## Supplementary Information

## Regulation of MALAT1 triple helix stability and in vitro degradation by diphenylfurans

Anita Donlic,<sup>1</sup> Martina Zafferani,<sup>1</sup> Giacomo Padroni,<sup>1</sup> Malavika Puri,<sup>1</sup> Amanda E. Hargrove<sup>1,2\*</sup>

<sup>1</sup>Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA

<sup>2</sup>Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA

\* To whom correspondence should be addressed. Tel: 919-660-1522; Fax: 919-660-1522; e-mail: amanda.hargrove@duke.edu

Present Address: Amanda E. Hargrove, Department of Chemistry, Duke University, Durham, NC 27708, USA

## Contents

| A. | Supplementary Figures S1-S36                                                           | 2   |
|----|----------------------------------------------------------------------------------------|-----|
| В. | Supplementary Tables S1-S15                                                            | .40 |
| C. | Preparation of NEAT1 and RRE Stem loop RNA                                             | .57 |
| D. | General chemistry methods and procedures                                               | .59 |
| E. | Synthesis of next-generation DPF ligands                                               | .61 |
| F. | <sup>1</sup> H and <sup>13</sup> C NMR characterization spectra and HPLC chromatograms | .67 |
| G. | Gel Images from RNase R Exonucleolytic Decay Experiments                               | .85 |
| Н. | References                                                                             | .87 |

## A. Supplementary Figures S1-S36



**Figure S1.** Left: 8% PAGE-Urea gel run at 180V for 20 min in 1X TBE buffer (100 mM Tris base, 100 mM Borate, 2 mM EDTA) buffer. L = O'GeneRuler Ultra Low Range DNA Ladder (Thermo Scientific), 1 - MALAT1 triple helix RNA, 2 – MALAT1 stem loop RNA, 3 – NEAT1 triple helix RNA. Right: 15% PAGE-Urea gel run at 180V for 1 h in 1X TBE buffer (100 mM Tris base, 100 mM Borate, 2 mM EDTA) buffer. L = O'GeneRuler Ultra Low Range DNA Ladder (Thermo Scientific), 1 = AT-rich DNA duplex, 2 – RRE Stem Loop IIB RNA.



**Figure S2.** Example fluorescence profile of **DPFp20** with increasing amounts of the MALAT1 triple helix RNA as described in "Fluorescence Binding Experiments" section of Materials and Methods. Excitation: 380 nm.



**Figure S3.**  $EC_{50}$  binding curves from fluorescence binding experiments with the MALAT1 triple helix in phosphate screening buffer (10 mM NaH<sub>2</sub>PO<sub>4</sub>, 25 mM NaCl, 4 mM MgCl<sub>2</sub>, 0.5 mM EDTA, pH 7.3). N.A.\* - not available; indicates curves for which no  $EC_{50}$  value was obtained due to little to no change in DPF fluorescence.



**Figure S4.**  $EC_{50}$  binding curves from fluorescence binding experiments with the MALAT1 stem loop in phosphate screening buffer (10 mM NaH<sub>2</sub>PO<sub>4</sub>, 25 mM NaCl, 4 mM MgCl<sub>2</sub>, 0.5 mM EDTA, pH 7.3). N.A.\* - not available; indicates curves for which no  $EC_{50}$  value was obtained due to little to no change in DPF fluorescence.



**Figure S5.**  $EC_{50}$  binding curves from fluorescence binding experiments with yeast tRNA in phosphate screening buffer (10 mM NaH<sub>2</sub>PO<sub>4</sub>, 25 mM NaCl, 4 mM MgCl<sub>2</sub>, 0.5 mM EDTA, pH 7.3). N.A.\* - not available; indicates curves for which no  $EC_{50}$  value was obtained due to little to no change in DPF fluorescence.



**Figure S6.**  $EC_{50}$  binding curves from fluorescence binding experiments with the RRE Stem loop IIB RNA in phosphate screening buffer (10 mM NaH<sub>2</sub>PO<sub>4</sub>, 25 mM NaCl, 4 mM MgCl<sub>2</sub>, 0.5 mM EDTA, pH 7.3). N.A.\* - not available; indicates curves for which no  $EC_{50}$  value was obtained due to little to no change in DPF fluorescence.



**Figure S7.**  $EC_{50}$  binding curves from fluorescence binding experiments with the ATrich DNA duplex in phosphate screening buffer (10 mM NaH<sub>2</sub>PO<sub>4</sub>, 25 mM NaCl, 4 mM MgCl<sub>2</sub>, 0.5 mM EDTA, pH 7.3). N.A.\* - not available; indicates curves for which no  $EC_{50}$  value was obtained due to little to no change in DPF fluorescence.



**Figure S8.**  $EC_{50}$  binding curves from fluorescence binding experiments with the NEAT1 triple helix in phosphate screening buffer (10 mM NaH<sub>2</sub>PO<sub>4</sub>, 25 mM NaCl, 4 mM MgCl<sub>2</sub>, 0.5 mM EDTA, pH 7.3). N.A.\* - not available; indicates curves for which no  $EC_{50}$  value was obtained due to little to no change in DPF fluorescence.



**Figure S9.**  $EC_{50}$  binding curves from fluorescence binding experiments with the MALAT11 triple helix in low ionic buffer, Buffer 2 (20 mM HEPES-KOH pH 7.4 at 25°C, 52 mM KCl, 0.1 mM MgCl<sub>2</sub>). N.A.\* - not available; indicates curves for which no  $EC_{50}$  value was obtained due to little to no change in DPF fluorescence.



| Tukey's multiple comparisons test          | Mean Diff. | 95.00% CI of diff. | Significant? | Summary | Adjusted P Value |
|--------------------------------------------|------------|--------------------|--------------|---------|------------------|
| MALAT1 Triple Helix vs. MALAT1 Stem Loop   | 0.000      | -337.8 to 337.8    | No           | ns      | >0.9999          |
| MALAT1 Triple Helix vs. DNA                | 2546       | 2208 to 2884       | Yes          | ****    | <0.0001          |
| MALAT1 Triple Helix vs. tRNA               | 0.000      | -337.8 to 337.8    | No           | ns      | >0.9999          |
| MALAT1 Triple Helix vs. RRE                | 0.000      | -337.8 to 337.8    | No           | ns      | >0.9999          |
| MALAT1 Triple Helix vs. NEAT1 Triple Helix | 0.000      | -337.8 to 337.8    | No           | ns      | >0.9999          |
| MALAT1 Stem Loop vs. DNA                   | 2546       | 2208 to 2884       | Yes          | ****    | <0.0001          |
| MALAT1 Stem Loop vs. tRNA                  | 0.000      | -337.8 to 337.8    | No           | ns      | >0.9999          |
| MALAT1 Stem Loop vs. RRE                   | 0.000      | -337.8 to 337.8    | No           | ns      | >0.9999          |
| MALAT1 Stem Loop vs. NEAT1 Triple Helix    | 0.000      | -337.8 to 337.8    | No           | ns      | >0.9999          |
| DNA vs. tRNA                               | -2546      | -2884 to -2208     | Yes          | ****    | <0.0001          |
| DNA vs. RRE                                | -2546      | -2884 to -2208     | Yes          | ****    | <0.0001          |
| DNA vs. NEAT1 Triple Helix                 | -2546      | -2884 to -2208     | Yes          | ****    | <0.0001          |
| tRNA vs. RRE                               | 0.000      | -337.8 to 337.8    | No           | ns      | >0.9999          |
| tRNA vs. NEAT1 Triple Helix                | 0.000      | -337.8 to 337.8    | No           | ns      | >0.9999          |
| RRE vs. NEAT1 Triple Helix                 | 0.000      | -337.8 to 337.8    | No           | ns      | >0.9999          |

**Figure S10.** Statistical analysis for the selectivity screen of DPFp7. Its binding to the MALAT1 targets were previously reported.(1) One-way ANOVA followed by Tukey's multiple comparisons test was performed using GraphPad Prism version 8.0.2 for Macintosh, GraphPad Software, La Jolla California USA, www.graphpad.com. Summary of P-values: ns = 0.1234, \* = 0.0332, \*\* = 0.0021, \*\*\* = 0.0002, \*\*\*\* = <0.0001.

S11



| Tukey's multiple comparisons test          | Mean Diff. | 95.00% CI of diff. | Significant? | Summary | Adjusted P Value |
|--------------------------------------------|------------|--------------------|--------------|---------|------------------|
| MALAT1 Triple Helix vs. MALAT1 Stem Loop   | -4953      | -5055 to -4851     | Yes          | ****    | <0.0001          |
| MALAT1 Triple Helix vs. DNA                | -4953      | -5055 to -4851     | Yes          | ****    | <0.0001          |
| MALAT1 Triple Helix vs. tRNA               | -121.8     | -224.0 to -19.65   | Yes          | *       | 0.0168           |
| MALAT1 Triple Helix vs. RRE                | -123.1     | -225.3 to -20.95   | Yes          | *       | 0.0156           |
| MALAT1 Triple Helix vs. NEAT1 Triple Helix | -232.9     | -335.0 to -130.7   | Yes          | ****    | <0.0001          |
| MALAT1 Stem Loop vs. DNA                   | 0.000      | -102.2 to 102.2    | No           | ns      | >0.9999          |
| MALAT1 Stem Loop vs. tRNA                  | 4831       | 4729 to 4933       | Yes          | ****    | <0.0001          |
| MALAT1 Stem Loop vs. RRE                   | 4830       | 4728 to 4932       | Yes          | ****    | <0.0001          |
| MALAT1 Stem Loop vs. NEAT1 Triple Helix    | 4720       | 4618 to 4822       | Yes          | ****    | <0.0001          |
| DNA vs. tRNA                               | 4831       | 4729 to 4933       | Yes          | ****    | <0.0001          |
| DNA vs. RRE                                | 4830       | 4728 to 4932       | Yes          | ****    | <0.0001          |
| DNA vs. NEAT1 Triple Helix                 | 4720       | 4618 to 4822       | Yes          | ****    | <0.0001          |
| tRNA vs. RRE                               | -1.300     | -103.5 to 100.9    | No           | ns      | >0.9999          |
| tRNA vs. NEAT1 Triple Helix                | -111.1     | -213.2 to -8.910   | Yes          | *       | 0.0305           |
| RRE vs. NEAT1 Triple Helix                 | -109.8     | -211.9 to -7.610   | Yes          | *       | 0.0328           |

**Figure S11.** Statistical analysis for the selectivity screen of DPFp8. Its binding to the MALAT1 targets, tRNA, RRE and DNA were previously reported.(1) One-way ANOVA followed by Tukey's multiple comparisons test was performed using GraphPad Prism version 8.0.2 for Macintosh, GraphPad Software, La Jolla California USA, www.graphpad.com. Summary of P-values: ns = 0.1234, \* = 0.0332, \*\* = 0.0021, \*\*\* = 0.0002, \*\*\*\* = <0.0001.



| Tukey's multiple comparisons test          | Mean Diff. | 95.00% CI of diff. | Significant? | Summary | Adjusted P Value |
|--------------------------------------------|------------|--------------------|--------------|---------|------------------|
| MALAT1 Triple Helix vs. MALAT1 Stem Loop   | -45.67     | -635.7 to 544.4    | No           | ns      | 0.9998           |
| MALAT1 Triple Helix vs. DNA                | 1042       | 452.1 to 1632      | Yes          | ***     | 0.0008           |
| MALAT1 Triple Helix vs. tRNA               | -671.0     | -1261 to -80.94    | Yes          | *       | 0.0230           |
| MALAT1 Triple Helix vs. RRE                | -3352      | -3942 to -2762     | Yes          | ****    | <0.0001          |
| MALAT1 Triple Helix vs. NEAT1 Triple Helix | -3352      | -3942 to -2762     | Yes          | ****    | <0.0001          |
| MALAT1 Stem Loop vs. DNA                   | 1088       | 497.7 to 1678      | Yes          | ***     | 0.0005           |
| MALAT1 Stem Loop vs. tRNA                  | -625.3     | -1215 to -35.27    | Yes          | *       | 0.0357           |
| MALAT1 Stem Loop vs. RRE                   | -3306      | -3896 to -2716     | Yes          | ****    | <0.0001          |
| MALAT1 Stem Loop vs. NEAT1 Triple Helix    | -3306      | -3896 to -2716     | Yes          | ****    | <0.0001          |
| DNA vs. tRNA                               | -1713      | -2303 to -1123     | Yes          | ****    | <0.0001          |
| DNA vs. RRE                                | -4394      | -4984 to -3804     | Yes          | ****    | <0.0001          |
| DNA vs. NEAT1 Triple Helix                 | -4394      | -4984 to -3804     | Yes          | ****    | <0.0001          |
| tRNA vs. RRE                               | -2681      | -3271 to -2091     | Yes          | ****    | <0.0001          |
| tRNA vs. NEAT1 Triple Helix                | -2681      | -3271 to -2091     | Yes          | ****    | <0.0001          |
| RRE vs. NEAT1 Triple Helix                 | 0.000      | -590.1 to 590.1    | No           | ns      | >0.9999          |

**Figure S12.** Statistical analysis for the selectivity screen of DPFp12. One-way ANOVA followed by Tukey's multiple comparisons test was performed using GraphPad Prism version 8.0.2 for Macintosh, GraphPad Software, La Jolla California USA, www.graphpad.com. Summary of P-values: ns = 0.1234, \* = 0.0332, \*\* = 0.0021, \*\*\* = 0.0002, \*\*\*\* = <0.0001.

