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1 Divergence by Location

Figures 1 and 2 show the Divergence method model fits for all available locations. COVID-19 is

treated as an intervention, and we measure the impact of COVID-19 on observed CDC ILI, using

predictions of ILI from the IDEA model and the virology model as counterfactuals. The impact

of COVID-19 is calculated as the difference between the higher observed CDC ILI and the lower

IDEA model predicted ILI and virology predicted ILI. The impact directly maps to an estimate

of COVID-19 ILI-symptomatic case counts. Virology-predicted ILI is omitted when virology data

is not available. We note that model fit quality varies by location. CDC reported ILI activity is

plotted in blue, IDEA model predicted ILI is plotted in orange, and virology predicted ILI is plotted

in green. We note that this method is meaningful only at the beginning of the outbreak (March

2020), while ILI surveillance systems are still fully operational and before they are impacted by

COVID-19. The disappearance of the divergence does not mean that the outbreak is over, but

rather that the ILI signal is no longer reliable.
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Figure 1: Divergence model fits for first half of locations.
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Figure 2: Divergence model fits for second half of locations.
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2 Time Series Plots for All Methods

Figures 3 and 4 show the cumulative estimated counts for each week over the entire study period of

March 1, 2020 to May 16, 2020, compared with cumulative reported counts, in each location in the

United States. The solid and dotted lines indicate adjusted and unadjusted methods, respectively.

Due to the seasonal nature of ILI information, estimates from all methods besides mMAP are

limited to April 4, 2020.
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Figure 3: Cumulative case time series for first half of locations.
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Figure 4: Cumulative case time series for second half of locations.
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3 Virology-based Estimation

Figure 5: Causal DAG affecting flu positive results.

Both the virology-based Divergence model and the COVID Scaling method rely on the ex-

trapolation of positive testing data to the actual symptomatic incidence of the disease. The causal

diagram shown in Fig. 5 shows that an individual’s flu test result depends on whether they have the

disease, but also whether they receive a test in the first place (by going through the ILI visit path).

More broadly, the relationship between test positive results and true disease counts are influenced

by testing availability. We approximate the availability using the total administered tests divided

by ILI cases. Identical reasoning applies for analysis of COVID-19 cases, as done in the COVID

Scaling method.

We formulate a valid control as having the following two properties:

1. The control produces a reliable estimate of ILI activity.

2. The control is not affected by the COVID-19 intervention (that is, the model of ILI conditional

on any relevant predictors is independent of COVID-19).

In Table 1, we show that the total positive tests divided by the availability satisfies both

properties and successfully estimates the true flu counts (in the perfectly distributed case) even

when a surge of COVID-19 cases is added.
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Baseline cases With COVID-19 cases

Data 1 2 3 1 2 3

Flu (F ) 20 20 40 20 20 20

ILI (I) 100 100 200 200 200 400

Test (N) 10 50 50 10 50 50

Positive (F+) 2 10 10 1 5 2.5

Availability (N/I) 0.1 0.5 0.25 0.05 0.25 0.125

Predict F̂ 20 20 40 20 20 20

Predict Î 100 100 200 100 100 100

Table 1: Series of examples showing that the proposed estimator predicts flu cases correctly even

when potential COVID-19 is added.

4 Mortality-MAP Analysis

4.1 Proof of Case Recovery Given Convergence

In this section we will prove that if mMAP converges, which it does for every location in this

analysis, the cases predicted by mMAP, Cd, fully recover deaths. That is that

D(t) =

t−1∑
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p(T = t− τ) · Cd(τ) ∀ t ∈ 1..tmax (1)
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(1) can be shown by induction. First, we will show that it holds for t = tmax − 1 and then show

that if it is true for ti+1 then it must be true for ti.

Setting t = tmax − 1, from (3) we see that

P (T≤1) =
D(tmax) · P (T = 1)

tmax−1∑
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P (T = (tmax − 1− s)) · Cd(s)

=⇒
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(4)

since P (0) = 0, P (T = 1) = P (T≤1). Thus, (1) holds for t = tmax− 1. Now, assume (1) is true for

all t > ti. From (3),
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In the final step, D(τ) and the denominator cancel out because (1) is true for all t > ti.

Subtracting probabilities from both sides we end up with.

P (T = 1) =
D(ti) · P (T = 1)

ti−1∑
s=1

P (T = ti − s) · Cd(s)
=⇒

ti−1∑
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P (T = ti − s) · Cd(s) = D(ti) (6)

Therefore, (1) is true for ti and by induction is true for all t < tmax. Note that Cd is not a

unique solution to the equation; since there are more potential days of cases than reported deaths

this system is not full rank and there are infinite solutions (if Cd is allowed to be continuous). This

result shows that at least the current estimate of Cd sensibly predicts the reported deaths. The

next section demonstrates that this estimate of Cd does seem to be accurate for simulated and

empirical data.

4.2 Satisfying Case Fatality Ratio Calculation

The authors of [1] propose an unbiased estimator of the case fatality rate as the following. In this

study we are using the symptomatic case fatality ratio (sCFR), so here we define C as the total
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symptomatic infections.

sCFR =

tmax∑
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t=1

t−1∑
τ=1

C(t− τ) · p(T = τ)

(7)

Note that the notation from the paper referenced is adapted to match the notation here, and

that here P(T=0) so the summation limits are adjusted. We can show that the results from (1)

satisfy this calculation of sCFR by showing that from our estimates of C, the RHS above equals

the LHS. Note that in our formulation of C, Cd = sCFR · C, since Cd is the time series of cases

that end up in death, and C is the time series of all symptomatic cases.
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(8)

To see that the numerator and denominator cancel out, substitute j = t−τ into the denomina-

tor. This demonstrates that our method converges to solutions that match previously researched

formulations. Dependent on assumptions of accurate death reporting, the sCFR, and distribu-

tion of time from symptom onset to death, this method can accurately predict the unobserved

symptomatic case time series.

4.3 Simulated and Empirical Validation

To validate mMAP, it was analyzed using simulated and real death data until June 7 from six

countries: United States, China, Italy, Spain, Germany, and South Korea. Figure 6 compares

mMAP predicted cases with reported cases. To visually scale the reported cases, the following

equation is used:

reported-scaled = reported ·
∑
predicted∑
reported

While the scales differ, the trends of predicted cases generally follow the trends of reported cases,

especially in Italy, Germany, and South Korea. In the United States, Italy, and Spain, the differ-

ences could be a result of increasing case detection around the start of April; as testing increases,
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we would expect to see more of a relative increase in reported cases than in reported deaths (be-

cause we would likely be picking up more of the less severe cases), which would cause the reported

cases to increase more steeply than mMAP predictions.

In figure 7, the deaths for each country are simulated from the reported cases. Deaths are

stochastically simulated from the reported cases using the log-normal distribution from symptom

onset to death and an sCFR of 0.01. From the simulated deaths, mMAP predicts the original

cases. As demonstrated by the proof in section 2.1, mMAP recovers cases on convergence (note it

does not completely recover cases here because of the randomness of the simulation).

Both plots offer validation that mMAP can successfully predict the trend of the reported cases.

However, these plots do not demonstrate if the scale of mMAP predictions are on target, as this

is influenced by the under-reporting of deaths and the sCFR.

Figure 6: mMAP predictions compared to reported cases.
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Figure 7: Simulated mMAP predictions compared to reported cases.
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