Supplementary information

Supplementary Figures

Supplementary Figure 1. RT-qPCR validation of up-regulated in PI532627 compare to PI536451. RT-qPCR analysis results showing log2 fold change in expression for each gene expected to involve in cucurbitacins biosynthetic pathway.

Monoisotopic Mass, Even Electron Ions 1934 formula(e) evaluated with 15 results within limits (up to 20 closest results for each mass)	
Elements Used:	
C: 0-500 H: 0-1000 N: 0-10 O: 0-100	
20171020 CuE Neo P o 453 (5 082) Cm (449 455)	

100	174.95		477 2634		643.31	26	3 2241 85	3 5150		10.00		1313 5607
100	200	325.1830	400	500	600	700	800	900 1	000	1199.6162	00 130	1400 m/z
Minimum: Meximum:	60.00 100.00		5.0	10.0	-1.5 50.0							
Mass	RA	Calc. Mass	mDa	PPM	DBE	1-FIT	Norm	Conf(%)	Formul	a		
643.3126	100.00	643.3132 643.3118 643.3137 643.3113 643.3145 643.3145 643.3145 643.3150 643.3165 643.3164 643.3172 643.3177 643.3177 643.3177	-0.6 0.8 -1.1 1.3 1.6 -1.9 2.1 4 -3.8 -4.6 4.8 -5.1 5.3	-0.9 1.2 -1.7 2.0 2.5 -3.0 3.3 -5.9 -7.2 7.5 9 8.2 -9.2	17.5 12.5 30.5 22.5 18.5 18.5 21.5 8.5 21.5 8.5 26.5 26.5	911.4 908.9 916.0 915.2 919.6 912.3 912.3 912.3 912.3 914.5 908.7 914.5 907.4 914.5 914.6 916.3	4.420 1.967 9.060 8.1930 6.668 5.281 8.296 1.808 7.769 7.551 0.404 4.798 9.887 9.331	1.20 13.99 0.01 0.03 0.51 0.02 16.40 0.05 66.77 0.82 0.01 0.01	C36 H4 C35 H4 C23 H5 C48 H3 C19 H4 C37 H3 C32 H3 C32 H3 C32 H4 C31 H4 C31 H4 C31 H4 C30 H4 C38 H5 C38 H5 C42 H3 C42 H3	3 N4 07 7 011 1 N2 018 9 N2 01 9 N8 016 9 N8 03 9 N10 05 7 N6 014 3 N10 010 3 N10 010 3 N10 010 3 N2 05 7 N2 013 1 016 9 N4 02 9 N6 0	8	

1: TOF MS ES-

Supplementary Figure 2. HR-ESI/MS and ¹H-NMR results of compound 1 (16-*O*-acetyl cucurbitacin B). a, Negative HR ESI-MS m/z 645.3282 [M+ formic acid-H]⁻ (calculated for C₃₅H₄₉O₁₁ 645.3275) and (b) ¹H-NMR (600 MHz, CD₃OD, $\delta_{\rm H}$) in Table 2.

Supplementary Figure 3. ¹³C-NMR and HMBC results of compound 1 (16-*O*-acetyl cucurbitacin B). a, ¹³C-NMR (150 MHz, CD₃OD, δ_C) in Table 3 and (b) HMBC spectrum (CD₃OD, 600MHz).

Monoisotopic Mass, Even Electron Ions 1713 formula(e) evaluated with 13 results within limits (up to 20 closest results for each mass) Elements Used: C: 0-500 H: 0-1000 N: 0-10 O: 0-100 20171020_CuD_Neg 340 (3.817) Cm (338:342)

100 116.9278 174.9561 325.1871 497.2921 603.2364 604.3229 703.2464 813.5542 1161.6458 1233.5785 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 140 Minimum: 60.00 -1.5 -
On-interpretention One of the second se
Minimum: 60.00 -1.5 Maximum: 100.00 5.0 10.0 50.0 Mass FA Calc. Mass mDa PFM DBE i-FIT Norm Conf(%) Formula
Mass RA Calc. Mass mDa PPM DBE i-FIT Norm Conf(%) Formula

Supplementary Figure 4. HR-ESI/MS and ¹H-NMR results of compound 2 (16-*O*-acetyl cucurbitacin D). a, Negative HR ESI-MS *m/z* 603.3195 [M+ formic acid-H]⁻ (calculated for

 $C_{33}H_{47}O_{10}$ 603.3169) and (b) ¹H-NMR (600 MHz, CD₃OD, δ_H) in Table 2.

Supplementary Figure 5. ¹³C-NMR and HMBC results of compound 2 (16-*O*-acetyl cucurbitacin D). a, ¹³C-NMR (150 MHz, CD₃OD, δ_C) in Table 3 and (b) HMBC spectrum (CD₃OD, 600MHz).

