#### 1 SUPPLEMENTARY INFORMATION

#### 2 SUPPLEMENTARY FIGURES

3

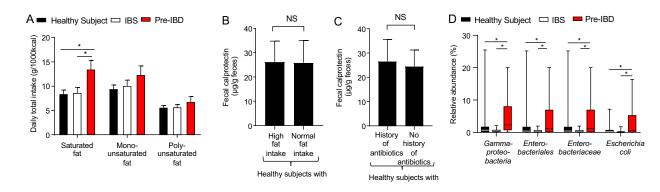
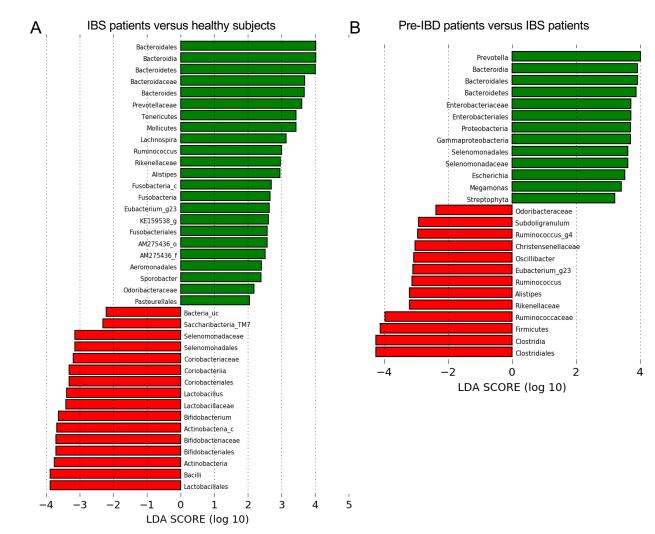
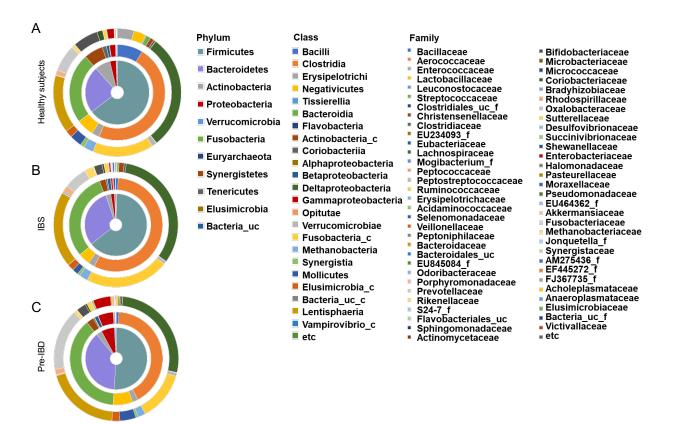






Figure S1: Related to Figure 1. Pre-IBD is associated with elevated consumption of
saturated fatty acids and changes in the fecal microbial composition compared to
IBS patients or healthy subjects.


8 (A) Daily fat intake was estimated based on the 1day recall diet diary and energy 9 adjustment was performed by calculating nutrient density and expressed as intake / 10 1000kcal. (B-C) Levels of fecal calprotectin were measured in healthy subjects and 11 correlated with reported fat intake (B) and history of recent antibiotic usage (C). (D) 12 Relative abundance of indicated bacteria was determined by microbiota profiling of DNA 13 isolated from feces. (A-C) Bars represent mean ± standard deviation. (D) The boxes in 14 the Whisker blot represent the 1<sup>st</sup> to 3rd quartile ranges and the horizontal lines represent 15 the median value. The bars in the whisker blot represent the minimum and maximum 16 value in each group. \*, P<0.05; NS, P>0.05.



1

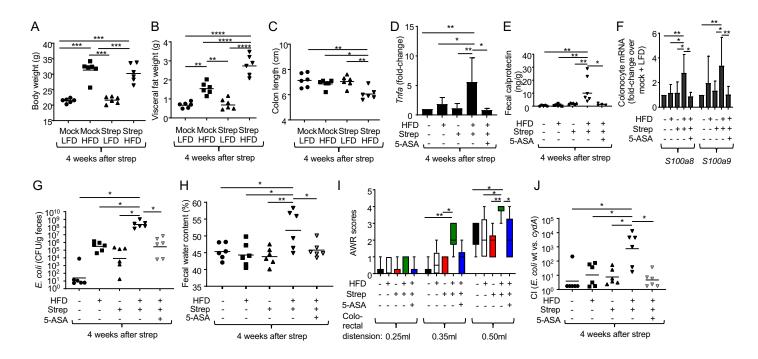
# Figure S2: Related to Figure 1G. Comparison of the fecal microbiota profile of pre-IBD and IBS patients.

