

advances.sciencemag.org/cgi/content/full/6/33/eabb5093/DC1

Supplementary Materials for

3D bioprinting spatiotemporally defined patterns of growth factors to tightly control tissue regeneration

Fiona E. Freeman, Pierluca Pitacco, Lieke H. A. van Dommelen, Jessica Nulty, David C. Browe, Jung-Youn Shin, Eben Alsberg, Daniel J. Kelly*

*Corresponding author. Email: kellyd9@tcd.ie

Published 14 August 2020, *Sci. Adv.* **6**, eabb5093 (2020) DOI: 10.1126/sciadv.abb5093

This PDF file includes:

Figs. S1 to S5

Supplementary Materials:

Supplementary Fig. 1. Development of growth factor releasing bioinks. (A) Spreading Ratio for RGD γ -irradiated alginate alone and various ratios of RGD γ -irradiated alginate to methylcellulose. Error bars denote standard deviation, ***p<0.001, *n*=6. (B) Representative images of the design pattern used to determine spreading ratios of the bioinks. (C) Cumulative release of VEGF into the media after the addition of Laponite. ^ap<0.05 vs. RGD γ -irradiated alginate, ^bp<0.05 vs. RGD γ -irradiated alginate + methylcellulose, ^cp<0.05 vs. RGD γ -irradiated alginate + methylcellulose + Laponite. (D) Cumulative release of VEGF into the media after the addition of nHA. ^ap<0.05 vs. RGD γ -irradiated alginate + methylcellulose, ^bp<0.05 vs. RGD γ -irradiated alginate + methylcellulose, ^cp<0.05 vs. RGD γ -irradiated alginate + methylcellulose + Laponite. (D) Cumulative release of VEGF into the media after the addition of nHA. ^ap<0.05 vs. RGD γ -irradiated alginate, ^bp<0.05 vs. RGD γ -irradiated alginate + methylcellulose + Laponite. (D) Cumulative release of VEGF into the media after the addition of nHA. ^ap<0.05 vs. RGD γ -irradiated alginate + methylcellulose, ^cp<0.05 vs. RGD γ -irradiated alginate + methylcellulose, ^cp<0.05 vs. RGD γ -irradiated alginate + methylcellulose + nHA. All error bars denote standard deviation, *n*=6. (E) Schematic of the 3D printed scaffold and experimental groups. Construct design (8mm in diameter, 4 mm in height). (F) VEGF ELISA on the centre 10 and periphery of the 3D printed scaffolds 1 hour post printing and (G) after 14 days of *in vitro* culture. All error bars denote standard deviation, *p<0.05, ****p<0.0001, *n*=6.

В

2 weeks

Supplementary Fig. 2. Mature vessels present at 2 and 4 weeks in both Homogenous and VEGF gradient groups. Immunohistochemical staining of nuclei (blue), vWF (red), and α -smooth actin (green) of the experimental groups at (A) 2 and (B) 4 weeks post-implantation. Imaged taken at 20X and 40X. Yellow arrows denote vessels with α -smooth actin and vWF dual staining.

Supplementary Fig. 3. Cumulative release of BMP-2 into the media of varying w/w ratio of Alginate to Laponite. Error bars denote standard deviation, n=4.

Supplementary Fig. 4. Cumulative release of VEGF into the media of the three different experimental groups. Error bars denote standard deviation, ${}^{a}p<0.05$ vs. VEGF Gradient, ${}^{b}p<0.05$ vs. Composite, ${}^{c}p<0.05$ vs. BMP-2 Gradient, n=6

Supplementary Fig. 5. Bone regeneration over time, as determined by *in vivo* μ CT analysis. 3D reconstructions of the best, intermediate and worst healers from all four groups at all-time points.