S13



| Tukey's multiple comparisons test          | Mean Diff. | 95.00% CI of diff. | Significant? | Summary | Adjusted P Value |
|--------------------------------------------|------------|--------------------|--------------|---------|------------------|
| MALAT1 Triple Helix vs. MALAT1 Stem Loop   | -56.58     | -173.5 to 60.31    | No           | ns      | 0.5986           |
| MALAT1 Triple Helix vs. DNA                | -132.3     | -249.2 to -15.40   | Yes          | *       | 0.0237           |
| MALAT1 Triple Helix vs. tRNA               | -4.797     | -121.7 to 112.1    | No           | ns      | >0.9999          |
| MALAT1 Triple Helix vs. RRE                | -287.3     | -404.2 to -170.4   | Yes          | ****    | <0.0001          |
| MALAT1 Triple Helix vs. NEAT1 Triple Helix | -184.8     | -301.7 to -67.93   | Yes          | **      | 0.0020           |
| MALAT1 Stem Loop vs. DNA                   | -75.70     | -192.6 to 41.18    | No           | ns      | 0.3151           |
| MALAT1 Stem Loop vs. tRNA                  | 51.78      | -65.10 to 168.7    | No           | ns      | 0.6776           |
| MALAT1 Stem Loop vs. RRE                   | -230.7     | -347.6 to -113.8   | Yes          | ***     | 0.0003           |
| MALAT1 Stem Loop vs. NEAT1 Triple Helix    | -128.2     | -245.1 to -11.35   | Yes          | *       | 0.0289           |
| DNA vs. tRNA                               | 127.5      | 10.60 to 244.4     | Yes          | *       | 0.0299           |
| DNA vs. RRE                                | -155.0     | -271.9 to -38.12   | Yes          | **      | 0.0079           |
| DNA vs. NEAT1 Triple Helix                 | -52.53     | -169.4 to 64.35    | No           | ns      | 0.6652           |
| tRNA vs. RRE                               | -282.5     | -399.4 to -165.6   | Yes          | ****    | <0.0001          |
| tRNA vs. NEAT1 Triple Helix                | -180.0     | -296.9 to -63.13   | Yes          | **      | 0.0025           |
| RRE vs. NEAT1 Triple Helix                 | 102.5      | -14.42 to 219.3    | No           | ns      | 0.0991           |

**Figure S13.** Statistical analysis for the selectivity screen of DPFp13. One-way ANOVA followed by Tukey's multiple comparisons test was performed using GraphPad Prism version 8.0.2 for Macintosh, GraphPad Software, La Jolla California USA, www.graphpad.com. Summary of P-values: ns = 0.1234, \* = 0.0332, \*\* = 0.0021, \*\*\* = 0.0002, \*\*\*\* = <0.0001.



| Tukey's multiple comparisons test          | Mean Diff. | 95.00% CI of diff. | Significant? | Summary | Adjusted P Value |
|--------------------------------------------|------------|--------------------|--------------|---------|------------------|
| MALAT1 Triple Helix vs. MALAT1 Stem Loop   | -385.9     | -444.3 to -327.6   | Yes          | ****    | <0.0001          |
| MALAT1 Triple Helix vs. DNA                | -4958      | -5016 to -4900     | Yes          | ****    | <0.0001          |
| MALAT1 Triple Helix vs. tRNA               | -91.53     | -149.9 to -33.17   | Yes          | **      | 0.0021           |
| MALAT1 Triple Helix vs. RRE                | -173.9     | -232.3 to -115.6   | Yes          | ****    | <0.0001          |
| MALAT1 Triple Helix vs. NEAT1 Triple Helix | -180.9     | -239.3 to -122.5   | Yes          | ****    | <0.0001          |
| MALAT1 Stem Loop vs. DNA                   | -4572      | -4630 to -4514     | Yes          | ****    | <0.0001          |
| MALAT1 Stem Loop vs. tRNA                  | 294.4      | 236.0 to 352.8     | Yes          | ****    | <0.0001          |
| MALAT1 Stem Loop vs. RRE                   | 212.0      | 153.6 to 270.4     | Yes          | ****    | <0.0001          |
| MALAT1 Stem Loop vs. NEAT1 Triple Helix    | 205.0      | 146.7 to 263.4     | Yes          | ****    | <0.0001          |
| DNA vs. tRNA                               | 4866       | 4808 to 4925       | Yes          | ****    | <0.0001          |
| DNA vs. RRE                                | 4784       | 4726 to 4842       | Yes          | ****    | <0.0001          |
| DNA vs. NEAT1 Triple Helix                 | 4777       | 4719 to 4835       | Yes          | ****    | <0.0001          |
| tRNA vs. RRE                               | -82.40     | -140.8 to -24.04   | Yes          | **      | 0.0049           |
| tRNA vs. NEAT1 Triple Helix                | -89.36     | -147.7 to -31.00   | Yes          | **      | 0.0026           |
| RRE vs. NEAT1 Triple Helix                 | -6.967     | -65.33 to 51.39    | No           | ns      | 0.9983           |

**Figure S14.** Statistical analysis for the selectivity screen of DPFp14. One-way ANOVA followed by Tukey's multiple comparisons test was performed using GraphPad Prism version 8.0.2 for Macintosh, GraphPad Software, La Jolla California USA, www.graphpad.com. Summary of P-values: ns = 0.1234, \* = 0.0332, \*\* = 0.0021, \*\*\* = 0.0002, \*\*\*\* = <0.0001.



| Tukey's multiple comparisons test          | Mean Diff. | 95.00% CI of diff. | Significant? | Summary | Adjusted P Value |
|--------------------------------------------|------------|--------------------|--------------|---------|------------------|
| MALAT1 Triple Helix vs. MALAT1 Stem Loop   | -1231      | -2068 to -393.2    | Yes          | **      | 0.0036           |
| MALAT1 Triple Helix vs. DNA                | 431.9      | -405.7 to 1269     | No           | ns      | 0.5381           |
| MALAT1 Triple Helix vs. tRNA               | -377.3     | -1215 to 460.3     | No           | ns      | 0.6633           |
| MALAT1 Triple Helix vs. RRE                | -4126      | -4963 to -3288     | Yes          | ****    | <0.0001          |
| MALAT1 Triple Helix vs. NEAT1 Triple Helix | -4126      | -4963 to -3288     | Yes          | ****    | <0.0001          |
| MALAT1 Stem Loop vs. DNA                   | 1663       | 825.0 to 2500      | Yes          | ***     | 0.0003           |
| MALAT1 Stem Loop vs. tRNA                  | 853.4      | 15.82 to 1691      | Yes          | *       | 0.0450           |
| MALAT1 Stem Loop vs. RRE                   | -2895      | -3733 to -2057     | Yes          | ****    | <0.0001          |
| MALAT1 Stem Loop vs. NEAT1 Triple Helix    | -2895      | -3733 to -2057     | Yes          | ****    | <0.0001          |
| DNA vs. tRNA                               | -809.2     | -1647 to 28.41     | No           | ns      | 0.0605           |
| DNA vs. RRE                                | -4558      | -5395 to -3720     | Yes          | ****    | <0.0001          |
| DNA vs. NEAT1 Triple Helix                 | -4558      | -5395 to -3720     | Yes          | ****    | <0.0001          |
| tRNA vs. RRE                               | -3748      | -4586 to -2911     | Yes          | ****    | <0.0001          |
| tRNA vs. NEAT1 Triple Helix                | -3748      | -4586 to -2911     | Yes          | ****    | <0.0001          |
| RRE vs. NEAT1 Triple Helix                 | 0.000      | -837.6 to 837.6    | No           | ns      | >0.9999          |

**Figure S15.** Statistical analysis for the selectivity screen of DPFp15. One-way ANOVA followed by Tukey's multiple comparisons test was performed using GraphPad Prism version 8.0.2 for Macintosh, GraphPad Software, La Jolla California USA, www.graphpad.com. Summary of P-values: ns = 0.1234, \* = 0.0332, \*\* = 0.0021, \*\*\* = 0.0002, \*\*\*\* = <0.0001.



| Tukey's multiple comparisons test          | Mean Diff. | 95.00% CI of diff. | Significant? | Summary | Adjusted P Value |
|--------------------------------------------|------------|--------------------|--------------|---------|------------------|
| MALAT1 Triple Helix vs. MALAT1 Stem Loop   | -438.8     | -533.3 to -344.2   | Yes          | ****    | <0.0001          |
| MALAT1 Triple Helix vs. DNA                | -4937      | -5031 to -4842     | Yes          | ****    | <0.0001          |
| MALAT1 Triple Helix vs. tRNA               | -93.38     | -187.9 to 1.156    | No           | ns      | 0.0536           |
| MALAT1 Triple Helix vs. RRE                | -288.2     | -382.7 to -193.6   | Yes          | ****    | <0.0001          |
| MALAT1 Triple Helix vs. NEAT1 Triple Helix | -174.2     | -268.8 to -79.68   | Yes          | ***     | 0.0005           |
| MALAT1 Stem Loop vs. DNA                   | -4498      | -4593 to -4403     | Yes          | ****    | <0.0001          |
| MALAT1 Stem Loop vs. tRNA                  | 345.4      | 250.8 to 439.9     | Yes          | ****    | <0.0001          |
| MALAT1 Stem Loop vs. RRE                   | 150.6      | 56.03 to 245.1     | Yes          | **      | 0.0019           |
| MALAT1 Stem Loop vs. NEAT1 Triple Helix    | 264.5      | 170.0 to 359.1     | Yes          | ****    | <0.0001          |
| DNA vs. tRNA                               | 4843       | 4749 to 4938       | Yes          | ****    | <0.0001          |
| DNA vs. RRE                                | 4649       | 4554 to 4743       | Yes          | ****    | <0.0001          |
| DNA vs. NEAT1 Triple Helix                 | 4763       | 4668 to 4857       | Yes          | ****    | <0.0001          |
| tRNA vs. RRE                               | -194.8     | -289.3 to -100.3   | Yes          | ***     | 0.0002           |
| tRNA vs. NEAT1 Triple Helix                | -80.84     | -175.4 to 13.70    | No           | ns      | 0.1114           |
| RRE vs. NEAT1 Triple Helix                 | 114.0      | 19.43 to 208.5     | Yes          | *       | 0.0156           |

**Figure S16.** Statistical analysis for the selectivity screen of DPFp16. One-way ANOVA followed by Tukey's multiple comparisons test was performed using GraphPad Prism version 8.0.2 for Macintosh, GraphPad Software, La Jolla California USA, www.graphpad.com. Summary of P-values: ns = 0.1234, \* = 0.0332, \*\* = 0.0021, \*\*\* = 0.0002, \*\*\*\* = <0.0001.



| Tukey's multiple comparisons test          | Mean Diff. | 95.00% CI of diff. | Significant? | Summary | Adjusted P Value |
|--------------------------------------------|------------|--------------------|--------------|---------|------------------|
| MALAT1 Triple Helix vs. MALAT1 Stem Loop   | -673.9     | -810.2 to -537.7   | Yes          | ****    | <0.0001          |
| MALAT1 Triple Helix vs. DNA                | -4828      | -4965 to -4692     | Yes          | ****    | <0.0001          |
| MALAT1 Triple Helix vs. tRNA               | -204.9     | -341.2 to -68.66   | Yes          | **      | 0.0030           |
| MALAT1 Triple Helix vs. RRE                | -1491      | -1627 to -1354     | Yes          | ****    | <0.0001          |
| MALAT1 Triple Helix vs. NEAT1 Triple Helix | -479.2     | -615.5 to -343.0   | Yes          | ****    | <0.0001          |
| MALAT1 Stem Loop vs. DNA                   | -4154      | -4291 to -4018     | Yes          | ****    | <0.0001          |
| MALAT1 Stem Loop vs. tRNA                  | 469.0      | 332.7 to 605.3     | Yes          | ****    | <0.0001          |
| MALAT1 Stem Loop vs. RRE                   | -816.7     | -952.9 to -680.4   | Yes          | ****    | <0.0001          |
| MALAT1 Stem Loop vs. NEAT1 Triple Helix    | 194.7      | 58.43 to 331.0     | Yes          | **      | 0.0045           |
| DNA vs. tRNA                               | 4623       | 4487 to 4760       | Yes          | ****    | <0.0001          |
| DNA vs. RRE                                | 3338       | 3201 to 3474       | Yes          | ****    | <0.0001          |
| DNA vs. NEAT1 Triple Helix                 | 4349       | 4213 to 4485       | Yes          | ****    | <0.0001          |
| tRNA vs. RRE                               | -1286      | -1422 to -1149     | Yes          | ****    | <0.0001          |
| tRNA vs. NEAT1 Triple Helix                | -274.3     | -410.6 to -138.0   | Yes          | ***     | 0.0002           |
| RRE vs. NEAT1 Triple Helix                 | 1011       | 875.1 to 1148      | Yes          | ****    | <0.0001          |

**Figure S17.** Statistical analysis for the selectivity screen of DPFp17. One-way ANOVA followed by Tukey's multiple comparisons test was performed using GraphPad Prism version 8.0.2 for Macintosh, GraphPad Software, La Jolla California USA, www.graphpad.com. Summary of P-values: ns = 0.1234, \* = 0.0332, \*\* = 0.0021, \*\*\* = 0.0002, \*\*\*\* = <0.0001.