Microbiota profiling was performed using DNA isolated from feces of patients and differences in taxa composition were compared using the LDA Effect size algorithm. (A) Comparison of healthy subjects with IBS patients. Green, elevated in IBS patients compared to healthy subjects; red, reduced in IBS patients compared to healthy subjects.
(B) Comparison of IBS patients with pre-IBD patients. Green, elevated in pre-IBD compared to IBS; Red, reduced in pre-IBD compared to IBS. An effect size >2 (on a log scale) were considered significant.

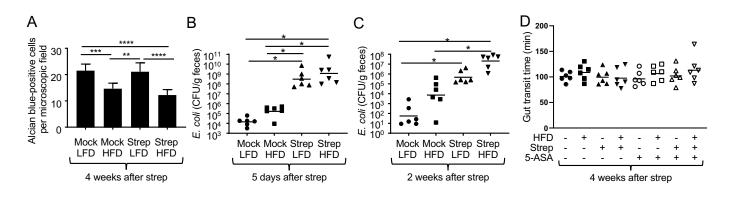


1

2 Figure S3: Related to Figure 1. Average relative abundances of phylogenic


3 groupings at the phylum (inner circle), class (middle circle) and the family level

#### 4 (outer circle) determined by fecal microbiota profiling.


5 The abundance of phyla was determined using fecal microbiota profiling. Circles show

6 the average relative abundance of taxa for healthy subjects (A), IBS patients (B) and pre-

7 IBD patients (C).



2 Figure S4: Related to Figure 2. Exposure of female mice to risk factors induces 3 signs of pre-IBD. Groups of female mice (N = 6) were reared on a high-fat diet (HFD, 4 45% fat) or on a low-fat diet (LFD, 10% fat) and were mock treated or treated with a single 5 dose of streptomycin (Strep) four weeks before necropsy. Mouse body weight (A) and 6 visceral fat weight (B) were determined during necropsy. (C) Colon length was determined during necropsy. (D-J) Chow was supplemented with 5-ASA (5-ASA: +) or 7 8 did not contain supplementation (5-ASA: -). (D) Colonocytes were isolated from the 9 colonic mucosa for RNA isolation and transcript levels of Tnfa (were determined by 10 quantitative real-time PCR. (E) Fecal calprotectin levels were determined by ELISA. (F) 11 Transcript levels of the indicated genes were determined by quantitative real-time PCR 12 in RNA isolated from preparations of the colonic epithelium. (G) Mice were inoculated 13 with *E.coli* one day after streptomycin treatment and numbers in the feces determined 4 weeks later. (H) The water contents of mouse feces were measured at the indicated time 14 15 point. (I) Abdominal withdrawal reflex (AWR) scores at different levels of colorectal distension were measured during week four after antibiotic treatment. (J) Mice were
inoculated with a 1:1 mixture of *E.coli* wild type (wt) and an isogenic respiration-deficient
(*cydA*) mutant one day after streptomycin treatment and the competitive index (CI) in
colon contents was determined 4 weeks after streptomycin treatment. (A-C, E, G-H and
J) Symbols represent data from individual animals and black bars represent geometric
mean. \*, P<0.05; \*\*, P<0.01; \*\*\*, P<0.001; \*\*\*\*, P<0.001.</li>



# 2 Figure S5: Related to Figure 2. Signs of disease produced by exposing male mice

#### 3 to risk factors for pre-IBD

4 Groups of male mice (N = 6) were reared on a high-fat diet (HFD: +) or on a low-fat diet 5 (HFD: -) and were mock treated (Strep: -) or treated with a single dose of streptomycin 6 (Strep: +) four weeks before necropsy. (A) Quantification of Alcian blue staining in blinded 7 sections from the colon. Bars represent geometric mean± standard deviation. (B-C) Mice 8 were inoculated with *E.coli* one day after streptomycin treatment and numbers in the feces 9 determined 5 days (B) and 2 weeks (C) after streptomycin treatment. (D) Chow was supplemented with 5-ASA (5-ASA: +) or did not contain supplementation (5-ASA: -). The 10 gut transition time was measured at the indicated time point. (B-D) Dots represent data 11 12 from individual animals and bars represent geometric mean. \*, P<0.05; \*\*, P<0.01; \*\*\*, 13 P<0.001; \*\*\*\*, P<0.0001.

