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Data S1. Extended description of statistical methods 
 

Here we provide a description of the statistical models used in the study that is more 

formal than the description in the main text. 

Multivariate Reaction Norm Model 

 

We used a novel whole-genome modelling framework, Multivariate Reaction Norm 
Models (MRNMs), to detect G-C and R-C interactions. MRNM is an extension of 
bivariate linear mixed models. In the simplest form of a bivariate linear mixed model, 
the main trait, y, and the covariate, c, for individual i, after adjusting for their respective 
fixed effects, 𝜇𝑦 and 𝜇𝑐, are simultaneously expressed as 

 

( 
𝑦𝑖 − 𝜇𝑦 
𝑐𝑖 − 𝜇𝑐

) = (
𝑔𝑖
𝛽𝑖
) + (

𝑒𝑖
𝜀𝑖
),                                                                       Equation 1 

 

Where 𝑔𝑖 ~ N(0, 𝜎𝑔
2) and 𝛽𝑖 ~ N(0, 𝜎𝛽

2) are genetic effects, which are aggregates of 

random effects of genome-wide SNPs on the main trait and on the covariate, 
respectively; 𝑒𝑖 ~ N(0, 𝜎𝑒

2) and 𝜀𝑖 ~ N(0, 𝜎𝜀
2) are residual effects, and both 𝑔𝑖 and 𝛽𝑖 

are independent from 𝑒𝑖 and 𝜀𝑖.  
 
MRNM extends Equation 1 by decomposing the random effects of the main traits into 
main effects and effects modulated by the covariate, which can be written as 
 

( 
𝑦𝑖 − 𝜇𝑦 
𝑐𝑖 − 𝜇𝑐

) = (
𝑔𝑖
𝛽𝑖
) + (

𝑒𝑖
𝜀𝑖
) = (

𝛼0𝑖 + 𝑐𝑖 · 𝛼1𝑖
𝛽𝑖

) + (
𝜏0𝑖 + 𝑐𝑖 · 𝜏1𝑖

𝜀𝑖
)          Equation 2  

 

where 𝑔𝑖  breaks into 𝛼0𝑖 + 𝑐𝑖 · 𝛼1𝑖 , 𝑒𝑖  into 𝜏0𝑖 + 𝑐𝑖 · 𝜏1𝑖  , 𝛼0𝑖  ~ N(0, 𝜎𝛼0
2 ), 𝛼1𝑖  ~ 

N(0, 𝜎𝛼1
2 ), 𝜏0𝑖 ~ N(0, 𝜎𝜏0

2 ) and 𝜏1𝑖 ~ N(0, 𝜎𝜏1
2 ). We use 𝑐𝑖 to denote the covariate for 

individual i, 𝛼0𝑖 for the main genetic effect on the main trait 𝑦𝑖 , 𝜏0𝑖 for the residual 

effect, 𝛼1𝑖  for the genotype-covariate interaction effect, and 𝜏1𝑖  for the residual-

covariate interaction effect. 
 
As shown in both equations, variance of the main trait and of the covariate are 

partitioned into two general sources, one of genetics (i.e., 𝜎𝑔
2 & 𝜎𝛽

2) and one of non-

genetics or residuals (i.e., 𝜎𝑒
2 & 𝜎𝜀

2). By modelling the main trait and the covariate 
simultaneously, the covariance between the main trait and the covariate, in forms of 
𝑐𝑜𝑣 (𝑔𝑖 , 𝛽𝑖) and 𝑐𝑜𝑣 (𝑒𝑖 , 𝜀𝑖), is accounted for in a MRNM. This is important given that 
the covariance between the main trait and covariate can sometimes be nontrivial and 
would have been neglected in univariate random regression models. More importantly 
though, the 𝑔𝑖 and 𝑒𝑖 terms are expanded in terms of 𝑐𝑖 in Equation 2, which offers 
opportunities to model the genetic and residual variances of the main trait as a function 
of the covariate. With this expansion, it is immediately clear that genetic variance 𝜎𝑔

2 

breaks into var(𝛼0 + 𝑐 · 𝛼1) and residual variance 𝜎𝑒
2 into var(𝜏0 + 𝑐 · 𝜏1), both of 

which vary with respect to the covariate. As such, MRNMs can estimate and detect 
genetic and residual variance heterogeneity due to the chosen covariate. A G-C 

interaction that underlies genetic variance heterogeneity is indicated by significant 𝜎𝛼1
2 , 



 
 

and a R-C interaction that underlies residual variance heterogeneity is indicated by 

significant 𝜎𝜏1
2 . 

 
The MRNM shown in Equation 2 is referred to as the full model, which assumes and 
detects both genetic and residual variance heterogeneity with respect to the covariate. 
The full model can be simplified into other three major forms. Specifically, by setting 

both var(𝑐 · 𝛼1) and var(𝑐 · 𝜏1) to 0, the null model assumes no heterogeneity in either 

the genetic or the residual variance of the main trait with respect to the covariate. By 

setting var(𝑐 · 𝜏1) to 0, the G-C model assumes no R-C interaction and estimates the 

extent of genetic heterogeneity with respect to the covariate. Finally, by setting var(𝑐 ·
𝛼1) to 0, the R-C model assumes no G-C interaction and estimates the extent of 

residual heterogeneity with respect to the covariate.  
 
A detailed description of the variance-covariance structure assumed by MRNMs is 
provided below. Following Equation 1, the main trait, y, and the covariate, c, for 
individual i, after adjusting for their respective fixed effects, 𝜇𝑦  and 𝜇𝑐 , are 

simultaneously expressed as 

( 
𝑦𝑖 − 𝜇𝑦 
𝑐𝑖 − 𝜇𝑐

) = ( 
𝑦𝑖
∗
 

𝑐𝑖
∗ ) = (

𝑔𝑖
𝛽𝑖
) + (

𝑒𝑖
𝜀𝑖
) 

 

The variance-covariance matrix for N realizations of ( 
𝑦∗

 

𝑐∗
) can be expressed as 

 

𝑣𝑎𝑟 ( 
𝑦∗

 

𝑐∗
) =

[
 
 
 
 
𝐙1𝐀σ𝑔1

2 𝐙1
′ + 𝐙1𝐈σ𝑒1

2 𝐙1
′ ⋯ 𝐙1𝐀𝜎𝑔1,𝑁𝐙𝑁

′ +𝐙1𝐈𝜎𝑒1,𝑁𝐙𝑁
′ 𝐙1𝐀𝜎𝑔1,𝛽𝐙𝑐

′+𝐙1𝐈𝜎𝑒1,𝜀𝐙𝑐
′

⋮ ⋱ ⋮ ⋮
𝐙N𝐀𝜎𝑔1,𝑁𝐙1

′+𝐙N𝐈𝜎𝑒1,𝑁𝐙1
′ ⋯ 𝐙𝑁𝐀σ𝑔𝑁

2 𝐙N
′ + 𝐙𝑁𝐈σ𝑒𝑁

2 𝐙𝑁
′ 𝐙𝑁𝐀𝜎𝑔𝑁,𝛽𝐙𝑐

′+𝐙𝑁𝐈𝜎𝑒𝑁,𝜀𝐙𝑐
′

𝐙𝑐𝐀𝜎𝑔1,𝛽𝐙1
′+𝐙c𝐈𝜎𝑒1,𝜀𝐙1

′ ⋯ 𝐙𝑐𝐀𝜎𝑔𝑁,𝛽𝐙𝑁
′ +𝐙c𝐈𝜎𝑒𝑁,𝜀𝐙𝑁

′ 𝐙𝑐𝐀σ𝛽
2𝐙𝑐

′ + 𝐙𝑐𝐈σ𝜀
2𝐙𝑐

′
]
 
 
 
 

 

 

Where 𝐈 is an N x N identity matrix, A is the N x N genomic relationship matrix based on 

genome-wide SNP information, 𝐙i is the incident matrix for 𝑔𝑖 for i = 1, 2 …N, and 𝐙c is 

the incident matrix for 𝒄 . 

