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Figure S1. Genotyping validation and characterization of AAVS1-mCherry E4/4-hiPSC and iE3/3-
hiPSC lines. Related to Figure 1.

(A) Construct and genotyping strategy for AAVS1 targeting of the mCherry transgene expression

cassette. The red arrows and blue arrows indicate PCR primers for AAVS1 locus insertion or
homozygosity, respectively.

(B and C) PCR genotyping of mCherry-containing hiPSC clones. The expected PCR products for
correctly targeted AAVS1 locus are ~1000bp (B). Two selected clones with a red asterisk
underwent a further homozygosity assay and clones with the PCR products of ~650bp are
heterozygous and the clones without PCR products are homozygous (blue asterisk).

(D) Phase contrast image of the homozygous AAVS1-mCherry* iE3/3-hiPSC Clone 4. Scale bar,
100pm.




(E=1) Immunocytochemical staining for mCherry (E) and classical pluripotency markers (F-1) in the
homozygous AAVS1-mCherry* iE3/3-hiPSC Clone 4. Scale bar, 100um.

(J) Karyotype of the homozygous AAVS1-mCherry* iE3/3-hiPSC Clone 4.

(K) Phase contrast image of the homozygous AAVS1-mCherry* E4/4-hiPSC Clone 5. Scale bar,
100um.

(L=P) Immunocytochemical staining for mCherry (L) and classical pluripotency markers (M—P) in
homozygous AAVS1-mCherry* E4/4-hiPSC Clone 5. Scale bar, 100um.

(Q) Karyotype of the homozygous AAVS1-mCherry* E4/4-hiPSC Clone 5.
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Figure S2. Validation of hiPSC-derived neuronal progenitor lineages. Related to Figure 2.

(A) Schematic of neuronal differentiation strategy. Transplantation was performed when
neurons were between +1 week (wk) and +2 weeks of maturation.

(B—D) Immunostaining of iE3/3-mCherry neuronal progenitors at day 21 for classical markers of
the telencephalon (FOXG1), dorsal cortical progenitors (PAX6), and the MGE (NKX2.1). Scale bar,
100pm.

(E-G) Immunostaining of E4/4-mCherry neuronal progenitors at day 21 for classical markers of
the telencephalon (FOXG1), dorsal cortical progenitors (PAX6), and the MGE (NKX2.1). Scale bar,
100pm.
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Figure S3. Lineage validation of transplanted human cells based on gene expression profile
derived from snRNA-seq. Related to Figure 3.

(A) tSNE clustering of transplanted human cells at 7 months post-transplantation. Cluster 1:
inhibitory neurons, Clusters 2-5: excitatory neurons, Clusters 6—8: neuronal progenitors, Cluster
9: oligodendrocytes, Cluster 10: astrocytes.

(B) Quantification of the number of cells per cluster in the transplanted cells.



(C) tSNE clustering of transplanted human cells grouped by sample.
(D) Quantification of the fraction of cells from each sample per cluster.
(E) Heatmap displaying genes representative of lineages present in transplanted human cells.

(F) Feature plots displaying the distribution of classical markers of lineages present in
transplanted human cells.

(G) Quantification of the percent of cell lineages from all transplants combined.
(H) Quantification of the fraction of cell types present within each transplantation group.
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Figure S4. Differential responses of human excitatory neurons to neuronally produced
(endogenous) apoE3 and apoE4. Related to Figure 4.
(A) These comparisons were made between E4/4- and iE3/3-hiPSC-derived human excitatory
neurons within apoE-genotype-matched mouse hosts. Ex denotes excitatory neurons.



(B) Many more pathways were dysregulated by transplanted excitatory neuronal apoE4
genotype in the E4KI mouse host environment than in the E3KI mouse host environment.

(C) Dotplot indicating the pathways dysregulated by transplanted excitatory neuron apoE4
genotype in the E4KI mouse host environment and in the E3KI mouse host environment. Node
size indicates the number of genes dysregulated within the pathway. Shared pathways are
highlighted in blue.

(D and E) Genes dysregulated by transplanted human excitatory neuron apoE4 genotype in the
E4Kl mouse environment (D) and in the E3KI mouse environment (E). Red points represent an
increase in Log> fold change and blue points represent a decrease in Log, fold change in response
to neuronal apoE4. Only genes with a Benjamini-Hochberg corrected p < 0.05 are shown. P-values
are assigned on a per-cell basis.
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Figure S5. Differential responses of iE3/3 and E4/4 human inhibitory neurons to environmental
(exogenous) apoE4. Related to Figure 5.

(A) These comparisons were made for apoE-genotype-matched hiPSC-derived human inhibitory
neurons across E4KI and E3KI mouse hosts.



(B) The number of pathways dysregulated by the E4KI mouse host environment was equal in E4/4
hiPSC-derived human inhibitory neurons and in iE3/3 hiPSC-derived human inhibitory neurons.
(C) Dotplot indicating the pathways dysregulated by the E4KI mouse host environment in E4/4
hiPSC-derived human inhibitory neurons and in iE3/3 hiPSC-derived human inhibitory neurons.
Node size indicates the number of genes dysregulated within the pathway. Shared pathways are
highlighted in blue.

(D and E) Genes dysregulated by the E4KI mouse environment in iE3/3 hiPSC-derived human
inhibitory neurons (D) and in E4/4 hiPSC-derived human inhibitory neurons (E). Red points
represent an increase in Log> fold change and blue points represent a decrease in Log; fold
change in response to the E4KI brain environment. Only genes with a Benjamini-Hochberg
corrected p < 0.05 are shown. P-values are assigned on a per-cell basis.

In panels A, C, D, and E, In denotes inhibitory neurons.
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Figure S6. Contribution of mouse cells to AP staining and response of mouse glial cells to hiPSC-
derived neuron transplants. Related to Figures 6 and 7.

(A-D) Immunohistochemical staining of AP (green) in regions distal to the transplant core. Note
that in the region where there were no mCherry* (red) human neurons, there was no 3D6* AP
staining. Scale bar, 100um.



(E-H) Immunohistochemical staining of IBA1* (green) mouse microglia in and on the perimeter
of the mCherry* (red) human neuronal transplants. Scale bar, 50um.

(1) Quantification of the number of IBA1* mouse microglia per area within the mCherry* human
neuronal transplants (left) and number of IBA1* mouse microglia per area on the perimeter of
the mCherry* human transplants (right). Values are normalized to the E3KI brain transplanted
with iE3/3-neurons (E3KI: iE3/3 transplants, n = 10, N = 3; E4/4 transplants, n = 6, N = 3. E4KI:
iE3/3 transplants, n =5, N = 3; E4/4 transplants, n = 7, N = 3). Data are represented as Mean *
SEM, two-way ANOVA with Sidak's multiple comparisons test.

(J-M) Immunohistochemical staining of GFAP* (green) mouse astrocytes in and on the perimeter
of the mCherry* (red) human neuronal transplants. Scale bar, 50um.

(N) Quantification of the number of GFAP* mouse astrocytes per area within the mCherry* human
neuronal transplants (left) and number of GFAP* mouse astrocytes per area on the perimeter of
the mCherry* human neuronal transplants (right). Values are normalized to the E3KI brain
transplanted with iE3/3-neurons (E3KI: iE3/3 transplants, n = 10; E4/4 transplants, n = 6. E4KI:
iE3/3 transplants, n = 5; E4/4 transplants, n = 7). Data are represented as Mean + SEM, two-way
ANOVA with Sidak's multiple comparisons test.



