SUPPLEMENTARY MATERIAL

The human box C/D snoRNA U3 is a miRNA source and miR-U3 regulates expression of sortin nexin 27

Nicolas Lemus-Diaz, Rafael Rinaldi Ferreira, Katherine E. Bohnsack, Jens Gruber, Markus T. Bohnsack

SUPPLEMENTARY FIGURE LEGENDS

Supplementary Figure S1. Quality control of small RNA sequencing. Small RNA-seq was performed on total RNA extracted from HEK293 cells. **(A)** Correlation plot of sequenced libraries L001, L002 and L003 (L001-L002 R₂= 0.972 L001-L003 R₂=0.967), colours of dots represent the read numbers of annotated miRNAs and snoRNAs, the side bar shows the values in logarithmic scale. **(B)** Read length distribution of individual small RNA libraries represented as histograms displaying the number of miRNAs (21-22 nt), C/D snoRNAs (70-100 nt) and H/ACA (>130 nt, not sequenced in this preparation). **(C)** Normalised numbers of reads of less than 40 nt in length and the mean expression of H/ACA 45 derived miRNA, mapped to different snoRNAs shown as boxplots. Error bars represent the variation between three independent library preparations.

Supplementary Figure S2. Fraction of reads mapped to individual classes of miRNA and snoRNA (C/D box and H/ACA). (A-C) Reads of small RNA and CLIP-derived libraries were aligned to the genome and then realigned to a subset of mi/snoRNAs. Bar plots represent the fraction of mapped reads to individual classes of subset RNAs displayed in different colours. Fractions derived from small RNA libraries of total RNA (A), representative data sets of miRNA pathway proteins (B), representative data sets of snoRNA interacting proteins (C).

Supplementary Figure S3. Correlation of predicted seed pairing stability (SPS) and target abundance (TA) for U3 derived miRNA. Thermodynamic parameters of RNA duplexes (7merm8) of all possible heptamer sequences (16,384) and the number of non-overlapping 3' UTRs sites (8mer, 7mer-m8,7mer-1a and 6mer) in reference mRNAs were retrieved from the TargetScan (context+++ code). Scatter plot represents the correlation between TA as logarithmic values versus SPS in kcal/mol (R=0.3482, p< 2.2e-16, Spearman correlation) of all possible heptamer (7 nt sequences). The red dot shows the putative U3-miRNA seed sequence (AGUUUCU), and the reported low proficiency miRNA (miR-23a) is shown in blue.

Supplementary Figure S4. DROSHA, XPO5 and DICER knock-outs cell lines characterisation. (A-B) HTC116 parental and knockout cells were examined for protein expression by western blot (A) and miRNA expression by small-RNA seq (B). Barplots depict selected miRNAs as a percentage of all annotated miRNA reads and clustered according to their biogenesis pathway. Error bars represent the SEM of sequencing replicates: 3 parental cell line, 2 DROSHA KO, 2 XPO5 (KO#19 and KO#19-1) and 2 Dicer (KO#43 and KO#45).

Supplementary Figure S5. Overexpression of Dicer reduces the amount of U3 present in the cytoplasm. (A) Wild-type HCT116 cells (WT) and Dicer knockout (KO) cells that had been transfected with a plasmid for the expression of Flag tagged Dicer (+) or not (-) were examined for Dicer expression by western blotting. Tubulin was used as a loading control. (B) Total RNA extracted from cells as in (A) was separated by denaturing PAGE and analysed by northern blotting using probes hybridising to the indicated RNAs. The levels of cytoplasmic U3 in the cells knockout cells expressing or not expressing exogenous Dicer relative to the wild type, normalised to tRNAMet, were determined in three biological and two technical replicates, and data are shown as mean \pm standard error. Significance was calculated using the one sample t-test; ns – not significant, ** - p < 0.01.

Supplementary Figure S6. Evolutionary conservation of the U3 miRNA target sequence in the 3' UTR of the SNX27 mRNA. An alignment of sequences from the U3 snoRNA and the SNX27 mRNA 3' UTR from different species is shown. Multiple sequence alignment of vertebrate U3 snoRNA and SNX27 mRNA sequences was performed using Clustal W with default parameters. Retrieved from ENSEMBL, the sequences from the following species were analysed: *Homo sapiens* (human), *Pan troglodytes* (chimpanzee), *Macaca mulatta* (rhesus macaque), *Dasypus novemcinctus* (armadillo), *Loxodonta africana* (elephant), *Mus musculus* (mouse), *Rattus norvegicus* (rat), *Oryctolagus cuniculus* (rabbit), *Canis lupus familiaris* (dog), *Bos taurus* (cattle), *Echinops telfairi* (hedgehog), *Gallus gallus* (chicken), *Xenopus tropicalis* (frog).The seed sequence of the U3-derived miRNA-like fragment is shown in white, italics and underlined, and the target site (mRNA) is shown in bold, italics and underlined. Nucleotides identified in as chimeric sequences by CLASH are marked in yellow (U3 snoRNA) and green (mRNA).