| r                                          |            |                    |              |         |                  |
|--------------------------------------------|------------|--------------------|--------------|---------|------------------|
|                                            |            |                    |              |         |                  |
| Tukey's multiple comparisons test          | Mean Diff. | 95.00% CI of diff. | Significant? | Summary | Adjusted P Value |
| MALAT1 Triple Helix vs. MALAT1 Stem Loop   | -4505      | -5143 to -3867     | Yes          | ****    | <0.0001          |
| MALAT1 Triple Helix vs. DNA                | -4505      | -5143 to -3867     | Yes          | ****    | <0.0001          |
| MALAT1 Triple Helix vs. tRNA               | -283.1     | -921.1 to 354.9    | No           | ns      | 0.6762           |
| MALAT1 Triple Helix vs. RRE                | -2826      | -3464 to -2188     | Yes          | ****    | <0.0001          |
| MALAT1 Triple Helix vs. NEAT1 Triple Helix | -665.6     | -1304 to -27.57    | Yes          | *       | 0.0392           |
| MALAT1 Stem Loop vs. DNA                   | 0.000      | -638.0 to 638.0    | No           | ns      | >0.9999          |
| MALAT1 Stem Loop vs. tRNA                  | 4222       | 3584 to 4859       | Yes          | ****    | <0.0001          |
| MALAT1 Stem Loop vs. RRE                   | 1679       | 1041 to 2317       | Yes          | ****    | <0.0001          |
| MALAT1 Stem Loop vs. NEAT1 Triple Helix    | 3839       | 3201 to 4477       | Yes          | ****    | <0.0001          |
| DNA vs. tRNA                               | 4222       | 3584 to 4859       | Yes          | ****    | <0.0001          |
| DNA vs. RRE                                | 1679       | 1041 to 2317       | Yes          | ****    | <0.0001          |
| DNA vs. NEAT1 Triple Helix                 | 3839       | 3201 to 4477       | Yes          | ****    | <0.0001          |
| tRNA vs. RRE                               | -2543      | -3180 to -1905     | Yes          | ****    | <0.0001          |
| tRNA vs. NEAT1 Triple Helix                | -382.5     | -1020 to 255.5     | No           | ns      | 0.3888           |
| RRE vs. NEAT1 Triple Helix                 | 2160       | 1522 to 2798       | Yes          | ****    | <0.0001          |

**Figure S18.** Statistical analysis for the selectivity screen of DPFp18. One-way ANOVA followed by Tukey's multiple comparisons test was performed using GraphPad Prism version 8.0.2 for Macintosh, GraphPad Software, La Jolla California USA, www.graphpad.com. Summary of P-values: ns = 0.1234, \* = 0.0332, \*\* = 0.0021, \*\*\* = 0.0002, \*\*\*\* = <0.0001.



| Tukey's multiple comparisons test          | Mean Diff. | 95.00% CI of diff. | Significant? | Summary | Adjusted P Value |
|--------------------------------------------|------------|--------------------|--------------|---------|------------------|
| MALAT1 Triple Helix vs. MALAT1 Stem Loop   | -319.0     | -463.9 to -174.0   | Yes          | ****    | <0.0001          |
| MALAT1 Triple Helix vs. DNA                | -4910      | -5055 to -4765     | Yes          | ****    | <0.0001          |
| MALAT1 Triple Helix vs. tRNA               | -153.4     | -298.3 to -8.410   | Yes          | *       | 0.0360           |
| MALAT1 Triple Helix vs. RRE                | -466.9     | -611.8 to -321.9   | Yes          | ****    | <0.0001          |
| MALAT1 Triple Helix vs. NEAT1 Triple Helix | -277.5     | -422.4 to -132.5   | Yes          | ***     | 0.0004           |
| MALAT1 Stem Loop vs. DNA                   | -4591      | -4736 to -4446     | Yes          | ****    | <0.0001          |
| MALAT1 Stem Loop vs. tRNA                  | 165.6      | 20.68 to 310.6     | Yes          | *       | 0.0223           |
| MALAT1 Stem Loop vs. RRE                   | -147.9     | -292.9 to -2.947   | Yes          | *       | 0.0446           |
| MALAT1 Stem Loop vs. NEAT1 Triple Helix    | 41.53      | -103.4 to 186.5    | No           | ns      | 0.9214           |
| DNA vs. tRNA                               | 4756       | 4611 to 4901       | Yes          | ****    | <0.0001          |
| DNA vs. RRE                                | 4443       | 4298 to 4588       | Yes          | ****    | <0.0001          |
| DNA vs. NEAT1 Triple Helix                 | 4632       | 4487 to 4777       | Yes          | ****    | <0.0001          |
| tRNA vs. RRE                               | -313.5     | -458.5 to -168.6   | Yes          | ***     | 0.0001           |
| tRNA vs. NEAT1 Triple Helix                | -124.1     | -269.1 to 20.85    | No           | ns      | 0.1107           |
| RRE vs. NEAT1 Triple Helix                 | 189.4      | 44.48 to 334.4     | Yes          | **      | 0.0088           |

**Figure S19.** Statistical analysis for the selectivity screen of DPFp19. One-way ANOVA followed by Tukey's multiple comparisons test was performed using GraphPad Prism version 8.0.2 for Macintosh, GraphPad Software, La Jolla California USA, www.graphpad.com. Summary of P-values: ns = 0.1234, \* = 0.0332, \*\* = 0.0021, \*\*\* = 0.0002, \*\*\*\* = <0.0001.



| Tukey's multiple comparisons test          | Mean Diff. | 95.00% CI of diff. | Significant? | Summary | Adjusted P Value |
|--------------------------------------------|------------|--------------------|--------------|---------|------------------|
| MALAT1 Triple Helix vs. MALAT1 Stem Loop   | -4047      | -4222 to -3872     | Yes          | ****    | <0.0001          |
| MALAT1 Triple Helix vs. DNA                | 799.9      | 625.1 to 974.7     | Yes          | ****    | <0.0001          |
| MALAT1 Triple Helix vs. tRNA               | -4047      | -4222 to -3872     | Yes          | ****    | <0.0001          |
| MALAT1 Triple Helix vs. RRE                | -4047      | -4222 to -3872     | Yes          | ****    | <0.0001          |
| MALAT1 Triple Helix vs. NEAT1 Triple Helix | 458.4      | 283.6 to 633.2     | Yes          | ****    | <0.0001          |
| MALAT1 Stem Loop vs. DNA                   | 4847       | 4672 to 5022       | Yes          | ****    | <0.0001          |
| MALAT1 Stem Loop vs. tRNA                  | 0.000      | -174.8 to 174.8    | No           | ns      | >0.9999          |
| MALAT1 Stem Loop vs. RRE                   | 0.000      | -174.8 to 174.8    | No           | ns      | >0.9999          |
| MALAT1 Stem Loop vs. NEAT1 Triple Helix    | 4506       | 4331 to 4680       | Yes          | ****    | <0.0001          |
| DNA vs. tRNA                               | -4847      | -5022 to -4672     | Yes          | ****    | <0.0001          |
| DNA vs. RRE                                | -4847      | -5022 to -4672     | Yes          | ****    | <0.0001          |
| DNA vs. NEAT1 Triple Helix                 | -341.5     | -516.3 to -166.7   | Yes          | ***     | 0.0003           |
| tRNA vs. RRE                               | 0.000      | -174.8 to 174.8    | No           | ns      | >0.9999          |
| tRNA vs. NEAT1 Triple Helix                | 4506       | 4331 to 4680       | Yes          | ****    | <0.0001          |
| RRE vs. NEAT1 Triple Helix                 | 4506       | 4331 to 4680       | Yes          | ****    | <0.0001          |

**Figure S20.** Statistical analysis for the selectivity screen of DPFp20. One-way ANOVA followed by Tukey's multiple comparisons test was performed using GraphPad Prism version 8.0.2 for Macintosh, GraphPad Software, La Jolla California USA, www.graphpad.com. Summary of P-values: ns = 0.1234, \* = 0.0332, \*\* = 0.0021, \*\*\* = 0.0002, \*\*\*\* = <0.0001.



**Figure S21.** Principal moments of inertia (PMI) plot of the next-generation DPF ligands (light blue), DPFp8 (dark blue), and DPFp7 (orange). Details for calculations and plot generation are described in the Materials and Methods Section.



**Figure S22.** Depiction of the six binding pockets predicted by ICM for the MALAT1 triple helix structure (PDB ID: 4PLX, pocket 1 = blue; pocket 2 = yellow; pocket 3 = black; pocket 4 = green; pocket 5 = orange; pocket 6 = purple). Pocket numbering was assigned arbitrarily.



S24

**Figure S23.** First derivative melting profiles of MALAT1 obtained via differential scanning fluorimetry (DSF) for the MALAT1 triple helix RNA upon addition of DMSO or DPFs in high-ionic buffer, Buffer 1 (20 mM HEPES-KOH pH 7.4 at 25 °C, 152.6 mM KCl, 1 mM MgCl<sub>2</sub>). T<sub>m</sub>1 is proposed to be the melting temperature of the Hoogsteen base-paired, triplex-forming strand; and T<sub>m</sub>2 is proposed to be the melting temperature of the remaining structure(2). Errors represent the standard deviation of three independent experiments.  $\Delta T_m$  errors were calculated through standard error propagation.



0+ 0

20

40 60 80

Temperature (°C)

100

S26

**Figure S24.** First derivative melting profiles obtained via differential scanning fluorimetry (DSF) for the MALAT1 triple helix RNA upon addition of DMSO or DPFs in low ionic buffer, Buffer 2 (20 mM HEPES-KOH pH 7.4 at 25 °C, 52 mM KCl, 0.1 mM MgCl<sub>2</sub>). T<sub>m</sub>1 is proposed to be the melting temperature of the Hoogsteen base-paired, triplex-forming strand; and T<sub>m</sub>2 is proposed to be the melting temperature of three independent experiments.  $\Delta$ T<sub>m</sub> errors were calculated through standard error propagation.



**Figure S25.** Structures of additional small molecules utilized in this study that were not synthesized in this work. **DPFp7** (4,4'-(furan-2,5-diyl)bis(*N*-([1,1'-biphenyl]-4-ylmethyl)benzimidamide)) was a previously reported non-binder of the MALAT1 triple helix and stem loop by Hargrove and co-workers(1). Pentamidine (4,4'-(pentane-1,5-diylbis(oxy))dibenzimidamide) is a known and promiscuous RNA-binding diamidine(3-6). **SM5** (*N*-(3-methoxybenzyl)-5-(4-methoxyphenyl)-1-methyl-1*H*-imidazol-2-amine) and **SM16** (5-amino-1-cyclopentyl-4-(6-methyl-1*H*-benzo[*d*]imidazol-2-yl)-1,2-dihydro-3*H*-pyrrol-3-one) are MALAT1 triple helix-destabilizing molecules as reported by Le Grice and co-workers(7).



**Figure S26.** Results of RNase R exonucleolytic degradation experiments as observed by denaturing gel electrophoresis and quantified by ImageJ software(8) as described in Materials and Methods Section. 0.2  $\mu$ M RNA and 0.2  $\mu$ M DPF or 1  $\mu$ M SM5 or SM16 were incubated with 5U of RNase R in low ionic buffer conditions. No degradation was observed without RNase R over the time course monitored.



**Figure S27.** Semi-quantitative denaturing PAGE gel analysis of RNase R exonucleolytic degradation control experiment with 5 time points using Image J software (1.52k) (8) to ensure linear phase decay. Measurements beyond the 5 h timepoint were not taken as very low levels of RNA remain at that point, not allowing for accurate quantification and assessment of linear decay afterwards. While the 30 min timepoint appears to be at the border of linear decay, it is the earliest time point that enabled us to see clear differences between the different DPF ligands and thus rank their relative protective effects. 0.2  $\mu$ M RNA and 0.2  $\mu$ M DPF or DMSO were incubated with 5U of RNase R in low ionic buffer conditions (20 mM HEPES-KOH pH 7.4 at 25 °C, 52 mM KCl, 0.1 mM MgCl<sub>2</sub>). Values are normalized to Timepoint 0 and the loading control as described in "RNase R Exonucleolytic Degradation Experiments" of Materials and Methods. Error bars represent standard deviation from three independent experiments.



**Figure S28.** Structure of **DPFp12** and its low energy conformer ( $\Delta E = 0$ ) from computational calculations in the Molecular Operating Environment (MOE) conformational search. Purple dots indicate face-to-face intramolecular  $\pi$ - $\pi$  interactions.



**Figure S29.** Correlation between melting temperature shifts as measured by DSF experiments in low ionic buffer conditions and level of MALAT1 Triple Helix at the 30 min timepoint during an RNase R incubation in low ionic buffer conditions as measured by denaturing gel electrophoresis and quantified in ImageJ software. The value was measured relative to the loading control and the 0 min timepoint sample. Melting temperature denotes the first peak in the first derivative graph of the melting profile, proposed to be the triple helix-melting peak(2).  $\Delta T_m = T_m (DPF) - T_m (DMSO)$ . Errors represent standard deviation from three independent experiments.



**Figure S30.** Correlation between melting temperature shifts as measured by DSF experiments in low ionic buffer conditions and level of MALAT1 Triple Helix at the 300 min timepoint during an RNase R incubation in low ionic buffer conditions as measured by denaturing gel electrophoresis and quantified in ImageJ software. The value was measured relative to the loading control and the 0 min timepoint sample. Melting temperature denotes the first peak in the first derivative graph of the melting profile, proposed to be the triple helix-melting peak(2).  $\Delta T_m = T_m (DPF) - T_m (DMSO)$ . Errors represent standard deviation from three independent experiments.



**Supplementary Figure S31.** Results of RNase R exonucleolytic degradation experiments as observed by denaturing gel electrophoresis and described in Materials and Methods section. 0.2  $\mu$ M RNA and 0.2  $\mu$ M DPF were incubated with 5U of RNase R in low ionic buffer conditions.



Triple helix EC<sub>50</sub> (nM), phosphate

**Figure S32.** Correlation between EC<sub>50</sub> values as measured by fluorescence-based titration experiments in phosphate screening buffer and thermal stabilization of the MALAT1 triple helix Tm<sub>1</sub> in low-ionic buffer conditions as measured by Differential Scanning Fluorimetry Melting temperature denotes the first peak in the first derivative graph of the melting profile, proposed to be the triple helix-melting peak(2).  $\Delta T_m = T_m$  (DPF) – T<sub>m</sub> (DMSO). N.A.\* - not available; indicates curves for which no EC<sub>50</sub> value was obtained due to little to no change in DPF fluorescence. Errors represent standard deviation between three independent measurements.