Monoisotopic Mass, Even Electron Ions. 1695 formula(e) evaluated with 15 results within limits (up to 20 closest results for each mass) Elements Used: C. 0-500 H: 0-1000 N: 0-10 O: 0-100 20171020_Cu_I_Neg 369 (4.145) Cm (366:370)

20171020_Cu	1_Neg 369	(4.145) Cm (36	6:370) 495.27	55 555 2	601.3026 952	057	811.5369	879.4851	1115.6001	1157,6102	1:	TOF MS ES- 7.57e+008
100	200	300	400	500	600	700	800	900	1000 11	00 120	1300	1400
Minimum: Maximum:	60.00 100.00		5.0	10.0	-1.5 50.0							
Mass	RA	Calc. Mass	nDa	PPM	DBE	1-FIT	Norm	Conf(3) Formula			
601.3026	100.00	601.3026 601.3031 601.3039 601.3039 601.3045 601.3004 601.2999 601.3058 601.3058 601.2986 601.2986 601.2986 601.2972 601.2972 601.2972	0.0 -0.5 -1.3 -1.9 2.2 2.7 2.3 -4.0 -4.0 5.4 5.9 5.9 -5.9	0.08 -2.222 -3.75 -6.750 -9.8 9-9.8	16.5 -1.5 21.5 3.5 -0.5 17.5 20.5 12.5 25.5 7.5 25.5 7.5	865.6 870.5 862.9 870.1 873.7 864.4 870.1 872.5 863.1 870.1 874.0 874.2 868.9	3.432 8.315 0.756 5.721 7.950 8.089 10.296 0.961 7.920 11.869 5.223 12.009 6.702	3.23 0.02 46.97 0.33 0.04 0.03 0.00 10.44 0.03 0.00 38.24 0.04 0.04 0.04 0.054 0.00 0.54	C34 H41 C21 H49 C33 H45 C35 H37 C22 H45 C30 H37 C23 H41 C29 H41 C26 H49 C40 H37 C40 H37 C21 H45 C41 H57 C41 H5	N4 06 N2 017 010 N8 02 N6 013 N8 015 N10 04 N10 09 N2 04 N6 08 015 N6 08 015 N6 08 015 N6 08 015 N6 08 015 N6 08 015 N6 08 015 N6 012 N8 02 N6 013 N8 015 N8 015 N8 02 N8 02 N8 015 N8 02 N8 02 N8 02 N8 02 N8 015 N8 02 N8 02 N8 02 N8 02 N8 02 N8 02 N8 02 N8 02 N8 02 N8 015 N8 02 N8 015 N8 02 N8 02 N8 02 N8 015 N8 02 N8 015 N8 02 N8 02 N8 015 N8 02 N8 02 N8 02 N8 015 N8 02 N8 015 N8 02 N8 015 N8 02 N8 02 N2 04 N2 02 N2 012 N2 02 N2 02 N2 02 N2 02 N2 02 N2 012 N2 02 N2 012 N2 02 N2 012 N2 00 N2 N2 00 N2 N2 00 N2 N2 00 N2 N2 00 N2 N2 00 N2 N2 00 N2 N2 00 N2 N2 N2 00 N2 N2 N2 N2 N2 N2 N2		

Supplementary Figure 6. HR-ESI/MS and ¹H-NMR results of compound 3 (16-O-acetyl

cucurbitacin I). a, Negative HR ESI-MS m/z 601.3026 [M+ formic acid-H]⁻ (calculated for

 $C_{33}H_{45}O_{10}$ 601.3012) and (b) $^1H\text{-}NMR$ (600 MHz, CD_3OD, $\delta_H)$ in Table 2.

Supplementary Figure 7. ¹³C-NMR and HMBC results of compound 3 (16-*O*-acetyl cucurbitacin I). a, ¹³C-NMR (150 MHz, CD₃OD, δ_C) in Table 3 and (b) HMBC spectrum (CD₃OD, 600MHz).

Monoisotopic Mass, Even Electron Ions 1934 formula(e) evaluated with 15 results within limits (up to 20 closest results for each mass) Elements Used: C: 0-500 H: 0-1000 N: 0-10 O: 0-100 20171029_CuE_Neg_P_g 453 (5.082) Cm (449:455)

20171020_Cu	E_Neg_P_9	453 (5.082) Cn 53 325 1830	477.263	537 285	643.31. 3	26	3 2241 853	5150	1199 (162,1241.0	1: TO	0F MS ES- 7.94e+006 3.5607 m/z
100	200	300	400	500	600	700	800	900 1	000 1100	1200	1300	1400
Minimum: Maximum:	60.00 100.00		5.0	10.0	-1.5							
Mass	RA	Calc. Mass	mDa	PPM	DBE	1-FIT	Norm	Conf(%)	Formula			
643.3126	100.00	643.3132 643.3118 643.3137 643.3113 643.3145 643.3145 643.3105 643.3105 643.3150 643.3150 643.3172 643.3078 643.3078 643.3177 643.3073 643.3185	-0.6 -1.1 1.3 1.6 -1.9 2.1 -4.6 4.8 -5.1 5.3 -5.9	-0.9 1.2 -1.7 2.0 2.5 -3.0 3.3 -3.7 5.3 -5.9 -7.2 7.5 -7.9 8.2 -9.2	17.5 12.5 -0.5 30.5 22.5 18.5 13.5 9.5 21.5 8.5 3.5 26.5 26.5	911.4 916.0 915.2 919.0 913.3 915.3 915.3 915.3 914.7 914.5 9014.7 914.5 916.9 916.3	4.420 1.967 9.060 8.193 11.990 6.668 1.808 7.769 7.551 0.404 4.798 9.887 9.331	1.20 13.99 0.01 0.03 0.00 0.15 0.02 16.40 0.04 0.04 0.04 0.05 77 0.82 0.01	C36 H43 N4 C35 H47 O11 C23 H51 N2 C48 H39 N2 C19 H47 N8 C37 H39 N8 C32 H39 N10 C24 H47 N6 C31 H43 N6 C25 H43 N10 C41 H43 N2 C30 H47 N2 C38 H51 O16 C43 H39 N4 C42 H39 N6	07 018 03 05 014 09 010 05 013 02 0		

Supplementary Figure 8. HR-ESI/MS and ¹H-NMR results of compound 4 (16-*O*-acetyl cucurbitacin E). **a**, Negative HR ESI-MS m/z 643.3126 [M+ formic acid-H]⁻ (calculated for C₃₅H₄₇O₁₁ 643.3118) and (**b**) ¹H-NMR (600 MHz, CD₃OD, $\delta_{\rm H}$) in Table 2.