 
Prior to model fitting, we attempted to simplify the general MRNMs outlined above by 
reducing the number of free parameters for estimation. We estimated heritability of 
each lifestyle covariate in the ARIC dataset via univariate Genomic Restricted 
Maximum Likelihood (GREML), and found that all estimates were close to zero. Daily 
potassium intake was the only covariate with an estimate marginally different from 

zero (h2 = 0.08 ± 0.04). Subsequently, we simplified MRNMs by setting 𝜎𝛽
2  (i.e., 

genetic variance of the covariate) and its associated covariance terms, i.e., 𝑐𝑜𝑣 (𝛼0 , 𝛽) 
and 𝑐𝑜𝑣 (𝛼1 , 𝛽), to 0.  Unless specified otherwise, all MRNMs fitted to ARIC data in 
this paper are simplified MRNMs. 
 
For each pair of main trait and covariate, the null and full models were fitted and 

compared using a likelihood ratio test. For the simplified MRNMs, the test statistic, i.e., 

-2 log likelihood ratio, is assumed to have a chi-square distribution with five degrees 

of freedom. The alpha level was set at 0.05.  A significant p-value indicates the full 



 
 

model has a better fit than the null, hence the presence of a G-C, R-C interaction, or 

both. Since the full model does not separate G-C and R-C interactions, we considered 

a model comparison strategy to separate the two. However, we show in Data S3 that 

this strategy can suffer from weak statistical power and biased estimation, which 

makes it an overall inferior method to the null versus full model comparison method 

for detecting G-C and R-C interactions. Therefore, our results are based on the latter.  

All model fitting for this paper was performed using MTG2. 

UKBB Validation 

 
To validate significant results found in the ARIC dataset, we repeated analyses using 
the UKBB for variables where the two datasets overlap. Since the UKBB has a larger 
sample size, hence greater statistical power, we explicitly estimated the genetic 
variance of the covariate when fitting a MRNM, rather than fixing this parameter at 
zero as for the ARIC dataset. Subsequently, the degree of freedom used for the 
likelihood ratio test that compares the full model with the null model was seven as 
opposed to five. Same as for the ARIC dataset, we estimated heritability of each UKBB 
trait using two URNMS (i.e., null and interaction models) and the inclusion of a 
covariate was based on MRNM results. 
 

Heritability Models 

 

We considered the consequence of neglecting G-C and R-C interactions on heritability 

estimates.  Specifically, we estimated heritability of each trait using two models, one 

that includes no interaction term at all, i.e., null model (also known as GREML), and 

the other that includes one or more interaction terms, i.e., interaction model, and 

compared estimates of the two models. To reduce computational burden, we used 

univariate reaction norm models (URNMs), as opposed to MRNMs. The null model in 

the univariate framework is essentially Equation 1 without the part that involves the 

covariate, ci. Using the same notation as Equation 1, the main trait for individual i, in 

a URNM can be written as: 

 

Null model:                       𝑦𝑖 − 𝜇𝑦 = 𝑔𝑖 + 𝑒𝑖 

The interaction model in the univariate framework expands gi and ei as functions of 

m1 and m2 covariates, respectively, where m1 + m2 ≥ 1. Using j to index covariate, the 

main trait for individual i in a URNM with interaction terms can be written as: 

Interaction model:           𝑦𝑖 − 𝜇𝑦 = 𝛼0𝑖 + ∑ 𝑐𝑖𝑗𝛼𝑖𝑗
𝑚1
𝑗=1 + 𝜏0𝑖 + ∑ 𝑐𝑖𝑘𝜏𝑖𝑘

𝑚2
𝑘=1  

 

  



 
 

Data S2. Simulation studies 

 

Simulation Settings 

 

To facilitate data interpretation, we simulated phenotypic data with and without G-C 

and/or R-C interactions and assessed, using simulated data, whether MRNMs can 

produce unbiased parameter estimates, type I error rate and power of detecting G-C 

and R-C interactions. We purposely chose two sets of model parameter configurations 

that varied primarily in effect size for heritability, G-C and R-C interactions. One setting 

had large effect sizes, referred to as the ‘large-effects setting’, with a heritability of 0.5 

for both the main trait and the covariate and both 𝜎𝛼1
2  and 𝜎𝜏1

2 , which are indicative of 

G-C and R-C interactions, were set at 0.5. In contrast, the other setting had smaller 

effect sizes, referred to as the ‘small-effects setting’, with a heritability of 0.15 for the 

main trait, 0 for the covariate, and both 𝜎𝛼1
2  and 𝜎𝜏1

2  were set at 0.05. It is noted that 

the small-effects setting resembled more closely parameter estimates from real data 

analyses than the large-effects setting.  Thus, results of the former setting would be 

more informative about how well our models and the likelihood test for model 

comparisons perform for analysis of real data. 

 

Each parameter setting covered four scenarios—no G-C and R-C interactions (or the 

null), R-C interaction only, G-C interaction only, and both R-C and G-C interactions—

where the true data generating models were the four models described above.  Under 

each scenario, we simulated 100 replicates of phenotypic data (n = 7,513) of a main 

trait and a covariate, each based on 10,000 randomly chosen causal variants from the 

ARIC genotype data (see Table S1 for an overview). For every replicate, we fitted the 

full and null models and compared the fit of the two models using the abovementioned 

likelihood ratio test. For every scenario, we computed the proportion of replicates, out 

of 100, for which the full model has a better fit than the null. This proportion takes on 

different interpretations depending on the simulation scenario. It is an estimate of type 

I error rate when the true model is the null, whereas it is an estimate of statistical power 

in scenarios where the true model is other than the null. 

 

It is important to note that all simulating models above assume normally distributed 

random effects (e.g., genetic and residual effects). In effect, for any given covariate 

value, the main trait follows a normal distribution. This normality assumption however, 

is likely violated for many traits of the ARIC and UKBB datasets, which are 

characterised by substantially larger kurtosis and skewness than would be expected 

from data simulated under normality (Figure S1). Therefore, in addition to the large 

and small effects settings described above, we also simulated data with non-normal 

residuals drawn from Gamma distributions. We purposefully chose two sets of shape 

and scale parameters of Gamma distributions to represent large and small deviations 

from normality. For each of the non-normal settings, we had two scenarios: no G-C 

and R-C interaction (i.e., the null model is true) and G-C and R-C interactions (i.e., the 

full model is true), each with 100 replicates. We fitted the null and full models, which 

by definition all assume normality of random effects, to each replicate and 

subsequently assessed our model comparison method, in terms of type I error, power, 



 
 

and parameter estimates. In the event of an inflated type I error rate, we applied a 

rank-based inverse normal transformation to the simulated data and refitted the 

models. We then assessed the effectiveness of the transformation on reducing false 

positive findings and its potential consequences on statistical power of the model 

comparison method and model parameter estimates.  