Triple helix EC<sub>50</sub> (nM), B2

**Figure S33.** Correlation between EC<sub>50</sub> values as measured by fluorescence-based titration experiments in low-ionic buffer, B2, and thermal stabilization of the MALAT1 triple helix Tm<sub>1</sub> in low-ionic buffer conditions as measured by Differential Scanning Fluorimetry Melting temperature denotes the first peak in the first derivative graph of the melting profile, proposed to be the triple helix-melting peak(2).  $\Delta T_m = T_m (DPF) - T_m (DMSO)$ . N.A.\* - not available; indicates curves for which no EC<sub>50</sub> value was obtained due to little to no change in DPF fluorescence. Errors represent standard deviation between three independent measurements.


**Figure S34.** Docking result of DPFp20 in pocket 1 predicted by ICM. Note that intercalative binding modes are difficult to model and predict in docking programs(9). See Materials and Methods section for details.



**Figure S35.** Fluorescence indicator displacement (FID) assay of intercalative ligand SYBR Green II and increasing concentrations of DPFp8 and p20 in low-ionic buffer conditions ((20 mM HEPES-KOH pH 7.4 at 25 °C, 52 mM KCl, 0.1 mM MgCl<sub>2</sub>). Error bars represent the standard deviation of three technical replicates. See Materials and Methods for CD<sub>50</sub> value calculation. CD<sub>50</sub> values represent averages of three independent experiments ± standard deviation.



**Figure S36.** Correlation between triple helix fold-selectivity as measured by  $EC_{50}$  values from fluorescence binding experiments and increase in triple helix thermal stability as measured by DSF experiments in low-ionic buffer conditions. Fold-selectivity =  $EC_{50}$  (TH) /  $EC_{50}$  (SL). Fold-selectivity values for DPFp7, DPFp8, DPFp18 and DPFp20 were not assigned or plotted due to  $EC_{50}$  value(s) not being available. The resulting low number of data points precluded quantitative correlation insights, and linear regression analysis was therefore not performed.

# **B.Supplementary Tables S1-S15**

 Table S1. Sequences of final RNA/DNA sequences utilized for experiments.

## RNA SEQUENCE (5' – 3')

| MALAT1<br>STEM<br>LOOP                | GGAAGGUUUUUCUUUUCCUGAGAAAACAACACGUAUUGUUUUCUCAGGUUUUGCUU<br>UUUGGCCUUUU                             |
|---------------------------------------|-----------------------------------------------------------------------------------------------------|
| MALAT1<br>TRIPLE<br>HELIX             | GGAAGGUUUUUCUUUUCCUGAGAAAACAACACUAUUGUUUUCUCAGGUUUUGCUUU<br>UUGGCCUUUUUCUAGCUUAAAAAAAAAA            |
| NEAT1<br>TRIPLE<br>HELIX              | GGAGGUGUUUCUUUUACUGAGUGCAGCCCAUGGCCGCACUCAGGUUUUGCUUUUCA<br>CCUUCCCAUCUGUGAAAGAGUGAGCAGGAAAAAGCAAAA |
| RRE STEM<br>LOOP IIB                  | GGUCUGGGCGCAGCGCAAGCUGACGGUACAGGCC                                                                  |
| AT-RICH<br>DNA<br>DUPLEX              | ΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤ                                                            |
| DNA<br>DUPLEX<br>(LOADING<br>CONTROL) | GGCCGGCCGAAAGGCCGGCC                                                                                |

**Table S2.** EC<sub>50</sub> values ± standard deviation of three independent fluorescence binding experiments with next-generation DPFs and the MALAT1 triple helix (TH) or stem loop (SL) RNAs. Up to 5  $\mu$ M RNA was titrated into 1  $\mu$ M DPF in phosphate screening buffer (10 mM NaH<sub>2</sub>PO<sub>4</sub>, 25 mM NaCl, 4 mM MgCl<sub>2</sub>, 0.5 mM EDTA, pH 7.3). N.A.\* - not available; indicates curves for which no EC<sub>50</sub> value was obtained due to little to no change in DPF fluorescence. Fold-selectivity = EC<sub>50</sub> (TH) / EC<sub>50</sub> (SL). \*\*Value was not assigned due to EC<sub>50</sub> value(s) not being available.

| DPF | EC₅₀ (TH), nM | EC₅₀ (SL), nM | Triple helix<br>fold-selectivity |
|-----|---------------|---------------|----------------------------------|
| p7  | N.A.*         | N.A.*         | N.A.**                           |
| p8  | 36.89 ± 8.23  | N.A.*         | N.A.**                           |
| p12 | 1648 ± 300    | 1687 ± 300    | 1                                |
| p13 | 27.30 ± 8.60  | 83.9 ± 36.8   | 3                                |
| p14 | 42.07 ± 4.40  | 428 ± 23.4    | 10                               |
| p15 | 879.3 ± 162   | 2158 ± 839    | 2                                |
| p16 | 63.28 ± 15.4  | 502.1 ± 54.5  | 8                                |
| p17 | 171.7 ± 39.9  | 845.6 ± 38.2  | 5                                |
| p18 | 495.4 ± 130   | N.A.*         | N.A.**                           |
| p19 | 90.33 ± 6.22  | 409.3 ± 98.4  | 5                                |
| p20 | 953 ± 63      | N.A.*         | N.A.**                           |

**Table S3.** EC<sub>50</sub> values from the fluorescence-based selectivity screen of DPF ligands and various nucleic acid constructs. Up to 5  $\mu$ M nucleic acid was titrated into 1  $\mu$ M DPF. TH – MALAT1 triple helix; SL – MALAT1 stem loop; tRNA – Baker's yeast transfer RNA mix; RRE – Rev Response Element Stem Loop IIB; DNA – AT-rich DNA Duplex; NEAT1 – NEAT1 triple helix. Errors represent the standard deviation of three independent experiments. N.A.\* - not available; indicates curves for which no EC<sub>50</sub> value was obtained due to little to no change in DPF fluorescence.



| р7  | N.A.*           | N.A.*           | N.A.*           | N.A.*           | 2453 ± 301      | N.A.*           |
|-----|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| р8  | 36.89 ±<br>8.23 | N.A.*           | 168.7 ±<br>41.3 | 170 ± 59.1      | N.A.*           | 581.4 ±<br>84.3 |
| p12 | 1648 ± 300      | 1687 ± 300      | 2319 ± 303      | N.A.*           | 605.9 ±<br>51.5 | N.A.*           |
| p13 | 27.30 ±<br>8.60 | 83.9 ± 36.8     | 32.1 ± 4.74     | 314.6 ± 80      | 159.6 ±<br>46.6 | 212.1 ±<br>29.7 |
| p14 | 42.07 ±<br>4.40 | 428 ± 23.4      | 133.6 ±<br>44.7 | 216 ± 7.26      | N.A.*           | 223 ± 10        |
| p15 | 879.3 ±<br>162  | 2158 ± 839      | 1251 ± 427      | N.A.*           | 442.4 ± 56      | N.A.*           |
| p16 | 63.28 ±<br>15.4 | 502.1 ±<br>54.5 | 156.7 ±<br>50.7 | 351.5 ± 30      | N.A.*           | 237.5 ±<br>21.3 |
| p17 | 171.7 ±<br>39.9 | 845.6 ±<br>38.2 | 376.7 ±<br>92.2 | 1662 ±<br>36.7  | N.A.*           | 651 ± 43.8      |
| p18 | 495.4 ±<br>130  | N.A.*           | 778.5 ±<br>61.9 | 3321 ± 494      | N.A.*           | 1161 ±<br>242.7 |
| p19 | 90.33 ±<br>6.22 | 409.3 ±<br>98.4 | 243.7 ±<br>21.7 | 557.2 ±<br>80.6 | N.A.*           | 367.8 ± 8       |
| p20 | 953 ± 63        | N.A.*           | N.A.*           | N.A.*           | 152.9 ±<br>21.1 | 494.4 ±<br>35.9 |

**Table S4.** SMILES strings of DPF molecules utilized for conformational search andPMI calculations. Strings for DPFp7 and p8 were reported previously.(1)

| DPF | SMILES STRING                                                                                                                     |
|-----|-----------------------------------------------------------------------------------------------------------------------------------|
| р7  | N=C(NCC1=CC=C(C2=CC=C2)C=C1)C(C=C3)=CC=C3C4=CC=C(C5<br>=CC=C(C(NCC6=CC=C(C7=CC=C7)C=C6)=N)C=C5)O4                                 |
| р8  | N=C(NC1CCN(CC2=CC=CC=C2)CC1)C(C=C3)=CC=C3C4=CC=C(C5=CC<br>=C(C(NC6CCN(CC7=CC=CC=C7)CC6)=N)C=C5)O4                                 |
| p12 | C(N1CCC[NH+]=C1C1=CC=C(C=C1)C1=CC=C(O1)C1=CC=C(C=C1)C1=[<br>NH+]CCCN1CC1=CC=CC=C1)C1=CC=CC=C1                                     |
| p13 | [NH2+]=C(NCCC1CC[NH+](CC2=CC=CC=C2)CC1)C1=CC=C(C=C1)C1=C<br>C=C(O1)C1=CC=C(C=C1)C(=[NH2+])NCCC1CC[NH+](CC2=CC=CC=C2)<br>CC1       |
| p14 | C[NH+]1CCC(CC1)NC(=[NH2+])C1=CC=C(C=C1)C1=CC=C(O1)C1=CC=C<br>(C=C1)C(=[NH2+])NC1CC[NH+](C)CC1                                     |
| p15 | [NH2+]=C(N[C@H]1CCC[NH+](CC2=CC=CC=C2)C1)C1=CC=C(C=C1)C1<br>=CC=C(O1)C1=CC=C(C=C1)C(=[NH2+])N[C@H]1CCC[NH+](CC2=CC=C<br>C=C2)C1   |
| p16 | C[NH+]1CCC(CNC(=[NH2+])C2=CC=C(C=C2)C2=CC=C(O2)C2=CC=C(C=<br>C2)C(=[NH2+])NCC2CC[NH+](C)CC2)CC1                                   |
| p17 | [NH2+]=C(NCCN1CC[NH+](CC2=CC=CC=C2)CC1)C1=CC=C(C=C1)C1=C<br>C=C(O1)C1=CC=C(C=C1)C(=[NH2+])NCCN1CC[NH+](CC2=CC=CC=C2)<br>CC1       |
| p18 | [NH2+]=C(N[C@@H]1CCC[NH+](CC2=CC=CC=C2)C1)C1=CC=C(C=C1)C<br>1=CC=C(O1)C1=CC=C(C=C1)C(=[NH2+])N[C@@H]1CCC[NH+](CC2=CC<br>=CC=C2)C1 |
| p19 | CC[NH+](CCCNC(=[NH2+])C1=CC=C(C=C1)C1=CC=C(O1)C1=CC=C(C=<br>C1)C(=[NH2+])NCCC[NH+](CC)CC1=CC=CC=C1)CC1=CC=CC=C1                   |
| p20 | [NH2+]=C(NC1=CC=C(C[NH+]2CCCCC2)C=C1)C1=CC=C(C=C1)C1=CC=<br>C(O1)C1=CC=C(C=C1)C(=[NH2+])NC1=CC=C(C[NH+]2CCCCC2)C=C1               |

**Table S5.** Principal moments of inertia (PMI) coordinates and corresponding location in rod-, disc-, sphere- and hybrid-subtriangles. The coordinates for DPFp7 and DPFp8 were reported previously.(1) See Materials and Methods section for details.

| DPF       | I <sub>1</sub> /I <sub>3</sub> | I <sub>2</sub> /I <sub>3</sub> | Sub-<br>triangle |
|-----------|--------------------------------|--------------------------------|------------------|
| p7        | 0.169                          | 0.889                          | Rod              |
| <b>p8</b> | 0.063                          | 0.976                          | Rod              |
| p12       | 0.167                          | 0.955                          | Rod              |
| p13       | 0.216                          | 0.821                          | Rod              |
| p14       | 0.139                          | 0.891                          | Rod              |
| p15       | 0.129                          | 0.957                          | Rod              |
| p16       | 0.112                          | 0.917                          | Rod              |
| p17       | 0.341                          | 0.913                          | Rod              |
| p18       | 0.118                          | 0.976                          | Rod              |
| p19       | 0.169                          | 0.902                          | Rod              |
| p20       | 0.086                          | 0.934                          | Rod              |

**Table S6.** Predicted intramolecular interactions for the low-energy conformers ( $\Delta E = 0$ ) of next-generation DPF ligands from the MOE conformational search. P = phenyl ring on scaffold, S = subunit. The interactions for DPFp7 and p8 were reported previously.(1) See Materials and Methods for details.

| DPF       | Intramolecular interactions |
|-----------|-----------------------------|
| p7        |                             |
| <b>p8</b> |                             |
| p12       | π - π: P-S; π - π: P-S      |
| p13       |                             |
| p14       |                             |
| p15       |                             |
| p16       |                             |
| p17       |                             |
| p18       |                             |
| p19       | CH - π: P-S                 |
| p20       |                             |

**Table S7.** Molecular docking energetic values obtained from three independent docking runs considering the preferred binding pocket 1. Edock = grid docking energy, Egb = hydrogen bonding grid energy, Ege = electrostatic grid potential, Egs = hydrophobic potential, Egv = grid-based van der Waals. Errors represent standard deviations from three independent docking runs.

| DPF       | Edock         | Egb          | Ege           | Egs         | Egv            |
|-----------|---------------|--------------|---------------|-------------|----------------|
| p7        | -4.38 ± 1.67  | -4.14 ± 0.88 | -19.95 ± 0.73 | 2.65 ± 1.55 | -105.04 ± 2.08 |
| <b>p8</b> | -53.08 + 0.96 | -5.89 ± 0.31 | -33.04 ± 1.46 | 3.69 ± 1.46 | -109.85 ± 0.46 |
| p12       | -38.64 ± 0.52 | -2.81 ± 0.93 | -17.70 ± 1.18 | 2.59 ± 0.17 | -96.50 ± 1.61  |
| p13       | -53.37 ± 1.30 | -5.77 ± 0.68 | -31.38 ± 2.95 | 2.91 ± 0.87 | -120.50 ± 4.99 |
| p15       | -28.95 ± 3.88 | -4.87 ± 2.56 | -33.05 ± 1.99 | 3.96 ± 0.53 | -107.31 ± 3.82 |
| p18       | -30.10 ± 0.84 | -3.75 ± 0.69 | -30.92 ± 3.02 | 3.13 ± 0.96 | -109.43 ± 1.01 |
| p20       | -32.31 ± 1.18 | -6.26 ± 1.72 | -28.86 ± 2.15 | 2.69 ± 0.72 | -111.09 ± 2.42 |

**Table S8.** Intermolecular hydrogen bonding interactions between DPFs and MALAT1 triple helix assigned by ICM for each docking run. G – guanine, U – uracil, C – cytosine, A – adenine, O-oxygen, O1p/O2p-phosphate oxygens. Numbers indicate individual docking runs.