Supplementary Figure 9. ¹³C-NMR and HMBC results of compound 4 (16-*O*-acetyl cucurbitacin E). a, ¹³C-NMR (150 MHz, CD₃OD, $\delta_{\rm C}$) in Table 3 and (b) HMBC spectrum (CD₃OD, 600MHz).

Monoisotopic 2959 formula	Mass, Ev (e) evaluat	en Electron I ted with 25 r	ons esults within	i limits (up	p to 20 clo	sest result	s for each	mass)		
Elements Us C: 0-500	ed: H: 0-1000	N: 0-10	O: 0-100							8311233 1872 14
20171020_Cu	E_Glu_Neg	326 (3.663)				12				1 TOF MS ES- 1.49e+005
100	107 0745	255 2272	462 2448	624 2620	699.3	403 759.36	15 806.37	16	1100 0251	1281.5979
0 100	200	300	400	500	600	700	800	900 1	000 1100 1200	1300 1400
Minimum: Maximum:	60.00 100.00		5.0	10.0	-1.5 50.0					
Мазя	82	Calo. Man	ag mDe	PPM	DBE	1-FIT	Norm	$\texttt{Conf}\left(\mathbf{i}\right)$	Formula	
Mass 805.3693	RA 100.00	Calc. Ma: 205.3692 205.3622 205.3625 205.3678 205.3678 205.3678 205.3665 205.3665 205.3646 205.3646 205.3647 205.3647 205.3648 205.3648 205.3648 205.3648 205.3648 205.3648 205.3648 205.3648 205.3648 205.3648 205.3648 205.3648 205.3648 205.3648 205.3658 205.3754 205.3755 205.3755 205.3755 205.3755 205.3755 205.3755 205.3755 205.3755 205.3755 205.37555 205.3755 205.3755 205.3755 205.3755 205.3755 205.	mDa 0.17 1.1.50 1.63 4.83 4.67 5.55 1.1.50 1.50	PPW 19945 0-0459625127878785824 -11256251278785824 4.4.555824 6.7.77	DE 555555555555555555555555555555555555	17 5.4.4.5.6.9.4.4.5.2.4.7.5.8.5.2 F 32.4.6.0.9.4.4.5.2.4.7.6.8.5.2 F 32.4.6.0.10.3.5.4.0.4.5.1.0.6.6.5.8.8.7 F 32.4.6.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	Norm 7.016 11.250 14.918 9.079 9.079 9.856 12.809 14.239 0.025 8.4856 14.330 14.259 0.025 8.4856 15.690	Conf(%) 0.09 0.000 0.09 0.01 0.00 2.12 0.00 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.001 0.000	Formula C31 H53 N10 O15 C47 H53 N2 O10 C34 H61 O21 C30 H57 N6 O19 C43 H49 N8 O5 C48 H49 N6 O5 C48 H49 N6 O7 C29 H61 N2 O23 C42 H53 N4 O12 C49 H45 N10 O2 C55 H45 N6 O C36 H53 N8 O13 C41 H57 O16 C34 H49 N2 O5 C34 H49 N2 O5 C35 H57 N10 O20 C38 H49 N10 O10 C53 H49 N4 O4	

Supplementary Figure 10. HR-ESI/MS and ¹H-NMR results of compound 5 (2-*O*- β -D-glucopyranosyl 16-*O*-acetyl cucurbitacin E). a, Negative HR ESI-MS *m/z* 805.3693 [M+formic acid-H]⁻ (calculated for C₄₁H₅₇O₁₆ 805.3646) and (b) ¹H-NMR (600 MHz, CD₃OD, $\delta_{\rm H}$) in Table 2.

Supplementary Figure 11. ¹³C-NMR and HMBC results of compound 5 (2-*O*- β -D-glucopyranosyl 16-*O*-acetyl cucurbitacin E). a, ¹³C-NMR (150 MHz, CD₃OD, δ_C) in Table 3 and (b) HMBC spectrum (CD₃OD, 600MHz).

Supplementary Figure 12. Fractionation of watermelon extract during HPLC separation, and LC-MS analysis results of fractionated individual samples. **a**, HPLC chromatogram of watermelon extract for fractionations. **b**, LC–MS analysis of extract prepared from fraction number 1. The extracted ion chromatogram of the ion at m/z 561.3063 [M+FA-H]⁻ corresponds to CuD. **c**, LC–MS analysis of extract prepared from fraction number 1. The extracted ion chromatogram of the ion at m/z 763.3541 [M+FA-H]⁻ corresponds to CuE-Glu. **d**, LC–MS analysis of extract prepared from fraction number 2. The extracted ion chromatogram of the ion at m/z 805.3647 [M+FA-H]⁻ corresponds to 16-*O*-acetyl CuE-Glu. **e**, LC–MS analysis of extract prepared from fraction number 2. The extracted ion chromatogram of the ion at m/z559.2921 [M+FA-H]⁻ corresponds to 16-*O*-acetyl CuI. **f**, LC–MS analysis of extract prepared from fraction number 4. The extracted ion chromatogram of the ion at m/z 603.3170 [M+FA-H]⁻ corresponds to CuB and 16-*O*-acetyl CuD. **g**, LC–MS analysis of extract prepared from fraction number 5. The extracted ion chromatogram of the ion at m/z 601.3013 [M+FA-H]⁻