 

It is important to emphasize that our interaction models do not assume absolute 

normality of phenotype data, rather their conditional normality on the covariate. Thus, 

unless the true underlying model is the null, when phenotypic observations are 

collapsed across covariate values, the distribution of the collapsed data is not 

necessarily normal. In fact, in the presence of genuine G-C and/or R-C interactions, 

even when the model normality assumption is met, the simulated phenotype can have 

larger skewness and kurtosis than data simulated under the null model (see Figure 

S1). Thus, deviations from normality of a given set of phenotype data could arise from 

genuine G-C or R-C interaction. If they are mistaken as signs of violation of the model 

normality assumption, what would be the consequences of applying a rank-based 

inverse normal transformation for type I error rate, statistical power and model 

estimates? To answer these questions, we also applied the transformation to 

phenotype data simulated under normality (i.e., large & small effect parameter settings) 

and assessed its impact on type I error rate, statistical power and model estimates. 

 

Simulation Results 

 

When the model assumption of normality was met, the estimated type I error rate of 
the null versus full model comparison method was not inflated (0.04; see Table S2). 
Small and large phenotypic deviations from the normality inflated the type I error rate 
to 0.2 and 0.65, respectively. However, after a rank-based inverse normal 
transformation (RINT) of phenotypic data, the type I error rate was approximately 
controlled (0.05 and 0.07 for large and small phenotypic deviations from normality, 
respectively; Table S2), indicating that an RINT can effectively reduce false positive 
findings in face of violations of the normality assumption held by the MRNMs. 
 
The statistical power of the null versus full model comparison was estimated using 
data simulated under scenarios other than the null, i.e., G-C only, R-C only and both 
G-C and R-C interactions. We found that whether the normality assumption is met or 
not, the proportion of replicates for which the full model had a better fit than the null 
was at least 0.88 (Table S2), giving an estimated power above 88%. Applying an RINT 
did not affect the power in any scenario. 
 
For each simulation scenario, we compared parameter estimates from the full model 
with their corresponding true values. Figure S2 shows sampling distributions of full-
model parameter estimates based on 100 replicates for both large and small effects 
settings (in terms of heritability, G-C and R-C interactions; Table S1) when the model 
assumption of normality was met, and it indicates that the full model produced 
unbiased estimates of model parameters under all simulation scenarios. This 
observation holds even when the normality assumption was violated (Figures S3 & 
S4). In contrast, after applying an RINT, full-model estimates were biased for some 
model parameters (Figures S3 & S4). 



 
 

 
In summary, our simulation results indicate that when the model assumption of 
normality is met, the likelihood ratio test that compares the full model with the null can 
detect G-C and/or R-C interaction at an acceptable type I error rate with a reasonable 
level of power. When the normality assumption is violated, however, type I error rate 
would be inflated, in which case an RINT of the phenotype data is an effective remedy 
without compromising statistical power. In situations where the normality assumption 
is not violated, a rank-based inverse normal transformation of the phenotype data 
would not adversely affect type I error rate and statistical power. In terms of parameter 
estimates, full-model estimates of heritability, G-C and R-C interactions are unbiased, 
regardless of whether or not the normality assumption is violated. Full-model estimates 
would however become biased after an RINT. Therefore, for analysis of real data, if 
the model assumption of normality is in doubt, rank-based inverse transformation 
should be applied to control type I error rate; and once a significant finding is declared, 
full model estimates of parameters from data without the transformation should be 
reported and interpreted. 
  



 
 

Data S3. Alternative model comparison strategy 
 

Throughout the text we relied on the null versus full model comparison for detecting 

G-C and R-C interactions. An alternative and seemingly more logical strategy would 

be to derive the best model via model comparisons that involve reduced models, i.e., 

G-C only and R-C only models, in addition to the null and full models. Here we 

elaborate on this alternative strategy; and using results from simulations, we further 

show issues associated with this strategy. We conclude that the null versus full model 

comparison is a superior method, hence a logical choice for detecting G-C and R-C 

interactions. 

 

This alternative strategy uses result patterns from four model comparisons to conclude 

the best model out of five candidates (Table S3). Candidates considered were the null 

model, G-C interaction only model, R-C interaction only model, full model, and G-C or 

R-C interaction models. The last candidate is more of a situation than a model, where 

the model comparison method does not distinguish between G-C and R-C models, 

that is, model selection is inconclusive. It occurs when both G-C model and R-C model 

show a better fit than the null but a worse fit than the full, that is, G-C and R-C models 

are equally likely. Upon concluding the best model, the source of variance 

heterogeneity is immediately implied. For example, genetic variance heterogeneity 

(i.e., a G-C interaction) is declared, when either the G-C model or the full model is the 

best. In contrast, residual variance heterogeneity (i.e., a R-C interaction) is declared, 

when either the R-C model or the full model is the best. 
 

We applied this model selection strategy to simulated data from large- and small-
effects settings and evaluated how well the strategy can recover the true simulating 
model. The results are summarised in Table S4. The method correctly identified the 
null model for at least 97% of the simulated replicates, giving an estimated type I error 
rate of 0.03, which is well under the 0.05 target. However, statistical power—estimated 
by the proportion of replicates for which a true model other than the null is correctly 
identified—varied largely depending on effect size. For the large-effects setting, a true 
model other than the null was correctly identified for at least 91% of replicates, hence 
an estimated power of 0.91 and above. In contrast, for the small-effects setting, the 
estimated power was 0.04 at worst and 0.11 at best. This does not mean though, the 
model comparison method could not detect G-C and R-C interactions that are small in 
magnitude. Rather, for over 75% of replicates under this setting, the likelihood ratio 
test results were such that G-C and R-C models fit data equally well (see last column 
of Table S4).  In short, either when there are no genuine G-C and R-C interactions or 
when genuine G-C and R-C interactions are large in magnitude, the likelihood-ratio-
based method can discern the true underlying model at a high accuracy (>0.9).  
However, when genuine G-C and R-C interactions are small, it is unlikely that the 
method will uncover the true model. 
 