MALAT1-1 residue Acceptor atom ID DPF atom donor

Docked DPF

conformer

|       | 62   | O1n         | NH-amidine    | 2 23         |
|-------|------|-------------|---------------|--------------|
| P'_'  | U7   | 04          | NH-amidine    | 2.68         |
|       |      | 04          | NH-amidine    | 2.60         |
|       | 118  | 04          | NH-amidine    | 1.95         |
|       | 1147 | 01n         | NH-amidine    | 2.56         |
|       | G48  | O2n         | NH-amidine    | 2.69         |
| n7 2  | C12  | 02p         | NH-amidine    | 2.3          |
| P'    | C12  | 02p<br>02n  | NH-amidine    | 2.0          |
|       | U13  | 04          | NH-amidine    | 2.10         |
|       | C42  | O2n         | NH-amidine    | 2.00         |
|       | U43  | 02p         | NH-amidine    | 2.63         |
| n7 3  | Δ4   | N7          | NH-Amidine    | 2.00         |
| p/_0  | 65   | N7          |               | 2.20         |
|       | 00   | 01n         | NH Amidine    | 2.15         |
|       | 11/3 | 01p         | NH Amidine    | 2.70         |
|       | 143  | 0 fp<br>05' | NH Amidine    | 2.21         |
|       | 043  | 01          |               | 2.44         |
| n9 1  | 044  | Olp         |               | 1.94         |
| μο_1  | G2   | 02p         |               | 2.43         |
|       | A4   | 02μ         | NH-amidine    | 2.51         |
|       | 08   | 04          | NH-amidine    | 1.93         |
|       | 09   | 04          |               | 2.34         |
|       | 043  | 04          | NH-piperiaine | 2.17         |
| - 0 0 | 044  | 04          | NH-amidine    | 2.26         |
| p8_2  | GZ   | Olp         | NH-piperiaine | 2.42         |
|       | A3   | O2p         | NH-amidine    | 2.67         |
|       | A4   | O2p         | NH-amidine    | 2.01         |
|       | 07   | O1p         | NH-amidine    | 2.45         |
|       | U43  | 04          | NH-piperidine | 2.37         |
| p8_3  | G2   | O1p         | NH-Amidine    | 2.35         |
|       | G2   | 01p         |               | 2.21<br>2.71 |
|       | 07   | Olb         | NH-Amulie     | 2.11         |

Distance (Å)

|       | U7  | O1p | NH-Amidine    | 2.22 |
|-------|-----|-----|---------------|------|
|       | U44 | O4  | NH-piperidine | 2.02 |
| p12_1 | U7  | O1p | NH-amidine    | 2.15 |
| p12_2 | U8  | O1p | NH-amidine    | 2.28 |
|       | U46 | O1p | NH-amidine    | 2.54 |
| p12_3 | A4  | n7  | NH-Amidine    | 2.58 |
|       | U7  | o1p | NH-Amidine    | 2.13 |
| p13_1 | G6  | O6  | NH-amidine    | 2.39 |
|       | G41 | N7  | NH-piperidine | 2.44 |
|       | U43 | O4  | NH-amidine    | 2.57 |
|       | U46 | O1p | NH-amidine    | 2.65 |
| p13_2 | U7  | O4  | NH-amidine    | 2.29 |
|       | U8  | O4  | NH-amidine    | 1.9  |
|       | U13 | O4  | NH-piperidine | 2.39 |
| p13_3 | G6  | O6  | NH-Amidine    | 2.33 |
|       | C42 | O2p | NH-Amidine    | 2.75 |
|       | U43 | O1p | NH-Amidine    | 2.51 |
|       | U43 | 04  | NH-Amidine    | 2.7  |
|       | 046 | O1p | NH-Amidine    | 2.67 |
| p15_1 | A4  | O2p | NH-amidine    | 2.09 |
|       | U7  | O1p | NH-amidine    | 2.08 |
|       | U10 | O4  | NH-piperidine | 2.51 |
| p15_2 | A4  | N7  | NH-amidine    | 2.5  |
|       | G5  | O6  | NH-amidine    | 2.37 |
|       | U8  | O1p | NH-amidine    | 2.59 |
|       | U8  | O1p | NH-amidine    | 2.19 |
|       | U9  | O4  | NH-amidine    | 2.48 |
| p15_3 | A4  | O2p | NH-Amidine    | 2.1  |
|       | U7  | O1p | NH-Amidine    | 2.7  |
|       | U43 | O1p | NH-Amidine    | 2.25 |
|       | U44 | O1p | NH-Amidine    | 2.51 |
| p18_1 | A3  | O2p | NH-piperidine | 2.72 |
|       | U8  | O1p | NH-amidine    | 2.34 |
|       | U9  | O4  | NH-amidine    | 2.35 |
|       | U46 | O1p | NH-amidine    | 2.41 |
| p18_2 | U9  | O1p | NH-amidine    | 2.3  |
|       | U9  | O5' | NH-amidine    | 2.35 |
|       | U10 | O1p | NH-amidine    | 2.17 |
|       | U46 | O4  | NH-amidine    | 2.16 |
| p18_3 | U9  | O1p | NH-Amidine    | 2.21 |
|       | U9  | O5' | NH-Amidine    | 2.31 |
|       | U10 | O1p | NH-Amidine    | 2.23 |

|       | U46 | O4  | NH-Amidine    | 2.18 |
|-------|-----|-----|---------------|------|
|       | U47 | O4  | NH-Amidine    | 2.77 |
| p20_1 | A3  | O2p | NH-amidine    | 2.65 |
|       | U7  | O1p | NH-amidine    | 2.07 |
|       | U10 | O4  | NH-piperidine | 2.32 |
| p20_2 | G2  | O1p | NH-amidine    | 2.73 |
|       | A3  | O2p | NH-amidine    | 2.14 |
|       | U7  | O1p | NH-amidine    | 2.24 |
|       | U10 | O4  | NH-piperidine | 2.14 |
| p20_3 | G2  | O1p | NH-piperidine | 2.29 |
|       | U7  | O1p | NH-Amidine    | 2.13 |
|       | U10 | O4  | NH-piperidine | 2.32 |
|       | U46 | O2p | NH-Amidine    | 2.23 |
|       | U46 | O1p | NH-Amidine    | 2.67 |
|       | U47 | O1p | NH-Amidine    | 2.25 |

**Table S9.** Root-mean-square deviations of the starting low-energy DPF conformer from the MOE conformational search ( $\Delta E$ =0) and the final docked DPF conformation in the binding pocket 1. Errors represent standard deviations from three independent docking runs.

| DPF | RMSD (Å)    |
|-----|-------------|
| p7  | 4.19 ± 0.28 |
| р8  | 2.41 ± 0.29 |
| p12 | 2.62 ± 0.76 |
| p13 | 1.08 ± 0.05 |
| p15 | 2.44 ± 1.13 |
| p18 | 2.85 ± 0.19 |
| p20 | 2.41 ± 0.31 |

**Table S10.** Melting temperature values obtained via differential scanning fluorimetry (DSF) for the MALAT1 triple helix RNA upon addition of DMSO or DPFs in high-ionic buffer, Buffer 1 (20 mM HEPES-KOH pH 7.4 at 25 °C, 152.6 mM KCl, 1 mM MgCl<sub>2</sub>). T<sub>m</sub>1 is proposed to be the melting temperature of the Hoogsteen base-paired, triplex-forming strand; and T<sub>m</sub>2 is proposed to be the melting temperature of the remaining structure(2). Errors represent the standard deviation of three independent experiments.  $\Delta T_m$  errors were calculated through standard error propagation.

| DPF         | <i>T</i> <sub>m</sub> 1 / °C | ∆ <b>T<sub>m</sub>1 / °C</b> | <i>T</i> <sub>m</sub> 2 / °C | ∆ <b>7<sub>m</sub>2/ °C</b> |
|-------------|------------------------------|------------------------------|------------------------------|-----------------------------|
| DMSO        | $64.3 \pm 0.46$              | n/a                          | 76.0 ± 0.10                  | n/a                         |
| Pentamidine | 65.1 ± 0.72                  | 0.54 ± 0.31                  | 76.8 ± 0.21                  | 0.7 ± 0.12                  |
| p7          | 64.2 ± 0.35                  | 0.11 ± 0.58                  | 76.5 ± 1.20                  | 0.50 ± 0.81                 |
| р8          | 64.5 ± 0.14                  | 0.20 ± 0.48                  | 75.6 ± 0.71                  | -0.25 ± 0.79                |
| p12         | 63.9 ± 0.49                  | -0.45 ± 0.67                 | 75.9 ± 0.35                  | $0.00 \pm 0.50$             |
| p13         | 64.5 ± 0.28                  | $0.20 \pm 0.54$              | 75.7 ± 0.35                  | -0.20 ± 0.50                |
| p14         | 65.3 ± 0.21                  | 0.95 ± 0.50                  | 76.1 ± 0.21                  | $0.20 \pm 0.41$             |
| p15         | 64.8 ± 0.71                  | 0.50 ± 0.84                  | 76.5 ± 0.35                  | $0.60 \pm 0.50$             |
| p16         | 65.9 ± 0.21                  | 1.55 ± 0.50                  | 77.0 ± 0.49                  | 1.10 ± 0.61                 |
| p17         | 65.4 ± 0.49                  | 1.05 ± 0.67                  | 76.3 ± 0.42                  | $0.45 \pm 0.55$             |
| p18         | 64.4 ± 0.49                  | $0.05 \pm 0.67$              | 75.9 ± 0.28                  | $0.05 \pm 0.45$             |
| p19         | 64.4 ± 0.71                  | 0.10 ± 0.84                  | 75.9 ± 0.57                  | $0.05 \pm 0.67$             |
| p20         | 66.1 ±0.17                   | 1.80 ± 0.49                  | 75.7 ±0.49                   | -0.12 ± 0.61                |

**Table S11.** Melting temperature values obtained via differential scanning fluorimetry (DSF) for the MALAT1 triple helix RNA upon addition of DMSO or DPFs in low ionic buffer, Buffer 2 (20 mM HEPES-KOH pH 7.4 at 25 °C, 52 mM KCl, 0.1 mM MgCl<sub>2</sub>). T<sub>m</sub>1 is proposed to be the melting temperature of the Hoogsteen base-paired, triplex-forming strand; and T<sub>m</sub>2 is proposed to be the melting temperature of three independent experiments.  $\Delta$ T<sub>m</sub> errors were calculated through standard error propagation.

| DPF         | T <sub>m</sub> 1 / °C | ∆ <b>T<sub>m</sub>1 / °C</b> | T <sub>m</sub> 2 / °C | ∆ <b>T<sub>m</sub>2 / °C</b> |
|-------------|-----------------------|------------------------------|-----------------------|------------------------------|
| DMSO        | 60.0 ± 0.80           | n/a                          | 74.8 ± 0.68           | n/a                          |
| Pentamidine | 61.7 ± 0.87           | 1.40 ± 0.92                  | 74.9 ± 0.63           | 0.04 ± 0.14                  |
| p7          | 61.18 ± 0.51          | 1.10 ± 0.83                  | 74.2 ± 0.19           | 0.17 ± 0.52                  |
| р8          | 62.8 ± 1.06           | 2.75 ± 1.33                  | 75.4 ± 0.35           | 0.20 ± 0.73                  |
| p12         | 60.7 ± 0.28           | 0.70 ± 0.85                  | 75.2 ± 0.64           | 0.00 ± 0.90                  |
| p13         | 63.0 ± 0.07           | 2.95 ± 0.80                  | 75.0 ± 0.07           | -0.20 ± 0.64                 |
| p14         | 64.1 ± 1.03           | 4.13 ± 1.30                  | 75.8 ± 0.68           | 0.62 ± 0.93                  |
| p15         | 61.9 ± 1.20           | 1.85 ± 1.44                  | 74.7 ± 0.14           | -0.45 ± 0.65                 |
| p16         | 61.8 ± 1.13           | 1.80 ± 1.39                  | 75.2 ± 1.06           | 0.00 ± 1.24                  |
| p17         | 63.0 ± 0.42           | 3.00 ± 0.91                  | 74.9 ± 0.14           | -0.25 ± 0.65                 |
| p18         | 62.3 ± 0.49           | 2.25 ± 0.94                  | 75.3 ± 0.20           | 0.15 ± 0.64                  |
| p19         | 62.2 ± 0.35           | 2.15 ± 0.87                  | 75.1 ± 0.14           | -0.05 ± 0.65                 |
| p20         | 66.0 ± 1.21           | 5.97 ± 1.45                  | 75.6 ± 0.49           | 0.42 ± 0.81                  |