corresponds to CuE and 16-*O*-acetyl CuI. **h**, LC–MS analysis of extract prepared from fraction number 6. The extracted ion chromatogram of the ion at m/z 645.3275 [M+FA-H]⁻ corresponds to 16-*O*-acetyl CuB. **i**, LC–MS analysis of extract prepared from fraction number 7. The extracted ion chromatogram of the ion at m/z 643.3119 [M+FA-H]⁻ corresponds to 16-*O*-acetyl CuE. Round brackets indicate calculated m/z.

Supplementary Figure 13. ACT2 catalytic activity. HPLC analysis of ACT2 *in vitro* enzymatic reaction in the presence of the CuB, CuD, CuE, CuI and CuE-Glu which were used as a substrate.

Supplementary Figure 14. ACT1 catalytic activity. HPLC analysis of ACT1 *in vitro* enzymatic reaction in the presence of the CuB, CuD, CuE, CuI and CuE-Glu which were used as a substrate.

Supplementary Figure 15. UGT74F2 catalytic activity. HPLC analysis of UGT74F2 *in vitro* enzymatic reaction in the presence of the CuB, CuD and CuI which were used as a substrate.

Supplementary Figure 16. Cucurbitacins accumulated by injury and *ACT3* transiently over expression, and evaluation of neuronal activation against *Drosophila*. a, HPLC chromatogram of 16-*O*-acetyl CuE in wounded leaves. b, Accumulation pattern of 16-*O*-acetyl CuE in wounded leaves were estimated by HPLC analysis. c, Semi RT-qPCR analysis results of leaves transiently overexpressed *ACTs* genes. d, HPLC chromatogram of 16-*O*-acetyl CuE in leaves transiently over expressed *ACT3* gene. e, Full immunoblot image of transiently overexpression *ACT* genes. f, The neuronal activation with CuE and 16-*O*-acetyl CuE. Average frequencies of action potential elicited from S6 and S10 sensilla (n=18-22). Red arrows indicate peaks of 16-*O*-acetyl CuE. The error bars represent \pm SD (n = 3). Asterisks indicate significant difference (*, *P* < 0.05)

a, Average frequency of action potentials induced by the indicated concentraions of CuB and 16-*O*-acetyl CuB on S6 sensilla (n = 16-22). **b**, Average frequency of action potentials induced

by the indicated concentrations of CuB and 16-*O*-acetyl CuB on S10 sensilla (n = 16-22). **c**, Representative sample traces obtained from S6 in **a**. All error bars represent SEMs. Single factor AVONA with Scheffe's ananlysis was used as a post hoc test to compare two sets of data. Asterisks indicate statistical significance compared with each genotype (*, P < 0.05).

Supplementary Tables

Supplementary Table 1. Summary statistics of sequencing data collected from seedling transcriptomes.

USDA ID	Total reads	Filtered reads	Filtered reads (%)	Reads mapped	Reads mapped (%)
PI532627	54,301,266	53,379,720	93.0	47,619,535	85.63
PI536451	52,981,816	51,980,816	92.6	46,892,579	85.50

Total reads: sequences of obtained sequencing process. Filtered reads: low quality reads filtered

according to the criteria. Read mapped: map reads to genome.

Gene ID	Gene name	Description	Log2FC
Cla000422	<i>UGT74E2</i>	UDP-glycosyltransferase 74E2	3.22
Cla004119	GLYT3	Probable glycosyltransferase	1.13
Cla004392	<i>UGT74F2</i>	UDP-glycosyltransferase 74F2	3.23
Cla006564	UGT76F1	UDP-glycosyltransferase 76F1	2.48
Cla007080	CPQ	Cucurbitadienol synthase	4.65
Cla007081	BAHD1 ^a	BAHD acyltransferase	3.55
Cla007082	$CYP87A3^{b}$	Cytochrome P450 87A3	3.83
Cla007608	crtN	Dehydrosqualene desaturase	3.15
Cla008353	BAHD1 ^a	BAHD acyltransferase	3.14
Cla008354	$CYP87A3^{b}$	Cytochrome P450 87A3	4.74
Cla010352	UGT90A1	UDP-glycosyltransferase 90A1	4.09
Cla016525	UGT83A1	UDP-glycosyltransferase 83A1	1.60
Cla017252	<i>CYP705A5</i>	Cytochrome P450 705A5	3.25
Cla022004	<i>UGT74E2</i>	UDP-glycosyltransferase 74E2	2.32
Cla022651	SE	Squalene monooxygenase	2.48
Cla022713	ACT	Vinorine synthase	Inf.

Supplemental Table 2. Descriptions and changes of the up-regulated genes in PI532627 compare to PI536451 seedling.

"Inf." represent infinity. Log2FC: log2 fold change. a: genes described as same CYP87A3

gene name. *b*: genes described as same *BAHD1* gene name.

