Supplementary information for:

Chemogenomic screening identifies the Hsp70 co-chaperone DNAJA1 as a hub for anticancer drug resistance

Nitika¹, Jacob S. Blackman¹, Laura E. Knighton¹, Jade E. Takakuwa¹, Stuart K. Calderwood² and Andrew W. Truman^{1*}

¹Department of Biological Sciences, University of North Carolina Charlotte, Charlotte, NC 28223, USA ²Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215, USA

*Corresponding author E-mail: A.Truman@uncc.edu

Fig. S1. Expression of various chaperone/co-chaperone proteins in HAP1 WT/DNAJA1 knockout cells. Cell lysates extracted from HAP1 WT and DNAJA1 CRISPR KO cells were resolved on SDS-PAGE gels and further processed by immunoblotting with anti-DNAJA1, Actin, Hsc70, Hsp70, Hsp90, Bag-3, Hsp110 and Actin antibodies.

Fig. S2. Effects of selected FDA-approved drugs on LnCaP cells. LNCaP cells were treated with serial dilutions of indicated drugs for 3 days. Cell viability was determined using Cell Titer Glo assay and results shown are average and SD from three replicates (***P<0.001 compared to DMSO control, t-test).