**Table S12.** Semi-quantitative denaturing PAGE gel analysis of RNase R exonucleolytic degradation experiments using Image J software  $(1.52k).(8) 0.2 \mu$ M RNA and  $0.2 \mu$ M DPF or 1  $\mu$ M SM5 or SM16 were incubated with 5U of RNase R in low ionic buffer conditions (20 mM HEPES-KOH pH 7.4 at 25 °C, 52 mM KCl, 0.1 mM MgCl<sub>2</sub>). T1 and T2 refer to 30 minute and 300 minute timepoints, respectively. Values are normalized to Timepoint 0 and the loading control as described in Materials and Methods, giving the starting value of 1. Errors represent standard deviation from three independent experiments. TH = triple helix.

| DPF  | Rel. TH level, T1 | Rel TH level, T2  |
|------|-------------------|-------------------|
| DMSO | 0.552 ± 0.092     | 0.061 ± 0.036     |
| p7   | 0.923 ± 0.054     | 0.944 ± 0.110     |
| р8   | 0.736 ± 0.004     | 0.183 ± 0.003     |
| p12  | $0.549 \pm 0.088$ | $0.056 \pm 0.082$ |
| p13  | 0.707 ± 0.191     | 0.200 ± 0.051     |
| p14  | 0.571 ± 0.076     | 0.177 ± 0.042     |
| p15  | 0.623 ± 0.109     | 0.136 ± 0.022     |
| p16  | 0.497 ± 0.115     | 0.207 ± 0.032     |
| p17  | $0.700 \pm 0.059$ | 0.221 ± 0.045     |
| p18  | 0.522 ± 0.051     | 0.147 ± 0.043     |
| p19  | 0.717 ± 0.072     | 0.111 ± 0.010     |
| p20  | $0.889 \pm 0.034$ | 0.425 ± 0.105     |
| SM5  | 0.285 ± 0.020     | 0.066 ± 0.021     |
| SM16 | 0.235 ± 0.041     | 0.169 ± 0.011     |

**Table S13.** Semi-quantitative denaturing PAGE gel analysis of RNase R exonucleolytic degradation control experiments with 5 time points using Image J software (1.52k)(8) to ensure linear phase decay. 0.2 µM RNA and 0.2 µM DPF or DMSO were incubated with 5U of RNase R in low ionic buffer conditions (20 mM HEPES-KOH pH 7.4 at 25 °C, 52 mM KCl, 0.1 mM MgCl<sub>2</sub>). Values are normalized to Timepoint 0 and the loading control as described in Materials and Methods, giving the starting value of 1. Errors represent standard deviation from three independent experiments.

| Sample | Relative triple helix level |         |         |         |         |
|--------|-----------------------------|---------|---------|---------|---------|
|        | 15 min                      | 30 min  | 60 min  | 180 min | 300 min |
| DMSO   | 0.418 ±                     | 0.316 ± | 0.340 ± | 0.174 ± | 0.139 ± |
|        | 0.035                       | 0.112   | 0.165   | 0.048   | 0.024   |
| DPFp20 | 0.599 ±                     | 0.562 ± | 0.514 ± | 0.589 ± | 0.551 ± |
|        | 0.165                       | 0.178   | 0.081   | 0.151   | 0.178   |

**Table S14.** EC<sub>50</sub> values ± standard deviation of three independent fluorescence binding experiments with next-generation DPFs and the MALAT1 triple helix (TH). Up to 5  $\mu$ M RNA was titrated into 1  $\mu$ M DPF in low-ionic buffer conditions, Buffer 2 (20 mM HEPES-KOH pH 7.4 at 25 °C, 52 mM KCl, 0.1 mM MgCl<sub>2</sub>). N.A.\* - not available; indicates curves for which no EC<sub>50</sub> value was obtained due to little to no change in DPF fluorescence.

| DPF | ЕС <sub>50</sub> (ТН), nМ |
|-----|---------------------------|
| р7  | N.A.*                     |
| р8  | 25.8 ± 2.3                |
| p12 | 2522 ± 624.9              |
| p13 | 10.0 ± 2.6                |
| p14 | 23.2 ± 3.7                |
| p15 | 1844 ± 688                |
| p16 | 44.1 ± 12.1               |
| p17 | 78.7 ± 14.9               |
| p18 | 76.4 ± 3.4                |
| p19 | 22.9 ± 4.1                |
| p20 | 302.3 ± 59.2              |

 Table S15. DNA sequences utilized for the synthesis of NEAT1 and RRE constructs.

| DNA                        | DNA SEQUENCE (5' – 3')                                                                                  |
|----------------------------|---------------------------------------------------------------------------------------------------------|
| NEAT1<br>TEMPLATE          | GGAGGUGUUUCUUUUACUGAGUGCAGCCCAUGGCCGCACUCAGGUU<br>UUGCUUUUCACCUUCCCAUCUGUGAAAGAGUGAGCAGGAAAAAGCAA<br>AA |
| NEAT1<br>FORWARD<br>PRIMER | GAAATTAATACGACTCACTATAGGAGGTG                                                                           |
| NEAT1<br>REVERSE<br>PRIMER | mUmUTTGCTTTTTCCTGCTCACTC                                                                                |
| RRE SENSE<br>STRAND        | GCAGCTAATACGACTCACTATAGGTCTGGGCGCAGCGCA                                                                 |
| RRE<br>ANTISENSE<br>STRAND | GGCCTGTACCGTCAGCTTGCGCTGCGCCCAGACCTATAGTGAGTCGTATT<br>AGCTGC                                            |

# C. Preparation of NEAT1 and RRE Stem loop RNA

The NEAT1 DNA template for *in-vitro* transcription was prepared through polymerase chain reaction (PCR) (see SI Table S15 for sequences). Specifically, 65 µL of 5X Q5 Polymerase buffer (New England Biolabs), 6.5 µL of 10 mM each dNTP (New England Biolabs), 16.25 µL of 10µM forward and reverse primers (Integrated DNA Technologies), 6.5 µL of 50 ng/µL template DNA (Integrated DNA Technologies), 211.25 µL nucleasefree water and 3.25 µL of 2000 U/µL Q5 Hot Start Polymerase (New England Biolabs) were mixed and aliguoted into 12 individual wells in a 96 well PCR well plate (Thermo Fisher). The plate was then put in a thermocycler programmed as follows: 98 °C for 30s, 30x (98 °C for 15s, 55 °C for 15 s, 72 °C for 30 s), 72 °C for 2 min and then placed on ice prior to clean-up using the DNA CleanUp & Concentrate kit (Zymo Research). The concentration, quality and length of PCR products were determined using the 2100 Bioanalyzer instrument (Agilent). PCR products were then utilized as templates for in vitro transcription. In a typical reaction, a mixture of 60 µL of 25 mM each rNTP (New England Biolabs), 15 µL of 1M MgCl<sub>2</sub> 24 µL of 1M Tris (pH=8.0), 15 µL of 100 mM spermidine (Sigma), 6 µL of 1% Triton X-100 (Sigma), 6 µL of 1 M dithiothreitol (Sigma), 381 µL of nuclease-free water, 3 µL of 100 U/mL Inorganic yeast Pyrophosphatase (New England Biolabs), and 30 µL T7 RNA polymerase (Custom) were aliguoted into 12 individual wells in a 96 PCR well plate containing 5 µL of 50 ng/µL DNA template. Reactions were incubated in a thermocycler for 8 h at 37 °C and then placed on ice. Each reaction was treated with 1 µL of 2U/µL TURBO DNase (Ambion) twice for 30 min at 37 °C. 10% volume of 0.5 M EDTA was added to the mixture, and an extraction was conducted utilizing 25:24:1 phenol:chloroform:isoamyl alcohol (Sigma). Buffer-exchange into 0.2X TrisEDTA buffer (Amibon) was then conducted using 3kDa Amicon Ultra Centrifugal Filters (EMD Milipore) by centrifuging the supernatant three times at 4,000 rpm for 20 min.

For IVT of the RRE Stem loop IIB, the sense and antisense DNA templates carrying the T7 promoter (SI Table S15) were purchased from Integrated DNA Technologies as 100 µM solutions. Strand annealing was performed by combining 45 uL of the sense strand, 45 uL of the antisense strand, 54 uL of 0.01 M MgCl2 and 36 uL of nuclease-free water in a 1.5-mL microcentrifuge tube. The tube was incubated at 95°C for 10 min in an Eppendorf ThermoMixer, then snap-cooled on ice for at least one hour. DNA annealing was confirmed by running the annealed sample on a Novex® DNA retardation gel. In a typical IVT reaction, 0.091 M Tris (pH = 7.4), 0.023 M MgCl2, 0.027 M dithiothreitol, 0.002 M Spermidine, 2.7 mM rATP, 2.7 mM rCTP, 2.7 mM rGTP, 2.7 mM rUTP, 0.4 uM annealed double-stranded DNA template and 2.7 U/uL T7 RNA polymerase were combined in a 15-mL falcon tube and incubated at 37°C in an Eppendorf ThermoMixer for 14 to 20 hours. The crude IVT mixture was treated with DNase I to remove the DNA template as outlined above. The RNA was then purified using the ZymoResearch Clean & ConcentratorTM kit following the manufacturer's protocol, except that three wash steps were performed instead of two.

# D. General chemistry methods and procedures

Reagents were purchased from commercial suppliers and were used without further purification. Except for anhydrous THF, all solvents were ACS grade or better and used without further purification. Anhydrous THF was dispensed from a Pure Solv (Innovative Technology) solvent purification system. All microwave reactions were run on a Biotage Initiator<sup>+</sup> reactor from Biotage Inc. All chromatographic purifications were conducted via flash chromatography using ultra-pure silica gel (230-400 mesh, 60 Å) purchased from Silicycle as the stationary phase. Thin Layer Chromatography was performed with alumina-backed silica gel plates ( ${}^{60}F_{254}$ ) purchased from Sigma and visualized with 254 nm UV light. All deuterated solvents for NMR spectra acquisition were purchased from Cambridge Isotope Laboratories. Deuterated chloroform was deacidifed using potassium carbonate before use. All <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded using 400 MHz Varian INOVA or 500 MHz Bruker Advance Neo spectrometers. The corresponding <sup>13</sup>C resonance frequencies were 100 MHz and 125 MHz, respectively. Chemical shifts are expressed as parts per million from tetramethylsilane. <sup>1</sup>H chemical shifts were referenced with that of the solvent (7.26 for CDCl<sub>3</sub>, 2.50 for (CD<sub>3</sub>)<sub>2</sub>SO, 3.31 for CD<sub>3</sub>OD) and coupling constants (J values) are reported in units of Hertz (Hz). Splitting patterns have been designated as follows: s (singlet), d (doublet), dd (doublet of doublets), gd (guartet of doublets), ddd (doublet of doublets of doublets), t (triplet), dt (doublet of triplets), q (quartet), dq (doublet of quartets), p (pentet), m (multiplet), br (broad). Low and highresolution electrospray ionization (ESI) and gas chromatography (GC) mass spectra were recorded on an Agilent MSD-trap Spectrometer at Duke University and are available upon request. HPLC spectra were recorded using a Shimadzu SIL-20AHT Prominence

instrument. All HPLC experiments were run at room temperature on a Phenomenex Luna 5  $\mu$  C18(2) 100 Å column (140 x 4.6 mm) using 90-10% gradients of 0.1% TFA in water and acetonitrile as solvents A and B, respectively. Yields refer to  $\geq$  95% spectroscopically and chromatographically pure compounds (determined at 360 nm for all compounds except for **DPFp20**, which was determined at 380 nm).

# E. Synthesis of next-generation DPF ligands



<sup>a</sup>The primary amine reagent utilized for the synthesis of this ligand is *N*-benzyl-1,3propanediamine.



## 2,5-bis(4-(1-benzyl-1,4,5,6-tetrahydropyrimidin-2-yl)phenyl)furan.

Reaction time: 8 h. <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  7.88 (d, J = 7.6 Hz, 4H), 7.55 (d, J = 7.6 Hz, 4H), 7.38 – 7.34 (m, 4H), 7.30 – 7.18 (m, 8H), 4.35 (s, 4H), 3.50 – 3.40 (m, 4H), 3.35 – 3.26 (m, 4H), 1.94 – 1.85 (m, 4H).<sup>13</sup>C NMR (126 MHz, DMSO- $d_6$ )  $\delta$  159.8, 152.8, 137.1, 133.4, 131.6, 129.2, 129.0, 127.9, 127.4, 123.9, 110.2, 55.6, 46.0, 42.6, 23.4. MS-ESI (m/z) Calcd for C<sub>38</sub>H<sub>36</sub>N<sub>4</sub>O ([M+2H]<sup>2+</sup>) = 283.1517. Found: 283.1520. Error = -1.0 ppm. Calcd for ([M+H]<sup>+</sup>): 565.2962. Found: 565.2968. Error = -1.2 ppm.