Gene	Purpose	Sequence (5' to 3')	Direction
C_{1} ,000,422		ACAGCTGAGAAAGGGTTGGT	F
Cla000422	RI-qPCR	GCACTCCCAAACTCAATGCT	R
$C_{1,\alpha}^{1,\alpha}(0,4,1,1,0)$	DT «DCD	TGCATCTGTCCAAAGGGCTA	F
Cla004119	RI-qPCR	GCTTCCCATTCCAACACCTC	R
$C1_{2}006564$		ATGGTGGGTGAACGAGGATT	F
C10000304	RI-qPCR	ATCGGAACCCCTTCGCATAT	R
$C_{1a}^{1a}007080$	DT aDCD	CATCCAGGCCATAGGACCAA	F
C10007080	KI-qrCK	CCCTTTATGCCAAACCACCC	R
$C_{1a}^{a}007082$		GCTCTCCGCGACATTGAAAA	F
C10007082	KI-qrCK	CCGATGGATTCTCTGCAAGC	R
$C_{1a}^{1a}007609$		GTGGAGGTTGTGGTTTTCGA	F
C10007008	KI-qPCK	TGAAGACCATGAATCCGAGGT	R
$C_{1a}^{1}008254$		GCCAGGCACAACTTACAACA	F
C10008554	KI-qrCK	TCATTGCCCGTTCCTTTAGC	R
$C_{1,a}^{(1)}(1,0,2,5,2)$	RT-qPCR	TACAGCGATTTGGACCCAGT	F
Cla010352		CGATCAATCCGTAGCTGCTG	R
Cla016525	RT-qPCR	CGTGGGAAGATTGTGGGTTG	F
		GTACGGCCAACACAGGAATC	R
Cla017252	RT-qPCR	GCGGTAGTGAAGGAGTGTCT	F
		GATCCACTGCAACCATGGTG	R
CL 022004		AGGGTGAAGCTGGATGAACA	F
Cia022004	KI-qPCK	CCACCTTCATCCATGGCTTC	R
C1=022651		GGCATCTGGATTGGAGCAAG	F
Cla022031	RI-qPCR	CCGTTGCTGGGAAGAACATC	R
		GCTTCCAAAATCGCTTCCCT	F
	KI-qrCK	GAAATCCCGGACGTTGCTTT	R
	Semi RT-	GCTTCCAAAATCGCTTCCCT	F
	qPCR	GAAATCCCGGACGTTGCTTT	R
		caaatgggtcgcggatccATGGAGTCAGCATTG	F
ACTI	Recombinant	AAA	
(Cla007081)	protein	gtggtggtggtgctcgagGTGTTGGAGCTGAAG AAC	R
		aacacggggggactctagaATGGAGTCAGCATTG	Б
	Transient	AAAG	Г
	expression	ttatatctccttggatccTGTGTGTGGAGCTGAAGA	D
		ACA	K
	PT aDCD	TAGTAGTTGGAGCCGGTTCG	F
ACT2	NI-YrUN	GTGTCCGTTAGCACCACAAA	R
(Cla008353)	Semi RT-	GCCAGGCACAACTTACAACA	F
	qPCR	TCATTGCCCGTTCCTTTAGC	R

Supplementary Table 3. Primer sequences used in this study.

	Recombinant	caaatgggtcgcggatccATGGAAGTTCAAATT	F
	protein	gtggtggtggtgctcgagGGAAAGGACACTAGG GTT	R
	Transient	aacacggggggactctagaATGGAAGTTCAAATT CTCA	F
	expression	ttatatctccttggatccTGGAAAGGACACTAGG GTTT	R
	RT-aPCR	GTTACTGTGGCGGCGTTTAA	F
		TGATTGTGTTGGAAGGCAGC	R
ACT3 (Cla022713)	Semi RT-	GTTACTGTGGCGGCGTTTAA	F
	qPCR	TGATTGTGTTGGAAGGCAGC	R
		caaatgggtcgcggatccATGGGGACGATGAAT	F
	Recombinant	TAC	
	protein	gtggtggtggtgctcgagATTGGCACTTGGGTTC AA	R
	Transient expression	aacacggggggactctagaATGGGGGACGATGAAT TACA	F
		ttatatctccttggatccTATTGGCACTTGGGTTC AAA	R
	$\mathbf{P}\mathbf{T}_{-a}\mathbf{P}\mathbf{C}\mathbf{P}$	AGTGAAGGTGGGTGAGGATG	F
	RI-qi CR	CTGCCACCTTTCCTAAGTGC	R
UGT74F2 (Cla004392)	Recombinant	caaatgggtcgcggatccATGGGTTTAGAAGGG AAA	F
(Ciuo04392)	protein	gtggtggtggtgctcgagAACACTTGGTATCTTG TC	R
	RT-cPCP	GCTCATGAGACTGAGGGACA	F
TIP41	KI-qrCK	CGAGAGCTTGAAACGTAGCC	R
(Cla016074)	Sami aDCD	GCCTTTGATGCTCTGACTGG	F
	Semi-qPCR	CGAGAGCTTGAAACGTAGCC	R

Lower case indicate the plasmid DNA sequences.

Supplementary Methods

Plant material for RNA sequencing

Two *Citrullus lanatus* germplasms were used in this study. The seeds of PI532627 (USDA plant ID) and PI536451 (USDA plant ID) were kindly provided by the United States Department of Agriculture Germplasm Resources Information Network (USDA GRIN). Watermelon plants were grown in a growth chamber at 28°C under long-day conditions (photoperiod, 16 h : 8 h, light : dark) at a light intensity of 120 μ mol m⁻² s⁻¹. Seedlings were harvested 13 days after germination for RNA sequencing and RT-qPCR analysis.