For each simulation scenario, we also compared parameter estimates from all four 
fitted models with their corresponding true values and noted that results are similar for 
the two parameter settings that vary in effect sizes.  Figure S5 shows results for the 
small-effects setting, which hold for the large-effects setting.  When the true underlying 
model was the null, regardless of which model was fitted, all parameter estimates were 



 
 

unbiased.  In scenarios where the true model was other than the null, fitting the correct 
model produced unbiased estimates for all parameters.  However, in these scenarios, 
fitting a wrong model—that is, a model other than the true—could produce biased 
estimates for some parameters.  For example, fitting the null model to data with 
genuine G-C or/and R-C interactions produced larger estimates of the residual 

variance, i.e.,  𝛿𝜏0
2 , than its true value, by an amount similar to the set value of 𝛿𝛼1

2  

or/and 𝛿𝜏1
2 .  When fitting the G-C model to data with R-C interaction but no G-C 

interaction, estimates of 𝛿𝛼1
2  were larger than the true, i.e., 0, by an amount similar to 

the set value of 𝛿𝜏1
2 .  Likewise, when fitting the R-C model to data with G-C interaction 

but no R-C interaction, estimates of 𝛿𝜏1
2  deviated from the true by an amount similar to 

the set value of 𝛿𝛼1
2 .  However, fitting the full model, even when it was the wrong model, 

produced unbiased estimates for all parameters.  Thus, our simulation results indicate 
that model misspecification can result in biased estimates for some parameters 
depending on the simulation scenario, with the only exception of fitting the full model, 
which provides unbiased estimates for all parameters in all scenarios. 
 
In summary, the model selection strategy has a type I error rate under 0.05, but its 
power of recovering the true model is very low when effect sizes are small. 
Consequently, this strategy can result in an alarmingly elevated chance of concluding 
a wrong model, i.e., model misspecification, which could produce biased estimates for 
some model parameters. Therefore, for analysis of real data, where the true underlying 
model is unknown and effects sizes are likely small, this model comparison strategy 
is not useful to select the best model for identifying source of variance heterogeneity. 
In contrast, we showed in the main text that the null versus full model comparison 
method has an acceptable type I error rate and reasonable power when effect sizes 
are small. Even if the full model is not true, model estimates are not biased, which can 
be interpreted subsequently. Hence, the null versus full model comparison is a 
superior method to the alternative model comparison strategy. 
  



 
 

Table S1. True parameter values of four simulation models under four settings. 

 

The top two settings are under the assumption that all random effects of the multivariate reaction normal 

models (MRNMs) for simulation are drawn from normal distributions. This assumption is relaxed for the 

bottom two settings, where residual effects, τ0 and τ1, are drawn from Gamma(k0, θ0) and Gamma(k1, 

θ1) with mean centred at zero, respectively. Each setting comprises four simulation models, which from 

the left to right are the null, full, G-C and R-C models. 

 



 
 

Table S2. Proportion of simulated replicates for which the full model had a better fit than the null 

under different simulation scenarios.  

 

Data of a main trait and a covariate were simulated using four models (1st column) under normality with 

large and small effects (in terms of heritability, Genotype-Covariate (G-C) and Residual-Covariate (R-

C) interactions) and under non-normality that resulted in large and small phenotypic deviations of the 

main trait from normality. Each simulation was repeated 100 times, resulting in 100 replicates of 

simulated data under each setting. For each replicate, the full model, which allows G-C and R-C 

interactions, and the null model, which assumes no G-C and R-C interactions, were fitted then 

compared using a likelihood ratio test. The model comparison was repeated after a rank-based inverse 

normal transformation was applied to the simulated data. 

  

Interpretation
no RINT * RINT no RINT RINT no RINT RINT no RINT RINT

No G-C & R-C 0.04 0.04 0.04 0.05 0.65 0.05 0.2 0.07 type I error

G-C only 1 1 0.93 0.94 0.81 1 0.84 0.99 power

R-C only 1 1 0.88 0.87 0.84 1 0.87 0.99 power

G-C & R-C 1 1 1 1 1 1 1 1 power

*RINT = Rank-based Inverse Normal Transformation

small deviation

Simulation under Normality Simulation under Non-Normality

Simulation 

model

large effects small effects large deviation



 
 

Table S3. Overview of Model Selection Strategy.  

 
Each column shows the model comparison result pattern required to conclude a given candidate model 

is the best. Result patterns are mutually exclusive across the five candidates. A cross indicates a non-

significant p-value for a model comparison (i.e., the simpler model is better), whereas a tick indicates a 

significant p-value (i.e., the simpler model is worse). Comparisons that are not necessary for model 

selection are left as blanks. Note the pattern in the last column does not distinguish between Genotype-

Covariate (G-C) and Residual-Covariate (R-C) interactions, in which case model selection is 

inconclusive. 

  

Null G-C R-C Full G-C/R-C

Null vs. R-C ✕ ✓ ✓ ✓

Null vs. G-C ✕ ✓ ✓ ✓

R-C vs. Full ✓ ✕ ✓ ✕

G-C vs. Full ✕ ✓ ✓ ✕

Model 

Comparison

Candidate Model



 
 

Table S4. Proportions of simulated replicates for which a given candidate model is chosen as 

the best under different simulation scenarios.  

 
Data were simulated under normality with large and small effects in terms of heritability, Genotype-

Covariate (G-C) and Residual-Covariate (R-C) interactions. Each scenario had 100 replicates of a main 

trait and a covariate.  For each replicate, four models were fitted and compared to select the best fitting 

one (see Table S3).  

 

Null G-C R-C Full G-C/R-C

No G-C & R-C 0.98 0 0 0 0.02

G-C only 0 0.93 0 0.07 0

R-C only 0 0 0.96 0.04 0

G-C & R-C 0 0.03 0.06 0.91 0

No G-C & R-C 0.97 0.01 0.02 0 0

G-C only 0.06 0.11 0.03 0.04 0.76

R-C only 0.1 0.01 0.09 0.05 0.75

G-C & R-C 0 0.05 0.14 0.04 0.77

Simulation 

Scenario

Candidate Model
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Table S5. Variance and covariance estimates from the full model for the 34 signals emerged from the atherosclerosis risk in communities study. 

 

All estimates are derived from analyses of data without a rank-based inverse normal transformation. Standard errors are in brackets. Other model parameters 

are omitted for simplicity. Signals replicated in the UK biobank are shaded. Note the UK biobank only has data available to validate 17 signals emerged from 

ARIC. 

Main Trait Lifestlye Covariate

Fibrinogen Cigarette years of smoking 4.0e+02(1.5e+02) -3.6e+02(1.5e+02) -7.9e+01(1.1e+02) 3.1e+03(1.6e+02) 2.9e+02(1.6e+02) 3.6e+02(1.2e+02)

Fibrinogen Physical activity:sports domain 4.2e+02(1.5e+02) -2.5e+02(1.3e+02) 1.5e+01(1.0e+02) 2.9e+03(1.6e+02) 3.6e+02(1.4e+02) -2.7e+02(1.1e+02)

Factor VII Physical activity:sports domain 1.0e+02(3.6e+01) 2.6e+00(3.1e+01) -1.5e+01(2.4e+01) 6.5e+02(3.8e+01) 7.2e+00(3.2e+01) -4.9e+01(2.5e+01)

BMI Alcohol intake (g/week) 2.9e+00(9.0e-01) 1.8e-01(6.9e-01) -1.1e+00(5.7e-01) 1.7e+01(9.3e-01) 5.7e-01(6.9e-01) -1.3e+00(6.0e-01)