#### 4,4'-(furan-2,5-diyl)bis(N-(2-(1-benzylpiperidin-4-yl)ethyl)benzimidamide)

Reaction time: 9 h. <sup>1</sup>H NMR (400 MHz, Methanol-*d4*)  $\delta$  7.77 (d, *J* = 8.5 Hz, 4H), 7.65 (d, *J* = 8.5 Hz, 4H), 7.17 – 7.21 (m, 4H), 7.14 – 7.03 (m, 6H), 6.92 (s, 2H), 3.34 (t, *J* = 6.8 Hz, 4H), 2.92 (d, *J* = 11.6 Hz, 4H), 2.59 (t, *J* = 6.8 Hz, 4H), 2.47 (d, *J* = 6.9 Hz, 4H), 2.04 – 1.91 (m, 4H), 1.58 (d, *J* = 13.2 Hz, 4H), 1.47 – 1.53 (m, 2H), 1.24 – 1.19 (m, 4H). <sup>13</sup>C NMR (101 MHz, Methanol-*d*<sub>4</sub>)  $\delta$  164.0, 154.4, 141.6, 136.3, 133.7, 130.1, 129.2, 128.5, 126.9, 124.7, 110.1, 58.7, 55.0, 44.0, 42.3, 39.0, 32.9. MS-ESI (m/z) Calcd for C<sub>46</sub>H<sub>54</sub>N<sub>6</sub>O ([M+2H]<sup>2+</sup>) = 354.2252. Found: 354.2249 ([M+2H]<sup>2+</sup>). Error = 0.9 ppm.



#### 4,4'-(furan-2,5-diyl)bis(N-(1-methylpiperidin-4-yl)benzimidamide)

Reaction time: 6 h. <sup>1</sup>H NMR (400 MHz, Methanol- $d_4$ )  $\delta$  7.91 (d, J = 8.4 Hz, 4H), 7.73 (d, J = 8.3 Hz, 4H), 7.08 (s, 2H), 3.69 – 3.57 (m, 2H), 2.94 (d, J = 11.8 Hz, 4H), 2.32 (s, 6H), 2.22 (t, J = 11.6 Hz, 4H), 2.05 (d, J = 11.5 Hz, 4H), 1.76 – 1.65 (m, 4H). <sup>13</sup>C NMR



(101 MHz, Methanol- $d_4$ )  $\delta$  164.6, 154.6, 134.7, 133.6, 129.3, 125.1, 110.9, 55.6, 46.4, 46.1, 32.2. MS-ESI (m/z) Calcd for C<sub>30</sub>H<sub>38</sub>N<sub>6</sub>O ([M+2H]<sup>2+</sup>) = 250.1626. Found: 250.1626. Error = 0.1 ppm. Calcd for ([M+H]<sup>+</sup>): 499.3180. Found: 499.3183. Error = -0.6 ppm.

#### 4,4'-(furan-2,5-diyl)bis(*N*-((S)-1-benzylpiperidin-3-yl)benzimidamide)

Reaction time: 6 h. <sup>1</sup>H NMR (400 MHz, Methanol- $d_4$ )  $\delta$  7.82 (d, J = 8.4 Hz, 4H), 7.66 (d, J = 8.3 Hz, 4H), 7.35 – 7.32 (m, 8H), 7.24 – 7.27 (m, 2H), 6.98 (s, 2H), 3.75 (m, 2H), 3.60 – 3.51 (m, 4H), 2.90 (d, J = 10.0 Hz, 2H), 2.71 (d, J = 10.0 Hz, 2H), 2.22 – 2.10 (m, 4H), 1.95 – 1.89 (m, 2H), 1.76 – 1.66 (m, 4H), 1.42 (q, J = 9.0, 8.9 Hz, 2H). <sup>13</sup>C NMR (101 MHz, Methanol- $d_4$ )  $\delta$  163.3, 154.4, 133.7, 130.6, 129.3, 128.6, 128.4, 124.7, 110.1, 64.1, 59.4, 54.4, 50.8, 30.9, 24.5. MS-ESI (m/z) Calcd for C<sub>42</sub>H<sub>46</sub>N<sub>6</sub>O ([M+H]<sup>+</sup>): 651.3806. Found: 651.3812. Error = -0.9 ppm.



DPFp16

#### 4,4'-(furan-2,5-diyl)bis(N-((1-methylpiperidin-4-yl)methyl)benzimidamide)

Reaction time: 8 h. <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  7.93 (d, J = 8.1 Hz, 4H), 7.85 (d, J = 8.2 Hz, 4H), 7.29 (s, 2H), 3.13 (d, J = 6.6 Hz, 4H), 2.77 (d, J = 10.6 Hz, 4H), 2.14 (s, 6H), 1.83 (t, J = 12.3 Hz, 4H), 1.74 (d, J = 13.2 Hz, 4H), 1.60 (s, 2H), 1.24 - 1.16 (m, 4H). <sup>13</sup>C NMR (101 MHz, Methanol- $d_4$ )  $\delta$  165.2, 154.6, 135.4, 132.3, 129.6, 125.3,

111.5, 56.4, 46.6, 38.3, 35.9, 30.9. MS-ESI (m/z) Calcd for C<sub>32</sub>H<sub>42</sub>N<sub>6</sub>O ([M+H]<sup>+</sup>): 527.3493. Found: 527.3488. Error = 1.0 ppm.



**4,4'-(furan-2,5-diyl)bis(***N***-(2-(4-benzylpiperazin-1-yl)ethyl)benzimidamide)** Reaction time: 8 h. <sup>1</sup>H NMR (400 MHz, Methanol-*d*<sub>4</sub>)  $\delta$  7.87 (d, *J* = 8.4 Hz, 4H), 7.72 (d, *J* = 8.4 Hz, 4H), 7.28 (d, *J* = 4.3 Hz, 8H), 7.22 (dd, *J* = 8.6, 4.1 Hz, 2H), 7.04 (s, 2H), 3.49 (s, 4H), 3.45 (t, *J* = 12.4, 4H), 2.67 (t, *J* = 6.3 Hz, 4H), 2.54 (br, 16H). <sup>13</sup>C NMR (101 MHz, Methanol-*d*<sub>4</sub>)  $\delta$  164.7, 154.3, 138.2, 134.7, 133.3, 130.7, 129.3, 129.1, 128.5, 124.9, 111.0, 63.9, 57.7, 53.9, 53.8, 42.2. MS-ESI (m/z) Calcd for C<sub>44</sub>H<sub>52</sub>N<sub>8</sub>O ([M+H]<sup>+</sup>): 709.4337 Found: 709.4331. Error = 0.8 ppm.



DPFp18

#### 4,4'-(furan-2,5-diyl)bis(*N*-((*R*)-1-benzylpiperidin-3-yl)benzimidamide)

Reaction time: 8 h. <sup>1</sup>H NMR (400 MHz, Methanol- $d_4$ )  $\delta$  7.86 (d, J = 8.3 Hz, 4H), 7.67 (d, J = 8.2 Hz, 4H), 7.37 – 7.29 (m, 8H), 7.26 (d, J = 9.2 Hz, 2H), 7.03 (s, 2H), 3.77 (s, 2H), 3.58 – 3.49 (m, 4H), 2.90 (d, J = 11.6 Hz, 2H), 2.79 (s, 2H), 2.71 (d, J = 11.6 Hz, 2H), 2.18 (d, J = 9.3 Hz, 4H), 1.95 (d, J = 11.2 Hz, 2H), 1.76 – 1.65 (m, 4H), 1.44 (d, J = 10.3 Hz, 2H). <sup>13</sup>C NMR (101 MHz, Methanol- $d_4$ )  $\delta$  159.3, 153.0, 137.3, 133.6, 132.8, 129.2,

127.9, 127.5, 127.0, 123.3, 109.1, 62.6, 57.5, 52.9, 45.7, 29.3, 23.0. MS-ESI (m/z) Calcd for  $C_{42}H_{46}N_6O$  ([M+H]<sup>+</sup>): 651.3806. Found: 651.3802 Error = 0.6 ppm.



## 4,4'-(furan-2,5-diyl)bis(*N*-(3-(benzyl(ethyl)amino)propyl)benzimidamide)

Reaction time: 8 h. <sup>1</sup>H NMR (400 MHz, Methanol- $d_4$ )  $\delta$  7.85 (d, J = 8.4 Hz, 4H), 7.66 (d, J = 8.4 Hz, 4H), 7.36 – 7.25 (m, 8H), 7.24 – 7.19 (m, 2H), 7.03 (s, 2H), 3.59 (s, 4H), 3.37 – 3.32 (m, 4H), 2.59 (dt, J = 14.1, 6.8 Hz, 8H), 1.89 (p, J = 6.6, 4H), 1.09 (t, J = 7.1 Hz, 6H). <sup>13</sup>C NMR (101 MHz, Methanol- $d_4$ )  $\delta$  163.1, 152.9, 138.5, 133.84, 132.6, 129.1, 127.9, 127.3, 126.7, 123.4, 109.1, 66.6, 57.5, 50.6, 41.4, 25.2, 10.2. MS-ESI (m/z) Calcd for C<sub>42</sub>H<sub>50</sub>N<sub>6</sub>O ([M+H]<sup>+</sup>): 655.4119. Found: 655.4118. Error = 0.2 ppm.



## 4,4'-(furan-2,5-diyl)bis(*N*-(4-(piperidin-1-ylmethyl)phenyl)benzimidamide)

Reaction time: 8 h. <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  8.19 – 7.96 (m, 4H), 7.91 (d, J = 7.7 Hz, 4H), 7.40 – 7.03 (m, 6H), 6.84 (d, J = 6.5 Hz, 4H), 3.37 (s, 4H), 2.33 (s, 8H), 1.72 – 1.40 (m, 8H), 1.42 – 1.28 (m, 4H). <sup>13</sup>C NMR (101 MHz, DMSO- $d_6$ )  $\delta$  153.1, 149.4, 135.1, 132.2, 131.7, 130.1, 128.1, 123.5, 121.7, 120.1, 109.9, 63.2, 54.3, 26.1, 24.6. MS-ESI (m/z) Calcd for C<sub>42</sub>H<sub>46</sub>N<sub>6</sub>O ([M+H]<sup>+</sup>): 651.3806. Found: 651.3801. Error = 0.8 ppm.

# F. <sup>1</sup>H and <sup>13</sup>C NMR characterization spectra and HPLC chromatograms

# 2,5-bis(4-(1-benzyl-1,4,5,6-tetrahydropyrimidin-2-yl)phenyl)furan (DPFp12)



S67



#### <Sample Information>

| Sample Name<br>Sample ID<br>Data Filename<br>Method Filename<br>Batch Filename | : AD-4-111-CLMN2<br>: AD-4-111-CLMN2<br>: AD-4-111-CLMN2.lcd<br>: NNP-Grd10-90_Slow_PDA_D2only.l<br>: AD-4-111-2NDCJ MN_Ich | cm                          |                        |
|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------|
| Vial #                                                                         | : 1-13                                                                                                                      | Sample Type                 | : Unknown              |
| Date Acquired<br>Date Processed                                                | : 10 UL<br>: 10/18/2018 10:24:42 AM<br>: 10/18/2018 10:42:46 AM                                                             | Acquired by<br>Processed by | : chemist<br>: chemist |

<Chromatogram>



#### <Peak Table>

| RF-20/ | RF-20A Ex:350nm,Em:450nm |       |  |
|--------|--------------------------|-------|--|
| Peak#  | Ret. Time                | Area% |  |
| Total  |                          |       |  |

| PDA C | h1 254nm  |       |
|-------|-----------|-------|
| Peak# | Ret. Time | Area% |
| Total |           |       |

| PDA C | PDA Ch2 360nm |         |  |
|-------|---------------|---------|--|
| Peak# | Ret. Time     | Area%   |  |
| 1     | 7.230         | 0.460   |  |
| 2     | 8.138         | 0.543   |  |
| 3     | 8.463         | 98.786  |  |
| 4     | 8.984         | 0.210   |  |
| Total |               | 100.000 |  |

C:\LabSolutions\Data2016\Anita\AD-4-111-CLMN2.lcd



# 4,4'-(furan-2,5-diyl)bis(N-(2-(1-benzylpiperidin-4-yl)ethyl)benzimidamide) (DPFp13)





#### <Sample Information>

| Sample Name<br>Sample ID<br>Data Filename<br>Method Filename | : AD-4-128-frac200-conc<br>: AD-4-128-frac200-conc<br>: AD-4-128-frac200-conc.lcd<br>: NNP-Grd10-90_Slow_PDA_D2only.l | lcm          |                        |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------|------------------------|
| Vial #<br>Injection Volume                                   | : 10/018-iasiDFFc0itc.icb<br>: 1-6<br>: 10 uL<br>: 10/10/2018 5:36:28 PM                                              | Sample Type  | : Unknown<br>: chemist |
| Date Processed                                               | : 10/10/2018 5:54:31 PM                                                                                               | Processed by | : chemist              |

<Chromatogram>



#### <Peak Table>

| RF-20A Ex:350nm,Em:450nm |           |       |  |
|--------------------------|-----------|-------|--|
| Peak#                    | Ret. Time | Area% |  |
| Total                    |           |       |  |

| PDA C | h1 254nm  |       |
|-------|-----------|-------|
| Peak# | Ret. Time | Area% |
| Total |           |       |

| PDA Ch2 360nm |           |        |  |  |
|---------------|-----------|--------|--|--|
| Peak#         | Ret. Time | Area%  |  |  |
| 1             | 7.023     | 0.359  |  |  |
| 2             | 7.132     | 0.644  |  |  |
| 3             | 7.497     | 95.269 |  |  |
| 4             | 7.718     | 1.676  |  |  |
| 5             | 7.877     | 0.375  |  |  |
| 6             | 8.056     | 0.435  |  |  |