Construction of RNA sequencing libraries

Libraries were prepared for 100 bp paired-end sequencing using the TruSeq RNA Sample Preparation Kit (Illumina). Specifically, mRNA was purified and fragmented from 2 µg of total RNA using oligo (dT) magnetic beads. The fragmented mRNAs were synthesized as singlestranded cDNAs through random hexamer priming. Double-stranded cDNA was prepared using single-stranded cDNA as a template for second-strand synthesis. After sequential end repair processes, A-tailing, and adapter ligation, cDNA libraries were amplified via polymerase chain reaction (PCR). The quality of these cDNA libraries was evaluated using the Agilent 2100 BioAnalyzer (Agilent) and quantified using the KAPA library quantification kit (Kapa Biosystems), according to the manufacturer's instructions.

RNA sequencing and transcriptome analysis

Paired-end sequencing (2×100 bp) was performed using Illumina HiSeq2500 (Illumina). Lowquality reads were filtered according to the following criteria; reads containing more than 10% skipped bases (marked as 'N's); reads containing more than 40% of bases with quality scores < 20; and reads where the average quality score for each read is < 20. The filtering process was performed using in-house scripts. Filtered reads were mapped to the reference genome related to the species using the aligner¹. Gene expression was measured with Cufflinks v2.1.1² using the gene annotation database for the species. Non-coding gene regions were excluded from the analysis of gene expression using the –mask option. To improve the accuracy of the measurement, multi-read-correction and frag-bias-correct options were applied. Default settings were used for all other options. Differential expression analysis was performed by Cuffdiff⁵. To enhance accuracy, multi-read-correction and frag-bias-correct options were applied. Default settings were used for all other options. DEGs were identified based on a q-value threshold less than 0.05 for correcting errors caused by multiple-testing⁴. The GO database classifies genes according to the three categories: Biological Process (BP), Cellular Component (CC), and Molecular Function (MF), and provides information on the function of genes. To characterize the genes identified from DEG analysis, a GO-based trend test was performed through the Fisher's exact test⁵. Selected genes with P-values < 0.001 following the test were regarded as statistically significant.

Elucidation of compound 1 (16-*O*-acetyl cucurbitacin B) structure by MS and NMR spectroscopy data analysis

The molecular formula of compound 1 was determined to be C₃₄H₄₈O₉ based on the negative ESI-MS *m/z* 645 [M+formic acid-H]⁻ and high resolution ESI-MS *m/z* 645.3282 [M+formic acid-H]⁻ (calculated for C₃₅H₄₉O₁₁ 645.3275) (Supplementary Fig. 2a). The ¹H-NMR spectrum (600 MHz, CD₃OD, $\delta_{\rm H}$) presented proton signals due to eight singlet methyls [$\delta_{\rm H}$ 1.56 (H-27), $\delta_{\rm H}$ 1.54 (H-26), $\delta_{\rm H}$ 1.39 (H-30), $\delta_{\rm H}$ 1.33 (H-29), $\delta_{\rm H}$ 1.29 (H-21), $\delta_{\rm H}$ 1.27 (H-28), $\delta_{\rm H}$ 1.05 (H-19), and $\delta_{\rm H}$ 0.96 (H-18)], two acetyl methyls [$\delta_{\rm H}$ 2.01 and $\delta_{\rm H}$ 1.88], three olefin methines [$\delta_{\rm H}$ 5.79 (1H, br. d, *J* = 3.2 Hz, H-6); $\delta_{\rm H}$ 7.06 (1H, d, *J* = 15.6 Hz, H-24); $\delta_{\rm H}$ 6.76 (1H, d, *J* = 15.6 Hz, H-23)], including a double bond found to have a trans conformation from the coupling

constant (J = 15.6 Hz), and many methylenes and methines. The proton signals suggested that compound 1 is a pentacyclic triterpenoid with two acetyl groups (Supplementary Fig. 2b and Supplementary Table 3). The ¹³C-NMR spectrum (150 MHz, CD₃OD, δ_{C}) presented 34 carbon signals including two acetyl groups (δ_c 171.8, 172.6, 22.0, 21.9). Also, the carbon signals of three ketones [δ_C 215.2 (C-3), δ_C 214.0 (C-11), and δ_C 204.6 (C-22)], one olefin quaternary [δ_C 142.2 (C-5)], three olefin methines [δ_{C} 153.0 (C-24), δ_{C} 121.9 (C-6), and δ_{C} 121.3 (C-23)], two oxygenated quaternaries [δ_C 81.0 (C-25) and δ_C 79.8 (C-20)], two oxygenated methines [δ_C 75.4 (C-2) and $\delta_{\rm C}$ 73.0 (C-16)], four guaternaries [$\delta_{\rm C}$ 52.0 (C-13), $\delta_{\rm C}$ 51.7 (C-4), $\delta_{\rm C}$ 49.9 (C-9), and $\delta_{\rm C}$ 49.7 (C-14)], three methines [$\delta_{\rm C}$ 56.3 (C-17), $\delta_{\rm C}$ 43.9 (C-8), and $\delta_{\rm C}$ 35.0 (C-10)], four methylenes [δ_{C} 49.9 (C-12), δ_{C} 44.5 (C-15), δ_{C} 37.2 (C-1), and δ_{C} 24.9 (C-7)], and eight methyls $[\delta_{C} 30.0 (C-28), \delta_{C} 27.1 (C-27), \delta_{C} 26.9 (C-26), \delta_{C} 24.8 (C-21), \delta_{C} 21.3 (C-29), \delta_{C} 20.7 (C-19), \delta_{C} 21.3 (C-29), \delta_{C} 20.7 (C-19), \delta_{C} 20.7$ $\delta_{\rm C}$ 20.3 (C-18), and $\delta_{\rm C}$ 19.4 (C-30)] were observed, indicating that compound 1 is a monoacetyl curcurbitacin B (Supplementary Fig. 3a and Supplementary Table 4). An oxygenated methine proton signal (H-16) was observed at 5.37 ppm due to downfield shifting, because of the esterification effect, which is usually observed around 4.30 ppm in cucurbitacin B⁶. This was confirmed from the cross peak between an oxygenated methine proton signal ($\delta_{\rm H}$ 5.37, H-16) and an ester carbon signal of an acetyl group ($\delta_{\rm C}$ 172.6) in the gHMBC spectrum (Supplementary Fig. 3b). By comparing the spectroscopic data with those in literature⁷, compound 1 was confirmed to be a 16-O-acetyl cucurbitacin B, a facacein, which was previously isolated from *Echinocystis esiacea*²³.