BMI Physical activity:leisure domain 3.2e+00(9.2e-01) -6.7e-02(8.3e-01) 3.1e-01(6.3e-01) 1.7e+01(9.6e-01) 5.9e-01(8.7e-01) -1.3e+00(6.4e-01)

BMI Physical activity:sports domain 3.1e+00(9.1e-01) 1.1e-01(6.6e-01) 2.3e-02(5.8e-01) 1.7e+01(9.6e-01) 4.2e-01(7.1e-01) -2.5e+00(6.1e-01)

BMI Keys score 3.2e+00(9.2e-01) -4.0e-01(8.0e-01) -3.3e-01(6.2e-01) 1.7e+01(9.6e-01) 5.5e-01(8.3e-01) 1.5e+00(6.3e-01)

BMI Saturated fat intake (g/day) 3.1e+00(9.2e-01) 4.3e-01(8.7e-01) -2.5e-01(6.5e-01) 1.7e+01(9.6e-01) -5.8e-01(9.1e-01) 1.2e+00(6.6e-01)

BMI Energy from saturated fat (%kcal/day) 3.1e+00(9.2e-01) -1.2e+00(8.1e-01) -5.2e-01(6.2e-01) 1.7e+01(9.6e-01) 1.5e+00(8.5e-01) 1.6e+00(6.4e-01)

BMI Energy from total fat intake (%kcal/day) 3.1e+00(9.2e-01) -1.2e+00(8.2e-01) -3.4e-01(6.3e-01) 1.7e+01(9.6e-01) 1.5e+00(8.8e-01) 1.3e+00(6.4e-01)

Waist-to-Hip Ratio Cigarette years of smoking 3.0e-04(2.0e-04) 0.0e+00(2.0e-04) -1.0e-04(1.0e-04) 3.7e-03(2.0e-04) 0.0e+00(2.0e-04) -1.0e-04(1.0e-04)

Waist-to-Hip Ratio Physical activity:sports domain 3.0e-04(2.0e-04) -2.0e-04(1.0e-04) 0.0e+00(1.0e-04) 3.8e-03(2.0e-04) 3.0e-04(2.0e-04) -2.0e-04(1.0e-04)

Waist-to-Hip Ratio Total energy intake (kcal/day) 3.0e-04(2.0e-04) -1.0e-04(1.0e-04) 1.0e-04(1.0e-04) 3.9e-03(2.0e-04) 0.0e+00(2.0e-04) -3.0e-04(1.0e-04)

Waist-to-Hip Ratio Energy from protein intake (%kcal/day) 3.0e-04(2.0e-04) -1.0e-04(2.0e-04) -1.0e-04(1.0e-04) 3.8e-03(2.0e-04) 0.0e+00(2.0e-04) 2.0e-04(1.0e-04)

Pulse Pressure Cigarette years of smoking 8.0e+00(5.1e+00) -1.1e+00(5.5e+00) -2.7e+00(3.8e+00) 1.0e+02(5.5e+00) 6.3e+00(5.8e+00) 4.6e+00(4.1e+00)

Diastolic Blood Pressure Cigarette years of smoking 7.4e+00(3.2e+00) -7.3e+00(3.0e+00) -2.5e+00(2.2e+00) 6.4e+01(3.4e+00) 8.1e+00(3.2e+00) 4.4e+00(2.4e+00)

Heart Rate Cigarette years of smoking 1.3e+01(4.1e+00) -2.1e+00(4.3e+00) 1.9e+00(3.0e+00) 7.1e+01(4.3e+00) 6.8e+00(4.6e+00) -1.6e+00(3.1e+00)

Heart Rate Physical activity:leisure domain 1.3e+01(4.1e+00) -4.4e+00(3.4e+00) 4.9e+00(2.7e+00) 7.4e+01(4.3e+00) 5.9e+00(3.7e+00) -8.8e+00(2.8e+00)

Heart Rate Physical activity:sports domain 1.2e+01(4.0e+00) 1.1e+00(3.2e+00) 3.4e+00(2.6e+00) 7.7e+01(4.3e+00) -4.6e-01(3.4e+00) -6.7e+00(2.7e+00)

HDL2 Cholesterol Cigarette years of smoking -1.0e-04(1.8e-03) -3.0e-04(1.3e-03) 5.0e-04(1.1e-03) 4.0e-02(1.9e-03) 4.0e-04(1.4e-03) -3.1e-03(1.1e-03)

HDL2 Cholesterol Physical activity:leisure domain -6.0e-04(1.8e-03) -1.2e-03(1.7e-03) 2.0e-04(1.2e-03) 4.0e-02(1.9e-03) 1.7e-03(1.8e-03) 3.0e-03(1.3e-03)

HDL2 Cholesterol Carbohydrate intake (g/day) -5.0e-04(1.8e-03) -1.1e-03(1.4e-03) -4.0e-04(1.1e-03) 4.0e-02(1.9e-03) 1.2e-03(1.4e-03) -1.9e-03(1.1e-03)

HDL2 Cholesterol Total energy intake (kcal/day) -4.0e-04(1.8e-03) -1.5e-03(1.3e-03) -6.0e-04(1.1e-03) 4.1e-02(1.9e-03) 6.0e-04(1.4e-03) -9.0e-04(1.2e-03)

HDL2 Cholesterol Energy from protein intake (%kcal/day) -4.0e-04(1.8e-03) 1.6e-03(1.6e-03) -4.0e-04(1.2e-03) 4.1e-02(1.9e-03) -2.2e-03(1.6e-03) 2.4e-03(1.3e-03)

HDL3 Cholesterol Alcohol intake (g/week) 5.9e-03(2.7e-03) 1.0e-03(3.3e-03) -3.9e-03(2.1e-03) 5.5e-02(2.9e-03) -7.0e-04(3.3e-03) 5.9e-03(2.3e-03)

HDL3 Cholesterol Physical activity:sports domain 6.2e-03(2.7e-03) 5.0e-03(2.8e-03) 1.4e-03(2.0e-03) 5.1e-02(2.9e-03) -1.8e-03(2.9e-03) -2.4e-03(2.0e-03)

HDL Cholesterol Physical activity:sports domain 1.4e-02(6.1e-03) 1.4e-02(6.3e-03) 4.8e-03(4.3e-03) 1.2e-01(6.6e-03) -7.8e-03(6.4e-03) -7.0e-03(4.4e-03)

HDL Cholesterol Monounsaturated fatty acid intake (g/day) 1.3e-02(6.2e-03) 9.0e-04(5.2e-03) -2.0e-03(4.0e-03) 1.2e-01(6.5e-03) -9.0e-04(5.2e-03) -4.4e-03(4.2e-03)

HDL Cholesterol Energy from protein intake (%kcal/day) 1.3e-02(6.2e-03) -4.7e-03(5.9e-03) 1.0e-03(4.4e-03) 1.2e-01(6.6e-03) 5.8e-03(6.1e-03) 4.3e-03(4.5e-03)

Apolipoprotein AI Polyunsaturated fatty acid intake (g/day) 7.3e+03(3.4e+03) -3.4e+03(2.9e+03) 3.7e+03(2.1e+03) 6.8e+04(3.5e+03) 3.8e+03(2.9e+03) -7.4e+03(2.3e+03)

