_45_46_38_35_40_43_ 22503 29704 

6 5 _89_88_91_93_90_ 20409 22634 

7 7 _18_30_27_28_29_32_31_ 14466 29166 

8 16 _71_63_55_59_56_52_53_60_26_50_61_57_62_49_36_48_ 14265 22005 

9 12 _21_81_80_82_21_66_64_67_65_51_54_58_ 10094 14085 

10 4 _185_193_191_19_ 8548 11074 

11 10 _72_73_20_1_20_78_79_74_77_76_ 7259 11546 

12 11 _129_128_126_18_30_27_28_29_32_31_18_ 6764 12111 

13 16 
_157_141_142_19_145_139_140_136_143_19_146_149_148_147_96_137
_ 6325 10308 

14 17 
_175_174_177_179_178_183_184_182_181_171_170_169_172_173_180_
186_176_ 5531 8855 

15 8 _187_190_188_200_194_192_195_197_ 5447 8225 

16 8 _152_154_153_151_150_69_70_68_ 5092 10522 

17 18 
_114_116_127_166_164_165_123_111_121_119_125_124_117_115_120_
108_109_110_ 5003 8525 

18 13 _210_207_216_214_209_212_203_202_213_196_222_206_204_ 4996 6952 

19 10 _73_2_1_20_78_79_74_77_76_72_ 4939 7454 

20 7 _68_135_132_131_167_69_70_ 4937 8377 

21 10 _228_229_231_230_225_223_226_227_224_234_ 4569 5818 

22 19 
_107_22_92_95_85_22_130_113_101_112_122_134_102_98_97_106_105
_87_86_ 4154 7493 

23 8 _260_269_268_267_276_238_244_242_ 3993 4745 

24 12 _51_54_58_21_81_80_82_163_66_64_67_65_ 3749 6270 

25 12 _1_2_1_2_103_17_34_33_1_2_1_2_ 3508 8300 

26 15 _123_111_121_119_125_124_117_115_120_108_109_110_114_116_127_ 3278 7498 

27 11 _252_249_232_248_261_263_266_264_262_239_251_ 3047 4194 

28 14 _257_258_241_254_265_270_274_237_275_236_272_259_26_253_ 3015 4213 

29 8 _163_66_64_67_65_51_54_58_ 2959 4300 

30 11 _286_281_283_287_273_285_243_246_245_250_247_ 2578 3282 

31 4 _23_75_144_155_ 2285 9293 



32 11 _152_154_153_151_150_69_70_68_135_132_131_ 2239 3626 

33 6 _199_94_99_138_133_118_ 2199 6213 

34 10 _1_2_1_2_103_17_34_33_1_2_ 2097 6054 

35 15 _23_168_84_83_23_75_84_83_162_158_156_23_75_144_155_ 2013 3651 

36 14 _94_99_138_133_118_199_94_99_138_133_118_198_201_189_ 1966 3696 

37 18 _18_30_27_28_29_32_31_18_129_128_126_18_30_27_28_29_32_31_ 1903 4804 

38 8 _94_99_138_133_118_198_201_189_ 1748 4567 

39 2 _104_104_ 1662 5784 

40 4 _5_3_4_6_ 1617 7557 

41 4 _8_7_5_3_ 1369 10281 

42 15 _152_154_153_151_150_69_70_68_135_132_131_167_69_70_68_ 1357 2589 

43 14 _1_2_1_2_103_17_34_33_1_2_1_2_1_2_ 1280 3656 

44 11 _84_83_162_158_156_23_75_144_155_23_168_ 1210 2163 

45 10 _315_317_316_312_310_308_418_311_313_314_ 1173 1456 

46 15 _215_217_211_220_218_221_219_205_159_161_160_278_159_161_160_ 1170 2062 

47 11 _215_217_211_220_218_221_219_205_159_161_160_ 1168 3171 

48 16 _1_24_25_17_1_24_25_17_34_33_1_100_1_24_25_17_ 1160 2645 

49 8 _1_2_103_17_34_33_1_2_ 1141 4138 

50 12 _1_24_25_17_34_33_1_100_1_24_25_17_ 1130 3227 

51 15 _159_161_160_19_159_161_160_215_217_211_220_218_221_219_205_ 1107 1722 

52 10 _8_7_5_3_4_6_8_7_5_3_ 1030 6550 

53 16 
_343_369_370_347_346_328_348_342_341_352_349_350_351_345_340_
344_ 1007 1579 