Elucidation of compound 2 (16-*O*-acetyl cucurbitacin D) structure by MS and NMR spectroscopy data analysis

The molecular formula of compound 2 was determined to be $C_{32}H_{46}O_8$ based on the negative ESI-MS m/z 603 [M+formic acid-H]⁻ and HR ESI-MS m/z 603.3195 [M+formic acid-H]⁻

(calculated for C₃₃H₄₇O₁₀ 603.3169) (Supplementary Fig. 4a). The molecular weight of compound 2 (558 amu) was 42 amu less than compound 1 (600 amu), indicating that compound 2 had one acetyl group less than compound 1. The ¹H-NMR and ¹³C-NMR spectra of compound 2 were very similar to those of compound 1, except for a shortage of signals arising from one acetyl moiety (Supplementary Figs. 4b and 5a). NMR spectroscopy data were similar to those of a cucurbitacin D, except for additional signals from one acetyl group ($\delta_{\rm H}$ 1.83, 3H, s; $\delta_{\rm C}$ 172.3, 21.2). Attachment of the acetyl group at C-16 was confirmed by a downfield shift of the oxygenated methine proton signal (H-16) to $\delta_{\rm H}$ 5.30, which usually occurs at $\delta_{\rm H}$ 4.3⁶. In the gHMBC spectrum (Supplementary Fig. 5b), an oxygenated methine proton signal $\delta_{\rm H}$ 5.30 (H-16) showed cross-peaks with an ester carbon signal of an acetyl group ($\delta_{\rm C}$ 172.3) and an oxygenated quaternary carbon signal $\delta_{\rm C}$ 79.6 (C-20), indicating that the acetyl group was located at C-16. Taken together, compound 2 was identified as 16-*O*-acetyl cucurbitacin D, a novel compound.

Elucidation of compound 3 (16-*O*-acetyl cucurbitacin I) structure by MS and NMR spectroscopy data analysis

The molecular formula of compound 3 was determined to be $C_{32}H_{44}O_8$ based on the negative ESI-MS *m/z* 601 [M+formic acid-H]⁻ and HR ESI-MS *m/z* 601.3026 [M+formic acid-H]⁻ (calculated for $C_{33}H_{45}O_{10}$ 601.3012) (Supplementary Fig. 6a). The molecular weight of compound 3, 556 amu, was 2 amu less than compound 2 (558 amu) indicating that it possessed two hydrogens less than compound 2. The ¹H-NMR and ¹³C-NMR spectra of compound 3 were very similar to those of compound 2, except for the loss of signal due to an oxygenated methine and methylene, and an additional signals owing to an oxygenated olefin quaternary (δ_C 147.0, C-2) and an olefin methine (δ_H 5.74, 1H, d, *J*=3.0 Hz, H-1; δ_C 116.7, C-1) (Supplementary Figs. 6b and 7a). The NMR data were similar to those of a cucurbitacin I, except for the additional

signal of one acetyl group ($\delta_{\rm H}$ 1.84, 3H, s; $\delta_{\rm C}$ 172.3, 20.9). Due to a downfield shift of an oxygenated methine proton ($\delta_{\rm H}$ 5.30; H-16), the position of acetyl was found to be C-16 of aglycone. In the gHMBC spectrum (Supplementary Fig. 7b), an oxygenated methine proton signal $\delta_{\rm H}$ 5.32 (H-16) showed cross-peaks with an ester carbon signal of an acetyl group ($\delta_{\rm C}$ 172.3) and an oxygenated quaternary carbon signal $\delta_{\rm C}$ 79.6 (C-20), a quaternary carbon signal $\delta_{\rm C}$ 49.7 (C-14), and a methine carbon signal $\delta_{\rm C}$ 56.0 (C-17), indicating that the acetyl group was located at C-16. Taken together, compound 3 was identified to be a 16-*O*-acetyl cucurbitacin I, which was a new compound.