SUPPLEMENTARY TABLES

Target	5'-3'sequence	Application
U6 forward	CTCGCTTCGGCAGCACA	qPCR
U6 reverse	AACGCTTCACGAATTTGCGT	qPCR
U3 forward	CGAAAACCACGAGGAAGAGA	qPCR
U3 reverse	CACTCCCCAATACGGAGAGA	qPCR
GAPDH forward	GTCAGCCGCATCTTCTTTG	qPCR
GAPDH reverse	GCGCCCAATACGACCAAATC	qPCR
U3 snoRNA	GCTCTACACGTTCAGAGAAACTTCTCTAGTAACACACTA TAGAAATGATCCC	Northern blot probe
miR-U3	CTCTACACGTTCAGAGAAACTT	Northern blot probe
U6	ATATGGAACGCTTCACGAATTTGCGTGTCATCCTTGCG C	Northern blot probe
ACA45	TCAAGGACTCTATTTTCTTAGTCTCCA	Northern blot probe
tRNA _{Met}	ATGGTTTCGATCCATCGACCTCTGGGTTATGG	Northern blot probe

miR-U3 mimic	AAGUUUCUCGGAACGUGUAGdTdT	siRNA
Scramble	UCGUAAGUAAGCGCAACCCdTdT	siRNA
		siRNA
GL2	CGUACGCGGAAUACUUCGAdTdT	outcompeting
		miRNA LNA
Anti-miR-U3	CTACACGTTCAGAGAAACT	inhibitor
		miRNA LNA
Anti-miR-Neg	TAACACGTCTATACGCCCA	inhibitor
ACA-45 1 copy	GGCCAAAGGTAGATAGAACAGGTC	Reporter
forward		construct
ACA-45 1 copy	TCGAGACCTGTTCTATCTACCTTT	Reporter
reverse		construct
ACA-45 3	GGCCAAAGGTAGATAGAACAGGTCCCGGAAAGGTAGA	Reporter
copies forward	TAGAACAGGTCCCGGAAAGGTAGATAGAACAGGTC	construct
ACA-45 3	TCGAGACCTGTTCTATCTACCTTTCCGGGACCTGTTCTA	Reporter
copies reverse	TCTACCTTTCCGGGACCTGTTCTATCTACCTTT	construct
U3 1 copy	GGCCAAGTTTCTCTGAACGTGTAG	Reporter
forward		construct
U3 1 copy	TCGACTACACGTTCAGAGAAACTT	Reporter
reverse		construct
U3 3 copies	GGCCAAGTTTCTCTGAACGTGTAGCCGGAAGTTTCTCT	Reporter
forward	GAACGTGTAGCCGGAAGTTTCTCTGAACGTGTAG	construct
U3 3 copies	TCGACTACACGTTCAGAGAAACTTCCGGCTACACGTTC	Reporter
reverse	AGAGAAACTTCCGGCTACACGTTCAGAGAAACTT	construct
miRNA-92a-3p	TCGAGACAGGCCGGGTTCTGTGCAATATATGCGGCCG	Reporter
forward	CATAT	construct
miRNA-92a-3p	GGCCGCATATATTGCACAGAACCCGGCCTGTCTCGAG	Reporter
reverse	AGTA	construct
Non-targeted	GGCCCACGTACGCGGAATACTTCGAAA	Reporter
forward		construct
Non-targeted	TCGATTTCGAAGTATTCCGCGTACGTG	Reporter
reverse		construct
U3-55K	CCGGGCTTGACCTTCTCTGTGACATCTCGAGATGTCAC	shRNA
Forward	AGAGAAGGTCAAGCTTTTTG	cloning
U3-55K	AATTCAAAAAGCTTGACCTTCTCTGTGACATCTCGAGAT	shRNA
Reverse	GTCACAGAGAAGGTCAAGC	cloning
Scramble	CCGGTCCTAAGGTTAAGTCGCCCTCGCTCGAGCGAGG	shRNA
Forward	GCGACTTAACCTTAGGTTTTTG	cloning
Scramble	ATTCAAAAACCTAAGGTTAAGTCGCCCTCGCTCGAGCG	shRNA
Reverse	AGGGCGACTTAACCTTAGGA	cloning