# 1 SUPPLEMENTARY TABLES

2

# 3 Table S1: Related to Figure 1. Basic & clinical characteristics of the subjects

# 4 among the healthy subjects, IBS and pre-IBD groups.

| Characteristics           | Healthy       | IBS           | Pre-IBD     | Р     |
|---------------------------|---------------|---------------|-------------|-------|
|                           | subjects      | (n = 30)      | (n = 19)    | value |
|                           | (n=43)        |               |             |       |
| Age (year)                | 40.28±12.38   | 44.00±14.47   | 43.26±14.80 | 0.48  |
| Gender [n (%)]            |               |               |             | 0.42  |
| Male                      | 13 (30.2)     | 5 (16.7)      | 5 (26.3)    |       |
| Female                    | 30 (69.8)     | 25 (83.3)     | 14 (73.7)   |       |
| Regular exercise [n (%)]  | 17 (40.5)     | 11 (36.7)     | 12 (63.2)   | 0.16  |
| Regular alcohol Drinking  | 15 (34.9)     | 8 (26.7)      | 6 (31.6)    | 0.76  |
| [n (%)]                   |               |               |             |       |
| Current smoking [n (%)]   | 0(0)          | 0 (0)         | 0 (0)       | NS    |
| Antibiotics use (<1 year) | 9 (20.9)      | 4 (13.3)      | 9 (46.7)    | 0.02  |
| [n (%)]                   |               |               |             |       |
| BMI (kg/m²)               | 22.20±3.16    | 22.19±3.16    | 22.31±3.26  | 0.99  |
| Body fat (%)              | 28.57±5.81    | 27.85±6.64    | 29.48±7.04  | 0.69  |
| Lean body mass (gram)     | 26.19±9.40    | 25.78±4.89    | 25.03±2.59  | 0.37  |
| SBP (mmHg)                | 110 (100-125) | 117 (103-130) | 117 (110-   | 0.19  |
|                           |               |               | 122)        |       |
| DBP (mmHg)                | 67 (62-74)    | 75 (63-85)    | 77 (71-83)  | 0.32  |

1 Data are shown as the mean ± standard deviation for normally distributed data, median (25-75

2 percentile) for non-normally distributed data or the number (percentage) for categorical data .

3 Abbreviation: IBS, Irritable bowel syndrome; IBD, inflammatory bowel disease; BMI, Body mass

- 4 index; SBP, Systolic blood pressure; DBP, Diastolic blood pressure; NS, no statistically
- 5 significant difference.
- 6

# 1 Table S2: Related to Figure 1. Nutritional characteristics among the healthy

| Nutritional       | Healthy subjects | IBS          | Pre-IBD      | P value |
|-------------------|------------------|--------------|--------------|---------|
| variables         | (n=43)           | (n = 30)     | (n = 19)     |         |
| Total calorie     | 1866 (1216-      | 1864 (1067-  | 2369 (1575-  | 0.06    |
| intake (kcal/day) | 2787)            | 3326)        | 3387)        |         |
| Carbohydrate      | 154.44±6.73      | 147.15±10.33 | 128.57±13.61 | 0.20    |
| (g/1000kcal/day)  |                  |              |              |         |
| Fiber             | 11.72±0.82       | 11.20±0.85   | 9.75±1.12    | 0.37    |
| (g/1000kcal)      |                  |              |              |         |
| Protein           | 36.88±1.56       | 38.90±3.05   | 42.77±3.20   | 0.29    |
| (g/1000kcal/day)  |                  |              |              |         |
| Fat               | 25.65±2.18       | 28.88±3.22   | 39.69±4.94   | 0.01    |
| (g/1000kcal/day)  |                  |              |              |         |
| Saturated fat     | 8.45±0.89        | 8.65±1.24    | 13.51±1.93   | 0.03    |
| (g/1000kcal/day)  |                  |              |              |         |
| Mono-             | 9.48±0.93        | 10.10±1.29   | 12.37±1.95   | 0.12    |
| unsaturated fat   |                  |              |              |         |
| (g/1000kcal/day)  |                  |              |              |         |
| Poly-unsaturated  | 5.64±0.50        | 5.70±0.65    | 6.81±1.20    | 0.10    |
| fat               |                  |              |              |         |
| (g/1000kcal/day)  |                  |              |              |         |
|                   |                  |              |              |         |

# 2 subjects, IBS and pre-IBD groups.

3 Data are shown as the mean ± standard deviation for normally distributed data or median (25-

4 75 percentile) for non-normally distributed data.