White Blood Cell Count Cigarette years of smoking 4.1e-01(1.2e-01) -6.6e-01(4.6e-02) -3.0e-01(8.0e-02) 3.0e+00(1.4e-01) 5.8e-01(7.4e-02) 8.6e-01(9.2e-02)

White Blood Cell Count Physical activity:leisure domain 5.7e-01(1.3e-01) 1.1e-01(1.3e-01) -7.1e-02(9.4e-02) 2.3e+00(1.4e-01) 1.2e-02(1.3e-01) -1.7e-01(9.5e-02)

White Blood Cell Count Physical activity:sports domain 5.5e-01(1.3e-01) 1.4e-01(1.3e-01) -1.3e-01(9.5e-02) 2.2e+00(1.4e-01) 9.1e-02(1.4e-01) -9.1e-02(9.7e-02)

White Blood Cell Count Keys score 5.5e-01(1.3e-01) 3.9e-03(1.2e-01) 1.5e-01(9.3e-02) 2.4e+00(1.4e-01) -1.0e-02(1.3e-01) 3.0e-03(9.3e-02)

var(  ) var(  ) cov(  ,  ) var(  ) var(  ) cov(  ,   )



 
 

Table S6. Variance and covariance estimates from the full model for the UK Biobank dataset. 

 

All estimates are derived from analyses of data without a rank-based inverse normal transformation. Standard errors are in brackets. Other model parameters 

are omitted for simplicity. 

Main Trait Lifestlye Covariate

BMI Alcohol intake (glass & pint/week) 3.9e+00(2.0e-01) 4.4e-01(2.1e-01) -1.4e-01(1.4e-01) 1.3e+01(2.1e-01) 3.2e-01(2.3e-01) -4.4e-01(1.6e-01)

BMI MET minutes/week for walking 4.0e+00(2.0e-01) 5.7e-02(1.7e-01) -3.6e-01(1.3e-01) 1.2e+01(2.3e-01) 1.1e+00(1.9e-01) -1.2e+00(1.5e-01)

BMI MET minutes/week for moderate activity 3.9e+00(2.0e-01) -1.8e-01(1.4e-01) -1.9e-01(1.2e-01) 1.2e+01(2.2e-01) 1.4e+00(1.8e-01) -1.7e+00(1.5e-01)

BMI MET minutes/week for vigorous activity 4.0e+00(2.1e-01) 1.6e-01(5.7e-01) -1.6e-01(5.7e-01) 1.3e+01(2.2e-01) 5.8e-01(5.8e-01) -1.8e+00(5.7e-01)

BMI Summed MET minutes/week for all activity 3.9e+00(3.7e-01) -1.1e-01(1.9e-01) -2.7e-01(2.4e-01) 1.3e+01(2.1e-01) 1.2e+00(1.9e-01) -1.7e+00(2.2e-01)

BMI estimated saturated fat intake 3.9e+00(3.7e-01) 4.7e-01(3.6e-01) -9.6e-02(2.6e-01) 1.3e+01(3.8e-01) -2.1e-01(3.7e-01) 1.9e-01(2.6e-01)

Diastolic Blood Pressure1
Pack years adult smoking as proportion of life span exposed to smoking 1.6e+01(1.2e+00) 2.2e+00(9.5e-01) -1.8e+00(7.8e-01) 9.1e+01(1.3e+00) -2.7e+00(9.0e-01) 3.2e+00(8.5e-01)

Pulse Pressure1
Pack years adult smoking as proportion of life span exposed to smoking 2.5e+01(2.0e+00) -9.5e-01(1.8e+00) 2.1e+00(1.3e+00) 1.5e+02(2.2e+00) 2.4e-02(1.7e+00) 2.0e+00(1.5e+00)

Heart Rate Pack years adult smoking as proportion of life span exposed to smoking 2.0e+01(1.5e+00) 6.0e-01(1.5e+00) -6.7e-01(1.1e+00) 1.1e+02(1.8e+00) 2.1e+00(1.7e+00) 3.3e+00(1.2e+00)

Heart Rate MET minutes/week for walking 2.0e+01(1.5e+00) 7.5e-01(1.3e+00) 2.0e-01(9.7e-01) 1.1e+02(1.8e+00) 1.5e+00(1.5e+00) -3.8e+00(1.2e+00)

Heart Rate Summed MET minutes/week for all activity 2.0e+01(1.5e+00) -6.8e-01(1.3e+00) -6.6e-02(1.0e+00) 1.1e+02(1.7e+00) 4.7e+00(1.5e+00) -4.5e+00(1.2e+00)

Waist-to-Hip Ratio2
Pack years adult smoking as proportion of life span exposed to smoking 1.5e-01(1.1e-02) -3.6e-03(1.0e-02) -4.7e-03(7.7e-03) 8.5e-01(1.3e-02) 4.1e-02(1.2e-02) 3.4e-03(9.1e-03)

Waist-to-Hip Ratio MET minutes/week for moderate activity 1.5e-01(1.1e-02) 5.6e-03(1.0e-02) -1.2e-02(7.3e-03) 8.1e-01(1.3e-02) 2.9e-02(1.2e-02) -2.3e-02(9.6e-03)

Waist-to-Hip Ratio MET minutes/week for vigorous activity 1.5e-01(1.1e-02) 3.6e-03(1.0e-02) -1.3e-02(7.5e-03) 8.3e-01(1.2e-02) 1.8e-02(1.1e-02) -2.5e-02(9.4e-03)

Waist-to-Hip Ratio Summed MET minutes/week for all activity 1.5e-01(1.1e-02) 9.5e-03(1.0e-02) -1.1e-02(7.5e-03) 8.2e-01(1.3e-02) 1.9e-02(1.1e-02) -1.9e-02(8.9e-03)

Waist-to-Hip Ratio estimated total energy intake 1.8e-01(2.2e-02) -2.0e-02(2.0e-02) 5.0e-03(1.5e-02) 8.1e-01(2.3e-02) 3.3e-02(2.1e-02) -1.6e-02(1.5e-02)

White Blood Cell Count Pack years adult smoking as proportion of life span exposed to smoking 5.2e-01(4.2e-02) -2.7e-02(4.2e-02) -2.6e-02(3.0e-02) 3.0e+00(5.2e-02) 4.1e-01(5.4e-02) -1.4e-01(3.6e-02)

HDL Cholesterol MET minutes/week for moderate activity 2.8e-02(1.4e-03) 1.8e-03(1.3e-03) 5.0e-04(1.0e-03) 8.2e-02(1.6e-03) -2.4e-03(1.4e-03) 2.4e-03(1.2e-03)

HDL Cholesterol MET minutes/week for vigorous activity 2.8e-02(1.4e-03) 2.0e-04(1.2e-03) 1.0e-03(1.0e-03) 8.1e-02(1.5e-03) 7.0e-04(1.3e-03) -1.2e-03(1.1e-03)

HDL Cholesterol Summed MET minutes/week for all activity 2.8e-02(1.4e-03) 6.0e-04(1.2e-03) 5.0e-04(1.0e-03) 8.2e-02(1.5e-03) -5.0e-04(1.3e-03) 1.6e-03(1.1e-03)

1.Estimation for the multivariate analysis did not converge. Shown are estimates from an univariate analysis, where the full model had a better fit than the null.