C:\LabSolutions\Data2016\Anita\AD-4-128-frac200-conc.lcd

## 4,4'-(furan-2,5-diyl)bis(*N*-(1-methylpiperidin-4-yl)benzimidamide) (DPFp14)







#### <Sample Information>

| Sample Name<br>Sample ID<br>Data Filename<br>Method Filename | : p14_final<br>: p14_final<br>: p14_final<br>: NNP-Grd10-90_Slow_PDA_D2only.lcm<br>: 101010_TEA_rowDDEc_leb |                             |                        |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------|
| Vial #                                                       | : 101010-1FA-IlewDFFS.ic0<br>: 1-5<br>: 10 ul                                                               | Sample Type                 | : Unknown              |
| Date Acquired<br>Date Processed                              | : 10/10/2018 12:41:50 PM<br>: 10/10/2018 1:39:07 PM                                                         | Acquired by<br>Processed by | : chemist<br>: chemist |

<Chromatogram>



#### <Peak Table>

| RF-20A Ex:350nm,Em:450nm |           |       |  |
|--------------------------|-----------|-------|--|
| Peak#                    | Ret. Time | Area% |  |
| Total                    |           |       |  |

| PDA Ch1 254nm |           |       |  |
|---------------|-----------|-------|--|
| Peak#         | Ret. Time | Area% |  |
| Total         |           |       |  |

| PDA Ch2 360nm |           |         |  |  |
|---------------|-----------|---------|--|--|
| Peak#         | Ret. Time | Area%   |  |  |
| 1             | 8.309     | 1.389   |  |  |
| 2             | 8.470     | 95.952  |  |  |
| 3             | 8.750     | 1.360   |  |  |
| 4             | 9.024     | 0.897   |  |  |
| 5             | 10.500    | 0.402   |  |  |
| Total         |           | 100.000 |  |  |

C:\LabSolutions\Data2016\Anita\AD-4-128-frac23-36.lcd


# 4,4'-(furan-2,5-diyl)bis(N-((S)-1-benzylpiperidin-3-yl)benzimidamide) (DPFp15)





| Sample Name<br>Sample ID<br>Data Filename<br>Method Filename | : DPFp15<br>: DPFp15<br>: DPFp15.lcd<br>: NNP-Grd10-90_Slow_PDA_D2only.lc<br>: AD 100210.dptc.lcb | cm                          |                        |
|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------|------------------------|
| Vial #<br>Injection Volume                                   | : 1-19<br>: 10 uL                                                                                 | Sample Type                 | : Unknown              |
| Date Acquired<br>Date Processed                              | : 10/2/2019 11:22:02 AM<br>: 10/2/2019 11:40:05 AM                                                | Acquired by<br>Processed by | : chemist<br>: chemist |

<Chromatogram>



### <Peak Table>

| PDA C | h2 360nm  |         |
|-------|-----------|---------|
| Peak# | Ret. Time | Area%   |
| 1     | 2.488     | 0.068   |
| 2     | 6.476     | 98.349  |
| 3     | 6.817     | 1.440   |
| 4     | 7.795     | 0.085   |
| 5     | 7.980     | 0.057   |
| Total |           | 100.000 |

C:\LabSolutions\Data\Anita\DPFp15.lcd



# 4,4'-(furan-2,5-diyl)bis(N-((1-methylpiperidin-4-yl)methyl)benzimidamide) (DPFp16)





| Sample Name<br>Sample ID<br>Data Filename | : AD-4-140-DIAM<br>: AD-4-140-DIAM<br>: AD-4-140-DIAM.lcd |              |           |
|-------------------------------------------|-----------------------------------------------------------|--------------|-----------|
| Method Filename                           | : NNP-Grd10-90_Slow_PDA_D2only.                           | lcm          |           |
| Batch Filename                            | : ad-4-140-CLMN.lcb                                       |              |           |
| Vial #                                    | : 1-3                                                     | Sample Type  | : Unknown |
| Injection Volume                          | : 10 uL                                                   |              |           |
| Date Acquired                             | : 11/7/2018 10:04:59 AM                                   | Acauired by  | : chemist |
| Date Processed                            | : 11/7/2018 10:23:02 AM                                   | Processed by | : chemist |
|                                           |                                                           | ,            |           |

#### <Chromatogram>



#### <Peak Table>

| RF-20A Ex:350nm,Em:450nm |           |       |  |
|--------------------------|-----------|-------|--|
| Peak#                    | Ret. Time | Area% |  |
| Total                    |           |       |  |

| PDA C | h1 254nm  |       |
|-------|-----------|-------|
| Peak# | Ret. Time | Area% |
| Total |           |       |

| PDA Ch2 360nm |           |         |
|---------------|-----------|---------|
| Peak#         | Ret. Time | Area%   |
| 1             | 5.632     | 95.265  |
| 2             | 6.116     | 4.735   |
| Total         |           | 100.000 |

C:\Users\chemist\Desktop\Anita\AD-4-140-DIAM.lcd



# 4,4'-(furan-2,5-diyl)bis(N-(2-(4-benzylpiperazin-1-yl)ethyl)benzimidamide) (DPFp17)





| Sample Name<br>Sample ID<br>Data Filename<br>Method Filename<br>Batch Filename | : AD-4-146-DI<br>: AD-4-146-DI<br>: AD-4-146-DI.lcd<br>: NNP-Grd10-90_Slow_PDA_D2only.l<br>: AD-4-146-CI MN Ich | cm                          |                        |
|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------|
| Vial #                                                                         | : 1-83<br>: 10 ul                                                                                               | Sample Type                 | : Unknown              |
| Date Acquired<br>Date Processed                                                | : 11/19/2018 10:56:46 AM<br>: 11/19/2018 11:30:54 AM                                                            | Acquired by<br>Processed by | : chemist<br>: chemist |

<Chromatogram>



#### <Peak Table>

| RF-20A Ex:350nm,Em:450nm |           |       |
|--------------------------|-----------|-------|
| Peak#                    | Ret. Time | Area% |
| Tota                     |           |       |

PDA Ch1 254nm

| Peak# | Ret. Time | Area%   |  |
|-------|-----------|---------|--|
| 1     | 2.049     | 100.000 |  |
| Total |           | 100.000 |  |
|       |           |         |  |

#### PDA Ch2 360nm

| Peak# | Ret. Time | Area%   |
|-------|-----------|---------|
| 1     | 6.492     | 94.772  |
| 2     | 6.822     | 5.228   |
| Total |           | 100.000 |

C:\LabSolutions\Data2016\Anita\AD-4-146-DI.lcd



a line to be a second as the second as t

220 210 200 190 180 170 160 150 140 130 120 110 100 f1 (ppm)

# 4,4'-(furan-2,5-diyl)bis(*N*-((*R*)-1-benzylpiperidin-3-yl)benzimidamide) (DPFp18)

-20

-15

-10

-5

-0

--5

0 -10

TH

70 60 50

90 80

....

40

30 20 10



| Sample Name<br>Sample ID<br>Data Filename<br>Method Filename | : AD-4-162-DI<br>: AD-4-162-DI<br>: AD-4-162-DI.lcd<br>: NNP-Grd10-90_Slow_PDA_D2only.lc<br>: AD 4 162-CI MN lob | ст                          |                        |
|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------|
| Vial #                                                       | : 1-102<br>: 1-102                                                                                               | Sample Type                 | : Unknown              |
| Date Acquired<br>Date Processed                              | : 11/27/2018 10:09:21 AM<br>: 11/27/2018 10:35:23 AM                                                             | Acquired by<br>Processed by | : chemist<br>: chemist |

<Chromatogram>



# <Peak Table>

| PDA C | PDA Ch2 360nm |         |  |  |
|-------|---------------|---------|--|--|
| Peak# | Ret. Time     | Area%   |  |  |
| 1     | 6.686         | 96.539  |  |  |
| 2     | 7.022         | 0.669   |  |  |
| 3     | 7.935         | 2.793   |  |  |
| Total |               | 100.000 |  |  |

C:\LabSolutions\Data2016\Anita\AD-4-162-DI.lcd

# 4,4'-(furan-2,5-diyl)bis(N-(3-(benzyl(ethyl)amino)propyl)benzimidamide) (DPFp19)





| Sample Name<br>Sample ID<br>Data Filename<br>Method Filename  | : AD-4-172-diam<br>: AD-4-172-diam<br>: AD-4-172-diam.lcd<br>: NNP-Grd10-90_Slow_PDA_D2only.l | cm                                         |                                     |
|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------|
| Vial #<br>Injection Volume<br>Date Acquired<br>Date Processed | : 1-3<br>: 10 uL<br>: 12/17/2018 12:07:35 PM<br>: 12/18/2018 11:34:57 AM                      | Sample Type<br>Acquired by<br>Processed by | : Unknown<br>: chemist<br>: chemist |

<Chromatogram>



#### <Peak Table>

| RF-20A Ex:350nm,Em:450nm |           |       |
|--------------------------|-----------|-------|
| Peak#                    | Ret. Time | Area% |
| Total                    |           |       |

| PDA Ch1 254nm   |       |
|-----------------|-------|
| Peak# Ret. Time | Area% |
| Total           |       |

| PDA Ch2 360nm |           |         |
|---------------|-----------|---------|
| Peak#         | Ret. Time | Area%   |
| 1             | 6.539     | 98.460  |
| 2             | 6.866     | 1.540   |
| Total         |           | 100.000 |

C:\LabSolutions\Data2016\Anita\AD-4-172-diam.lcd



# 4,4'-(furan-2,5-diyl)bis(*N*-(4-(piperidin-1-ylmethyl)phenyl)benzimidamide) (DPFp20)



| Sample Name<br>Sample ID<br>Data Filename<br>Method Filename | : AD-4-176-recrystall<br>: AD-4-176-recrystall<br>: AD-4-176-recrystall.lcd<br>: NNP-Grd10-90_Slow_PDA_D2only.l | cm                          |                        |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------|
| Batch Filename<br>Vial #                                     | : AD-4-170x-2.lcb<br>: 1-4                                                                                      | Sample Type                 | : Unknown              |
| Injection Volume<br>Date Acquired<br>Date Processed          | : 10 uL<br>: 1/11/2019 3:53:46 PM<br>: 8/6/2019 2:23:11 PM                                                      | Acquired by<br>Processed by | : chemist<br>: chemist |

<Chromatogram>



# <Peak Table>

| PDA Ch3 380nm |           |         |
|---------------|-----------|---------|
| Peak#         | Ret. Time | Area%   |
| 1             | 6.170     | 94.520  |
| 2             | 6.639     | 4.979   |
| 3             | 7.015     | 0.501   |
| Total         |           | 100.000 |

C:\LabSolutions\Data\Anita\AD-4-176-recrystall.lcd

G. Gel Images from RNase R Exonucleolytic Decay Experiments



**Figure S37.** Representative denaturing gel image of an RNase R exonucleolytic degradation experiment with 5 time points to confirm linear decay as described in Materials and Methods section. 0.2  $\mu$ M RNA and 0.2  $\mu$ M DPFp20 were incubated with 5U of RNase R in low ionic buffer conditions. Top band represents the triple helix RNA and bottom band represents the DNA loading control.



**Figure S38.** Representative gel images of RNase R exonucleolytic degradation experiments with 3 time as observed by denaturing gel electrophoresis and described in Materials and Methods section. 0.2  $\mu$ M RNA and 0.2  $\mu$ M DPFp20 or 1  $\mu$ M SM5 or SM16 were incubated with 5U of RNase R in low ionic buffer conditions. 1 = 0 min, 2 = 30 min, 3 = 300 min. Top band represents the triple helix RNA and bottom band represents the DNA loading control.

# H. References

- 1. Donlic, A., Morgan, B.S., Xu, J.L., Liu, A., Roble, C., Jr. and Hargrove, A.E. (2018) Discovery of Small Molecule Ligands for MALAT1 by Tuning an RNA-Binding Scaffold. *Angew Chem Int Ed Engl*, **57**, 13242-13247.
- 2. Brown, J.A., Valenstein, M.L., Yario, T.A., Tycowski, K.T. and Steitz, J.A. (2012) Formation of triple-helical structures by the 3'-end sequences of MALAT1 and MENbeta noncoding RNAs. *Proc Natl Acad Sci U S A*, **109**, 19202-19207.
- 3. Liu, L., Wang, F., Tong, Y., Li, L.F., Liu, Y. and Gao, W.Q. (2019) Pentamidine inhibits prostate cancer progression via selectively inducing mitochondrial DNA depletion and dysfunction. *Cell Prolif*, e12718.
- 4. Sun, T. and Zhang, Y. (2008) Pentamidine binds to tRNA through non-specific hydrophobic interactions and inhibits aminoacylation and translation. *Nucleic Acids Res*, **36**, 1654-1664.
- 5. Warf, M.B., Nakamori, M., Matthys, C.M., Thornton, C.A. and Berglund, J.A. (2009) Pentamidine reverses the splicing defects associated with myotonic dystrophy. *Proc Natl Acad Sci U S A*, **106**, 18551-18556.
- 6. Zhang, Y., Li, Z., Pilch, D.S. and Leibowitz, M.J. (2002) Pentamidine inhibits catalytic activity of group I intron Ca.LSU by altering RNA folding. *Nucleic Acids Res*, **30**, 2961-2971.
- 7. Abulwerdi, F.A., Xu, W., Ageeli, A.A., Yonkunas, M.J., Arun, G., Nam, H., Schneekloth, J.S., Dayie, T.K., Spector, D., Baird, N. *et al.* (2019) Selective Small-Molecule Targeting of a Triple Helix Encoded by the Long Noncoding RNA, MALAT1. *Acs Chem Biol*, **14**, 223-235.
- 8. Schneider, C.A., Rasband, W.S. and Eliceiri, K.W. (2012) NIH Image to ImageJ: 25 years of image analysis. *Nat Methods*, **9**, 671-675.
- 9. Gilad, Y. and Senderowitz, H. (2014) Docking Studies on DNA Intercalators. *Journal of Chemical Information and Modeling*, **54**, 96-107.