54 15 _240_366_362_356_309_358_361_364_355_354_357_360_353_365_240_ 972 1527 

55 8 _24_25_17_34_33_1_100_1_ 937 2774 

56 2 _96_137_ 928 3669 

57 10 _308_459_311_313_314_315_317_316_312_310_ 885 1106 

58 16 _141_142_19_145_139_140_136_143_19_146_149_148_147_96_137_96_ 860 1416 

59 4 _21_81_80_82_ 848 4110 

60 2 _10_9_ 825 4800 

61 16 _1_2_1_2_1_2_1_2_103_17_34_33_1_2_1_2_ 805 2058 

62 10 _5_3_4_6_8_7_5_3_4_6_ 797 4054 

63 10 _225_223_226_227_224_454_228_229_231_230_ 783 1106 

64 4 _51_54_58_21_ 728 3055 

65 16 _8_7_5_3_4_6_8_7_5_3_4_6_8_7_5_3_ 720 3755 

66 16 
_408_414_405_403_410_413_407_412_417_406_377_404_409_455_401_
402_ 690 1050 

67 4 _18_129_128_126_ 682 2509 

68 15 _63_55_59_56_52_53_60_26_50_61_57_62_49_36_48_ 674 1726 

69 6 _103_17_34_33_1_2_ 642 2717 

70 10 _10_9_12_11_16_15_14_13_10_9_ 618 3051 



71 2 _64_67_ 585 2167 

72 11 _273_391_243_246_245_250_247_463_386_411_458_ 578 891 

73 11 _23_75_84_83_162_158_156_23_75_144_155_ 577 1793 

74 2 _191_19_ 568 4877 

75 8 _20_78_79_74_77_76_72_73_ 563 2623 

76 8 _23_75_144_155_23_168_84_83_ 558 1614 

77 14 _99_475_99_489_497_118_502_499_501_453_491_488_189_94_ 494 716 

78 3 _104_104_104_ 489 1861 

79 14 _543_551_36_546_541_237_531_236_534_527_26_500_532_518_ 481 669 

80 9 _433_559_572_469_542_579_452_480_449_ 474 575 

81 2 _100_1_ 461 1887 

82 15 _55_59_56_52_53_60_26_50_61_57_62_49_36_48_71_ 454 1306 

83 16 
_508_520_517_512_507_495_510_506_516_514_509_513_240_523_309_
515_ 450 673 

84 15 _106_105_87_86_107_22_482_474_101_481_457_134_102_98_97_ 432 624 

85 8 _485_564_568_560_367_503_363_367_ 427 572 

86 4 _92_95_85_22_ 426 1226 

87 8 _376_383_382_394_395_439_189_392_ 411 1080 

88 16 _21_81_80_82_21_66_64_67_65_51_54_58_21_81_80_82_ 401 1300 

89 18 _10_9_12_11_16_15_14_13_10_9_12_11_16_15_14_13_10_9_ 369 1471 

90 16 _51_54_58_21_81_80_82_163_66_64_67_65_51_54_58_21_ 364 1146 

91 6 _14_13_10_9_12_11_ 363 2417 

92 18 
_96_137_157_141_142_19_145_139_140_136_143_19_146_149_148_147
_96_137_ 361 978 

93 4 _205_159_161_160_ 346 1279 

94 16 _5_3_4_6_8_7_5_3_4_6_8_7_5_3_4_6_ 332 1822 

95 4 _161_160_278_159_ 316 1081 

96 15 _113_101_112_122_134_102_98_97_106_105_87_86_107_22_92_ 310 687 

97 6 _67_65_51_54_58_21_ 304 1410 

98 4 _6_8_7_5_ 294 2460 

99 2 _3_4_ 293 3148 

100 10 _65_51_54_58_21_81_80_82_163_66_ 276 540 

Table S3. Top 100 ​k​-mers (putative HORs) with the highest tandem counts. ​Each putative HORs 
is represented by a sequence of monomers from the set ​AllMonomers​.  
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