2.Estimates are based on standardized data for this trait, due to small phenotypic variance, which resulted in rather small estimates of variance components in absolute terms.

var(  ) var(  ) cov(  ,  ) var(  ) var(  ) cov(  ,  )



 
 

Table S7. P-values for comparisons between the full model and nested models for the 

atherosclerosis risk in communities study. 

 

Only shown for analyses where the full versus null model comparison was significant. Nested models 

include the null, G-C only and R-C only models. All analyses are based on data after a rank-based 

inverse normal transformation. 

  

Main Trait Lifestlye Covariate Null vs. Full GC vs. Full RC vs. Full

Fibrinogen Cigarette years of smoking 4.22E-10 1.83E-03 3.53E-01

Fibrinogen Physical activity:sports domain 3.27E-06 2.57E-03 2.52E-01

Factor VII Physical activity:sports domain 2.99E-05 7.19E-01 8.62E-01

BMI Alcohol intake (g/week) 2.60E-12 5.80E-02 1.83E-01

BMI Physical activity:leisure domain 9.04E-05 3.29E-01 8.69E-01

BMI Physical activity:sports domain 9.23E-39 3.30E-08 9.60E-01

BMI Keys score 1.28E-10 1.45E-01 9.73E-01

BMI Saturated fat intake (g/day) 5.44E-05 4.66E-01 9.75E-01

BMI Energy from saturated fat (%kcal/day) 6.24E-10 5.85E-02 3.72E-01

BMI Energy from total fat intake (%kcal/day) 4.09E-08 9.83E-02 3.48E-01

Waist-to-Hip Ratio Cigarette years of smoking 1.46E-09 1.34E-03 6.44E-01

Waist-to-Hip Ratio Physical activity:sports domain 5.55E-10 2.35E-05 2.26E-01

Waist-to-Hip Ratio Total energy intake (kcal/day) 2.00E-05 2.24E-01 4.35E-01

Waist-to-Hip Ratio Energy from protein (%kcal/day) 7.11E-07 6.29E-04 7.63E-01

Pulse Pressure Cigarette years of smoking 3.08E-06 2.50E-03 8.35E-01

Diastolic Blood Pressure Cigarette years of smoking 5.43E-05 3.52E-04 5.93E-02

Heart Rate Cigarette years of smoking 1.25E-06 1.37E-02 6.59E-01

Heart Rate Physical activity:leisure domain 1.01E-04 8.47E-03 2.05E-01

Heart Rate Physical activity:sports domain 3.74E-06 6.20E-06 4.18E-01

HDL2 Cholesterol Cigarette years of smoking 1.70E-09 4.02E-02 6.94E-01

HDL2 Cholesterol Physical activity:leisure domain 2.73E-12 1.32E-01 5.20E-01

HDL2 Cholesterol Carbohydrate intake (g/day) 1.68E-07 3.42E-01 5.77E-01

HDL2 Cholesterol Total energy intake (kcal/day) 2.40E-08 2.45E-01 4.50E-01

HDL2 Cholesterol Energy from protein (%kcal/day) 3.69E-08 7.33E-02 6.54E-01

HDL3 Cholesterol Alcohol intake (g/week) 3.31E-05 2.45E-02 1.88E-01

HDL3 Cholesterol Physical activity:sports domain 9.68E-06 1.16E-03 1.52E-01

HDL Cholesterol Physical activity:sports domain 8.85E-06 9.91E-05 4.71E-02

HDL Cholesterol Monounsaturated fatty acid intake (g/day) 3.17E-05 4.31E-01 9.37E-01

HDL Cholesterol Energy from protein (%kcal/day) 4.71E-06 7.86E-02 6.00E-01

Apolipoprotein AI Polyunsaturated fatty acid intake (g/day) 2.94E-05 2.14E-02 2.13E-01

White Blood Cell Count Cigarette years of smoking 2.00E-65 2.53E-21 1.25E-08

White Blood Cell Count Physical activity:leisure domain 7.62E-07 5.19E-01 4.36E-01

White Blood Cell Count Physical activity:sports domain 9.62E-05 1.72E-01 3.82E-01

White Blood Cell Count Keys score 7.56E-05 8.37E-01 2.32E-01



 
 

Table S8. P-values for comparisons between the full model and nested models for the UK 

Biobank. 

 

Only shown for analyses where the full versus null model comparison was significant. Nested models 

include the null, G-C only and R-C only models. All analyses are based on data after a rank-based 

inverse normal transformation. 

Main Trait Lifestlye Covariate Null vs. Full GC vs. Full RC vs. Full

BMI Alcohol intake (glass & pint/week) 1.19E-14 0.00E+00 0.00E+00

BMI MET minutes/week for walking 1.49E-16 4.21E-04 6.82E-02

BMI MET minutes/week for moderate activity 2.05E-29 6.34E-13 8.26E-01

BMI MET minutes/week for vigorous activity 1.01E-46 8.91E-20 4.74E-01

BMI Summed MET minutes/week for all activity 5.51E-47 3.16E-15 2.71E-01

BMI estimated saturated fat intake 6.44E-03 6.37E-01 3.85E-01

Diastolic Blood Pressure Pack years adult smoking as proportion of life span exposed to smoking 3.03E-04 1.75E-04 1.08E-02

Pulse Pressure Pack years adult smoking as proportion of life span exposed to smoking 7.13E-06 8.66E-02 4.10E-01

Heart Rate Pack years adult smoking as proportion of life span exposed to smoking 3.44E-38 5.01E-05 3.92E-01

Heart Rate MET minutes/week for walking 3.81E-02 6.38E-02 6.96E-01

Heart Rate Summed MET minutes/week for all activity 3.62E-02 1.05E-01 9.20E-01

Waist-to-Hip Ratio Pack years adult smoking as proportion of life span exposed to smoking 5.35E-87 6.21E-15 7.46E-01

Waist-to-Hip Ratio MET minutes/week for moderate activity 9.00E-04 2.07E-01 2.21E-01

Waist-to-Hip Ratio MET minutes/week for vigorous activity 1.13E-04 2.46E-01 3.12E-01

Waist-to-Hip Ratio Summed MET minutes/week for all activity 2.23E-04 4.45E-01 2.65E-01

Waist-to-Hip Ratio estimated total energy intake 2.40E-02 1.81E-02 1.18E-01

White Blood Cell Count Pack years adult smoking as proportion of life span exposed to smoking 1.25E-138 3.58E-21 6.04E-01

HDL Cholesterol MET minutes/week for moderate activity 8.01E-08 2.77E-01 3.27E-01

HDL Cholesterol MET minutes/week for vigorous activity 4.37E-04 5.01E-01 7.39E-01

HDL Cholesterol Summed MET minutes/week for all activity 5.91E-06 7.65E-01 6.91E-01



 
 

Table S9. Genomic relationship within and between top and bottom groups, stratified by G-C interaction estimate, relative to the grand mean genomic 

relationship. 