- 1 Energy adjustment was performed by calculating nutrient density and expressed as intake /
- 2 1000kcal.
- 3 Abbreviation: IBS, Irritable bowel syndrome ; IBD, Inflammatory bowel disease.
- 4

#### 1 Table S3: Related to Figure 1. Comparison of IBS-related characteristics between

#### 2 the IBS and pre-IBD

| Characteristics  | IBS        | Pre-IBD    | P values <sup>a</sup> |
|------------------|------------|------------|-----------------------|
|                  | (n = 30)   | (n = 19)   |                       |
| BSSS (scores)    |            |            |                       |
| Frequency        | 15 (11-19) | 19 (14-27) | 0.85                  |
| Distress         | 18 (12-23) | 25 (16-25) | 0.04                  |
| Disability       | 15 (9-19)  | 24 (19-29) | 0.08                  |
| IBS-QOL (scores) | 67 (56-80) | 79 (51-89) | 0.03                  |
| PI-IBS (%)       | 8 (26.7)   | 6 (31.6)   | 0.48                  |

3 Data are shown as the mean ± standard deviation for normally distributed data, median (25-75

4 percentile) for non-normally distributed data or the number (percentage) for categorical data.

5 PI-IBS is defined as a group of IBS patients with a history of acute gastroenteritis before the

6 onset of IBS symptoms.

7 Abbreviation: BSSS, Bowel symptom severity scales; IBS-QOL, Irritable bowel syndrome-quality

8 of life questionnaire; PI-IBS, postinfectious-IBS

9 P values were analyzed with a Student's t-test for normally distributed data and with a Mann-

10 Whitney U test for non-normally distributed data and chi square test for categorigal data.

#### 1 Table S4: Related to Figure 1. Odds ratio and 95% confidence intervals for the

|                                           | OR (95% CI)          |                      |  |
|-------------------------------------------|----------------------|----------------------|--|
|                                           | Model 1 <sup>a</sup> | Model 2 <sup>b</sup> |  |
| Fat intake (g/1000kcal/day <sup>c</sup> ) |                      |                      |  |
| 1 <sup>st</sup> tercile                   | 1.00                 | 1.00                 |  |
| 2 <sup>nd</sup> tercile                   | 1.73 (0.38-4.99)     | 1.86 (0.39-4.91)     |  |
| 3 <sup>rd</sup> tercile                   | 3.95 (1.2-8.10)      | 2.83 (1.09-4.67)     |  |
| Antibiotics use (<1year)                  |                      |                      |  |
| None                                      | 1.00                 | 1.00                 |  |
| ≥1                                        | 4.15 (1.41-12.26)    | 3.90 (1.26-12.26)    |  |
|                                           |                      |                      |  |

# 2 prevalence of pre-IBD according to fat intake and antibiotics use

# <sup>a</sup>Model 1; Unadjusted

<sup>4</sup> <sup>b</sup>Model 2; Adjusted for age, gender, BMI, regular alcohol drinking and regular exercise

<sup>5</sup> <sup>c</sup> Energy adjustment was performed by calculating nutrient density and expressed as

6 intake / 1000kcal.

7 Fat intake: 1<sup>st</sup> tercile, <18.98 g/1000kcal/day ;2<sup>nd</sup> tercile, 18.98-40.23 g/1000kcal/day;

8 3<sup>rd</sup> tercile, >40.23 g/1000kcal/day.