Elucidation of compound 4 (16-*O*-acetyl cucurbitacin E) structure by MS and NMR spectroscopy data analysis

The molecular formula of compound 4 was determined to be C₃₄H₄₆O₉ based on the negative ESI-MS *m/z* 643 [M+formic acid-H]⁻ and HR ESI-MS *m/z* 643.3118 [M+formic acid-H]⁻ (calculated for C₃₅H₄₇O₁₁ 643.3118) (Supplementary Fig. 8a). The molecular weight of compound 4, 598 amu, was 42 more than compound 3 (556 amu), indicating that compound 4 has one more acetyl group than compound 3. The ¹H-NMR and ¹³C-NMR spectra of compound 4 were very similar to those of compound 3, except for the addition of an acetyl group signal ($\delta_{\rm H}$ 1.90, 3H, s; $\delta_{\rm C}$ 172.5, 21.3) (Supplementary Figs. 8b and 9a). From the oxygenated methine proton of H-16, there was a downfield shift according to the esterification effect, and the position of the acetyl group was revealed to be C-16. The gHMBC spectrum (Supplementary Fig. 9b), with an oxygenated methine proton signal $\delta_{\rm H}$ 5.40 (H-16), was found to correlate with an acetyl carbonyl carbon signal ($\delta_{\rm C}$ 172.5), an oxygenated quaternary carbon signal $\delta_{\rm C}$ 79.8 (C-20), and an quaternary carbon signal $\delta_{\rm C}$ 51.5 (C-13). Taken together, compound 4 was identified as a 16-*O*-acetyl curcurbitacin E, which was previously isolated from *Bacopa monnieri*²⁴.

Elucidation of compound 5 (2-O- β -D-glucopyranosyl 16-O-acetyl cucurbitacin E) structure by MS and NMR spectroscopy data analysis

The molecular formula of compound 5 was determined to be C₄₀H₅₆O₁₄ based on the negative ESI-MS *m/z* 805 [M+formic acid-H]⁻ and HR ESI-MS *m/z* 805.3693 [M+formic acid-H]⁻ (calculated for C₄₁H₅₇O₁₆ 805.3646) (Supplementary Fig. 10a). The molecular weight of compound 5, 760 amu, was 162 more than compound 4 (598 amu), suggesting that compound 5 has one hexose moiety more than compound 4. The ¹H-NMR and ¹³C-NMR spectra of compound 5 were very similar to those of compound 4, except for the additional hexose signals (Supplementary Figs. 10b and 11a). The sugar was determined to be a *β*-glucopyranose based on the chemical shift of the carbon signals due to an hemiacetal (δ_{C} 101.3, C-1'), four oxygenated methylene (δ_{C} 62.0, C-6') in the ¹³C-NMR spectrum, as well the coupling constant of the anomer proton signal (*J* = 7.8 Hz). In the HMBC spectrum, the anomer proton signal (δ_{C} 147.4, C-2), indicating that the sugar was linked to the hydroxyl group at C-2 (Supplementary Fig. 11b). Therefore, compound 5 was identified as a 2-*O*-*β*-D-glucopyranosyl 16-*O*-acetyl cucurbitacin E, which was previously isolated from *Gratiola officinalis*²⁵.

Semi RT-qPCR

To examine the expression of *ACTs* and *UGT* in unwounded and wounded watermelon leaves, samples were collected at certain times after wounding treatment and stored until total RNA extraction. For semi RT-qPCR analysis, total RNA was extracted from unwounded and wounded watermelon leaves using a RiboEx Total RNA Kit (GeneAll). RNA quality was determined using a Nanodrop ND-2000 spectrophotometer (Nanodrop Technologies), and only

high-quality RNA samples (A260/A230>2.0 and A260/A280>1.8) were used for subsequent experiments. cDNA synthesis was performed with 5 μ g of total RNA using a SuperiorScript III Master Mix in accordance with the manufacturer's instructions (Enzynomics). cDNA (2 μ L) fragments were used as templates for semi RT-qPCR using gene-specific forward and reverse primers (Supplementary Table 3). Semi RT-qPCR analysis was performed using a T100 thermal cycler (Bio-Rad) using a PCR Master mix solution (*i*-Taq) (INtRON). One stably expressed *TIP41* (*Cla016074*) gene was used as a reference gene (Supplementary Table 3). All semi RT-qPCR experiments were performed in two biological replicates (independently harvested samples). PCR products were analyzed using agarose gel electrophoresis to determine the relative abundance of transcripts.

References

- 1 Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-Seq. *Bioinformatics* **25**, 1105-1111 (2009).
- 2 Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. *Nat Biotechnol* 28, 511-515 (2010).
- 3 Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. *Nat Protoc* **7**, 562-578 (2012).
- 4 Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate a Practical and Powerful Approach to Multiple Testing. *J R Stat Soc B* **57**, 289-300 (1995).
- Fisher, R. A. On the Interpretation of χ2 from Contingency Tables, and the Calculation
 of P. . *Journal of the Royal Statistical Society* 85, 87-94 (1922).
- 6 Ayyad, S. E., Abdel-Lateff, A., Basaif, S. A. & Shier, T. Cucurbitacins-type triterpene with potent activity on mouse embryonic fibroblast from Cucumis prophetarum, cucurbitaceae. *Pharmacognosy Res* **3**, 189-193 (2011).
- Ryu, J. S. & Lloyd, D. Cell Cytotoxicity of Sodium-Nitrite, Sodium-Nitroprusside and Roussins Black Salt against Trichomonas-Vaginalis. *Fems Microbiol Lett* 130, 183-187 (1995).