 

Δ%
1

p-value
2

Δ% p-value Δ% p-value

HDL Cholesterol Physical activity:sports domain 63.4 9.47E-72 77.0 1.46E-105 -69.5 3.44E-165

HDL3 Cholesterol Physical activity:sports domain 64.3 2.44E-73 67.4 3.47E-81 -66.0 2.72E-148

White Blood Cell Count Physical activity:sports domain 62.4 2.81E-69 61.4 5.66E-67 -64.0 3.12E-139

HDL2 Cholesterol Energy from prot1 (%kcal/day) 84.3 2.20E-125 87.8 4.48E-136 -82.6 4.90E-233

White Blood Cell Count Physical activity:leisure domain 67.3 5.40E-81 66.1 2.03E-77 -65.2 4.46E-145

BMI Saturated fatty acid intake (g/day) 66.1 4.45E-80 94.0 1.40E-148 -76.3 5.44E-201

HDL3 Cholesterol Alcohol intake (g/week) 55.1 1.18E-54 57.0 1.71E-58 -56.5 1.72E-109

Heart Rate Physical activity:sports domain 55.2 1.72E-54 53.2 6.04E-52 -54.1 1.72E-101

1. Δ% = (group mean  - grand mean)/grand mean x 100%; 2. P-values are for two-sided independent t-tests that compare group means with the grand mean

Main Trait Lifestyle
Within Top Group Within Bottom Group Between Top & Bottom Groups



 
 

Figure S1. Skewness (top) and kurtosis (bottom) of cardiovascular traits from the atherosclerosis 

risk in communities study (ARIC) and UK biobank (UKBB). 

 

In each panel, categories along the y axis from the top to bottom are traits from the UK biobank, traits 

from the ARIC study, traits (100 replicates) simulated from the null model, from the full model with large 

and small effect sizes, and from the full model with non-normal residuals that result in large and small 

phenotypic deviations from normality. The last five categories are included as references to indicate 

expected skewness and kurtosis when the model assumption of normality is and is not met. 

  



 
 

Figure S2. Sampling distributions of parameter estimates from the full model. 

 

 

Data for a main trait and a covariate were simulated using 4 multivariate reaction norm models under 2 

parameter settings for each model, which together gave arise to 8 combinations of simulation scenarios. 

The four models were no Genotype-Covariate (G-C) and Residual-Covariate (R-C) interactions (i.e., a 

null model), G-C interaction only (i.e., a G-C model), R-C interaction only (i.e., a R-C model), and both 

G-C and R-C interactions (i.e., a full model). The two parameter settings were large and small effect 

sizes in terms of heritability, G-C and R-C interactions. Each simulation was repeated 100 times, 

resulting in 100 replicates of simulated data under each scenario. Parameter estimates were obtained 

from fitting the full model. Shown distributions are for model parameters (i.e., variance & covariance 

terms) pertaining to the main trait only. True parameter values are shown in dots and means of sampling 

distributions in diamonds. 

  



 
 

Figure S3. Impact of rank-based inverse normal transformation on parameter estimates when the 

normality assumption is violated. 

 

 

Data for a main trait and a covariate were simulated using a multivariate reaction norm model that 

included both Genotype-Covariate and Residual-Covariate interactions (i.e., a full model) under two 

parameter settings, where residuals of the main trait were drawn from distributions that deviated from 

a normal distribution to different degrees (i.e., small vs. large deviation from normality). Each simulation 

was repeated 100 times, resulting in 100 replicates of simulated data for each setting. Parameter 

estimates were obtained from fitting a full model—that assumes normality of all random effects including 

residuals—to the simulated data before and after a rank-based inverse normal distribution (‘original’ vs. 

‘invnorm’). Shown distributions are for model parameters (i.e., variance & covariance terms) pertaining 

to the main trait only. True parameter values are shown in dots. 

  



 
 

Figure S4. Impact of rank-based inverse normal transformation on parameter estimates when 

normality assumption is met. 

 

Data for a main trait and a covariate were simulated using a multivariate reaction norm model that 

included both Genotype-Covariate (G-C) and Residual-Covariate (R-C) interactions (i.e., a full model) 

under two parameter settings that varied in effect sizes in terms of heritability, G-C and R-C interactions. 

In each setting, all random effects were drawn from normal distributions. Each simulation was repeated 

100 times, resulting in 100 replicates of simulated data for each setting. Parameter estimates were 

obtained from fitting a full model—that assumes normality of random effects—to the simulated data 

before and after a rank-based inverse normal distribution (‘original’ vs. ‘invnorm’). Shown distributions 

are for model parameters (i.e., variance & covariance terms) pertaining to the main trait only. True 

parameter values are shown in dots. 

  



 
 

Figure S5. Sampling distributions of parameter estimates for four multivariate reaction norm 

models under four simulation scenarios for the small-effects parameter setting. 

 
The four scenarios are no Genotype-Covariate (G-C) and Residual-Covariate (R-C) interactions (i.e., a 

null model), G-C interaction only (i.e., a G-C model), R-C interaction only (i.e., a R-C model), and both 

G-C and R-C interactions (i.e., a full model). There are 100 replicates under each scenario, with the 

true value of each parameter being indicated by a vertical dashed line. 

 
  



Categories from left to right in each panel are all traits (labelled as “all”), trait that lost one or more signals after a rank-based inverse normal transformation 

(“loser”), and traits that still had one or more signals after the transformation (“survivor”). Point size is proportional to the count of signals. To reduce overlaps, 

points are jittered randomly in the horizontal direction. Note that a trait can be both a loser and a survivor. 

Figure S6. Skewness (left panel) and kurtosis (right) of cardiovascular traits from the ARIC dataset by survivorship of rank-based inverse normal 
transformation. 



 
 

Figure S7. Estimated genetic covariance with respect to lifestyle covariate. 

 
Both x and y coordinates of each plot cover three standard deviations from the mean of a given lifestyle covariate. The horizontal plane thus represents pairwise 

combinations of lifestyle covariate values. The corresponding genetic covariance matrix of these combinations, estimated from the full model, is shown as the 

surface in each plot. The lower triangular part of each matrix, which is identical as the upper triangular part, is removed for simplicity. Diagonal entries of each 

matrix, shown as the intersection of the surface with the diagonal plane, are estimated genetic variances. Only traits with the first eight largest variance estimates 

of Genotype-Covariate interaction (see Figure 2 left) are shown. Arrows point to higher values. 



 
 

Figure S8. Estimated residual covariance with respect to lifestyle covariate. 

 
Both x and y coordinates of each plot cover three standard deviations from the mean of a given lifestyle covariate. The horizontal plane thus represents pairwise 

combinations of lifestyle covariate values. The corresponding residual covariance matrix of these combinations, estimated from the full model, is shown as the 

surface in each plot. The lower triangular part of each matrix, which is identical as the upper triangular part, is removed for simplicity. Diagonal entries of each 

matrix, shown as the intersection of the surface with the diagonal plane, are estimated residual variances. Only traits with the first eight largest variance 

estimates of Residual-Covariate interaction (see Figure 2 right) are shown. Arrows point to higher values. 