9 Abbreviation: OR (95% CI), Odds ratio (95% confidence interval).

# 1 Table S5: Related to Figure 1. Interaction between fat intake and antibiotics use

# 2 on pre-IBD and likelihood ratio test statistics to measure goodness of fit

| Interaction test |         | -2 log likelih     | ood statistics          |         |
|------------------|---------|--------------------|-------------------------|---------|
| Wald Chi-square  | p-value | Reduced            | Full model <sup>b</sup> | p-value |
| statistics       |         | model <sup>a</sup> |                         |         |
| 4.47             | 0.03    | 188.12             | 177.91                  | 0.03    |

#### 1 Table S6: Related to Figure 1. Odds ratio and 95% confidence intervals for the

|                                             | OR (95% CI)          |                      |
|---------------------------------------------|----------------------|----------------------|
|                                             | Model 1 <sup>a</sup> | Model 2 <sup>b</sup> |
| No high-fat diet/ no antibiotics            | 1.00                 | 1.00                 |
| High-fat diet <sup>c</sup> / No antibiotics | 2.53 (0.65-4.86)     | 2.82 (0.67-4.85)     |
| No high fat diet/ Antibiotics use           | 2.58 (0.53-6.63)     | 3.53 (0.61-7.46)     |
| High fat diet/ Antibiotics use              | 7.20 (3.25-9.11)     | 8.63 (3.09-12.95)    |

# 2 prevalence of pre-IBD relative to fat intake and antibiotics use

- 3 <sup>a</sup>Model 1; Unadjusted
- <sup>4</sup> <sup>b</sup>Model 2; Adjusted for age, gender, BMI, regular alcohol drinking and regular exercise
- <sup>5</sup> <sup>c</sup>High fat diet is defined as a fat intake>40.23 g/1000kcal/day (3rd tercile group) and
- 6 antibiotics use is defined as a history of antibiotics use  $\geq$  1 within one year.
- 7 Abbreviation: OR (95% CI), Odds ratio (95% confidence interval).

# 1 Table S7: Related to STAR Methods. Primers for real-time PCR of mouse genes

| TGTCCACCTTCCAGCAGATGT      | AGCTCAGTAACAGTCCGCCTAG                                                                                                                                                                                        |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            |                                                                                                                                                                                                               |
|                            | А                                                                                                                                                                                                             |
| AGCCAGGAGGGAGAACAGAAAC     | CCAGTGAGTGAAAGGGACAGAA                                                                                                                                                                                        |
|                            | сс                                                                                                                                                                                                            |
| TAGTCCTTCCTACCCCAATTTCC    | TTGGTCCTTAGCCACTCCTTC                                                                                                                                                                                         |
| TTGGGTCTTGTTCACTCCACGG     | CCTCTTTCAGGTCACTTTGGTAG                                                                                                                                                                                       |
|                            | G                                                                                                                                                                                                             |
| AGGTGTCCCAAAGAAGCTGTA      | ATGTCTGGACCCATTCCTTCT                                                                                                                                                                                         |
|                            |                                                                                                                                                                                                               |
| AGGCTGGACAGTTAATTCAGAG     | ATGCTATGCTATGCACCTTCTCC                                                                                                                                                                                       |
| G                          | AGAC                                                                                                                                                                                                          |
|                            |                                                                                                                                                                                                               |
| CCCTGCCATTGTTAAGACC        | TGCTGCTGTTCCTGTTTTC                                                                                                                                                                                           |
|                            |                                                                                                                                                                                                               |
| TCA CAA CCC CAA GCC CTT TT | GAT GGC ATG GAC TGT GGT CA                                                                                                                                                                                    |
|                            |                                                                                                                                                                                                               |
| AGCCGGCAGCCATCATGTTA       | AGTTACTTGCTGCTGTGCCA                                                                                                                                                                                          |
| TTTCTCGGCGGGTTGGTTC        | GGTTGGTAAAGATCCGGTCTTC                                                                                                                                                                                        |
|                            |                                                                                                                                                                                                               |
| GGAACACTCCAAAAACAGACCT     | CCACCACTGGGTATTGAGTAGA                                                                                                                                                                                        |
|                            | A                                                                                                                                                                                                             |
|                            | TAGTCCTTCCTACCCCAATTTCC<br>TTGGGTCTTGTTCACTCCACGG<br>AGGTGTCCCAAAGAAGCTGTA<br>AGGCTGGACAGTTAATTCAGAG<br>G<br>CCCTGCCATTGTTAAGACC<br>TCA CAA CCC CAA GCC CTT TT<br>AGCCGGCAGCCATCATGTTA<br>TTTCTCGGCGGGTTGGTTC |

| Uqcr       | TGCCGAGGCCTCAGACACAG   | TCCAAGGCATAAGAATAAGGTTT |
|------------|------------------------|-------------------------|
| Cox5a      | GCCGCTGTCTGTTCCATTC    | GCATCAATGTCTGGCTTGTTGAA |
| Atp5g1     | AGTTGGTGTGGCTGGATCA    | GCTGCTTGAGAGATGGGTTC    |
| 16S        | ACTCCTACGGGAGGCAGC     | GCTTCTTTAGTCAGGTACCGTCA |
| rRNA       |                        | т                       |
| gene       |                        |                         |
| Clostridia |                        |                         |
| S100a8     | CCGTCTTCAAGACATCGTTTGA | GTAGAGGGCATGGTGATTTCCT  |
| S100a9     | ATACTCTAGGAAGGAAGGACAC | TCCATGATGTCATTTATGAGGGC |
|            | С                      |                         |

# 1 Table S8: Related to STAR Methods. Criteria used for histological grading of

# 2 intestinal inflammation and damage to the epithelial surface.

| Histologic feature                | Score | Criteria                                      |
|-----------------------------------|-------|-----------------------------------------------|
| Infiltration by polynuclear cells | 0     | rare neutrophils within lamina propria        |
|                                   | 1     | occasional multifocal increased frequency     |
|                                   |       | of neutrophils within lamina propria          |
|                                   | 2     | diffuse infiltration of the lamina propria by |
|                                   |       | low numbers of neutrophils                    |
|                                   | 3     | diffuse infiltration of the submucosa and     |
|                                   |       | lamina propria by moderate numbers of         |
|                                   |       | neutrophils                                   |
|                                   | 4     | diffuse transmural infiltration of the        |
|                                   |       | submucosa, lamina propria, and muscle         |
|                                   |       | layers by high numbers of neutrophils with    |
|                                   |       | accumulation of luminal suppurative           |
|                                   |       | exudate                                       |
| Infiltration by mononuclear cells | 0     | no detectable increase in mononuclear         |
|                                   |       | infiltration of the lamina propria            |
|                                   | 1     | mild multifocal expansion of the lamina       |
|                                   |       | propria by low numbers of infiltrating        |
|                                   |       | lymphocytes and plasma cells                  |

|                              | 2 | mild regional expansion of the lamina     |
|------------------------------|---|-------------------------------------------|
|                              |   | propria by moderate numbers of            |
|                              |   | lymphocytes and plasma cells              |
|                              | 3 | moderate regional to diffuse expansion of |
|                              |   | the lamina propria and epithelia by       |
|                              |   | infiltrating lymphocytes and plasma cells |
|                              | 4 | marked diffuse expansion of the lamina    |
|                              |   | propria and epithelia by infiltrating     |
|                              |   | lymphocytes and plasma cells with         |
|                              |   | distortion of the mucosal architecture    |
| Submucosal edema             | 0 | no observable edema                       |
|                              | 1 | mild multifocal perivascular expansion of |
|                              |   | the tunica adventitia                     |
|                              | 2 | moderate multifocal expansion of the      |
|                              |   | submucosa with lymphatic dilation         |
|                              | 3 | severe circumferential expansion of the   |
|                              |   | submucosa with marked lymphatic dilation  |
| Luminal exudate accumulation | 0 | no observable accumulation of             |
|                              |   | suppurative exudate within the lumen      |
|                              | 1 | mild accumulation of exudate              |
|                              | 2 | moderate accumulation exudate             |
|                              | 3 | severe accumulation of exudate            |

| Superficial epithelial injury | 0 | no observable disruption to the brush     |
|-------------------------------|---|-------------------------------------------|
|                               |   | border                                    |
|                               | 1 | occasional multifocal brush border        |
|                               |   | attenuation with increased apoptosis      |
|                               | 2 | frequent to confluent brush border        |
|                               |   | attenuation with abundant apoptosis       |
|                               | 3 | marked brush border attenuation with loss |
|                               |   | of epithelial adhesion                    |
|                               | 4 | surface epithelial cell loss leading to   |
|                               |   | erosive lesions of the superficial mucosa |
|                               | 5 | frequent erosive lesions with confluence  |
|                               |   | leading to ulceration                     |