Supplementary Table S2. Small RNA libraries analysed in this study

Description	GEO accession	Reference	Comment
	number		
HEK293	GSE136745	This study	Ion Torrent small RNA library
HeLa cellular	GSE50057	52	Ion Torrent small RNA library
fractionation			

snoRNPs	GSE43666	35	PAR-CLIP of endogenous NOP56, Fibrillarin, Dyskerin and El AG-NOP58
			Size selection of small RNAs
DGCR8	GSE39086	31	HITS-CLIP of FLAG and endogenous
HEK293			DGCR8
DICER	GSE55333	32	PAR-CLIP of FLAG-Dicer1
HEK293			
Knockouts small	GSE77989	26	DICER, XPO5, DROSHA KO small
RNA seq			RNA libraries
DROSHA-fCLIP	GSE93651	30	DROSHA f-CLIP
Argonaute	GSE21918	33	PAR-CLIP FLAG-AGO 1 to 4
Hek293	GSE50452	34	CLASH libraries E1, E4 and E7
	GSE58127	35	RIP-seq using 2 antibodies against
			Argonaute

Supplementary Table S3. Antibodies used in this study

	· · · · · · · · · · · · · · · · · · ·	
Antibody	Company	Dilution
GAPDH (ab8245)	Abcam, Cambridge, MA, USA	1:5000
DROSHA (ab12286)	Abcam, Cambridge, MA, USA	1:1000
XPO5 (sc-271036)	Santa Cruz Biotechnology, Dallas, TX, USA	1:1000
DICER (ab14601)	Abcam, Cambridge, MA, USA	1:1000
U3-55K (sc-515661)	Santa Cruz Biotechnology, Dallas, TX, USA	1:500
SNX27 (ab77799)	Abcam, Cambridge,MA,USA	1:5000
Anti-rabbit 800 IRDye		1:5000
800CW	LI-COR Biosciences, Lincoln, NE, USA	
Antiy-rabbit 680 IRDye		1:5000
680LT (926-68023)	LI-COR Biosciences, Lincoln, NE, USA	

Supplementary Table S4. Parameters resulting from fitting of the model of miRNAmediated regulation to the analytical flow cytometry data generated from HEK293 cells Λ is inversely proportional to Kon and θ is proportional to miRNA expression level. For details see materials and methods (RSS=Residual sum of squares).

Sample	λ	θ	RSS
Control*	1.020	2.704	4.069
Empty*	0.9843	2.6989	4.196
miR-92a*	0.2773	5.6323	5.051
ACA45 1 copy	1.114	Constant (θ= 2.7)	4.287
ACA45 3 copies	0.741		5.439
U3 1 copy	1.123		3.31
U3 3 copies	0.627		3.574
Mock	Constant	8.882	3.886
Outcompeted	mir92a (λ=0.27)	6.579	3.876
Mock	Constant	3.343	6.005
Outcompeted	ACA45 (λ=0.27)	3.071	3.702
Mock	Constant	2.901	4.033
Outcompeted	U3 (λ=0.27)	2.584	9.716

*Empty, non-targeted and miR-92a used to calculated the initial values of parameters for constant λ and θ for ACA45 and U3

Supplementary Table S5. Parameters resulting from fitting of the model of miRNAmediated regulation to the analytical flow cytometry data generated from HTC116 cells Lambda parameters were kept constant to determine relative expression using Theta. (RSS=Residual sum of squares)

	WT		DROSHA KO		DICER KO	
	θ	RSS	θ	RSS	θ	RSS
miR-21-5p	4.760	0.474	0.685	0.855	2.766	2.691
miR-92a	1.721	5.343	0.997	0.960	0.698	1.535
miR-320a	0.851	4.678	2.070	6.783	0.388	2.691
U3-1 copy	0.400	1.601	0.876	0.966	0.393	1.088
U3-3 copies	0.445	1.601	1.169	1.622	0.469	1.552

Lemus-Diaz et al. Supplementary Figure S1

Lemus-Diaz et al. Supplementary Figure S2

Lemus-Diaz et al. Supplementary Figure S3

Lemus-Diaz et al. Supplementary Figure S4

Lemus-Diaz et al. Supplementary Figure S5

В

SNX27 UTR

9201

	· · · · · ·	
н.	sapiens	UUUCCCAGGCCAUGCACAUUUAAUUUAUUUCAG <u>AGAAACU</u> C-UAAUUGU-AUUUUCACUGCAG
Ρ.	troglodytes	UUUCCCAGGCCAUGCACAUUUAAUUUAUUUAUUUAUUUGAGAGAACUC-UAAUUGU-AUUUUCACUGCAG
м.	mulatta	UUUCCCAGGCCAUGCACAUUUAAUUUAUUUAUUUCAG <u>AGAAACU</u> C-UAAUUGU-AUUUUCACUGCAG
D.	novemcinctus	CUCCCCAGGCGAUGCACAUUUAAUUUAUUUGAG <i>AGAAACU</i> C-UAAUU <mark>CU-AUUUUCACUGCAG</mark>
L.	africana	CUCCCCAGGCCAUGCACAUUUAAUUUAUUUAUUUGAG <u>AGAAACU</u> C-UAAUUGU-AUUUUCACUGCGG
м.	musculus	UUUUAAUUGU-AUUUUCACUGCACAUAUAAUUUAUUUGAG <u>AGAAAC</u> UAAUUGU-AUUUUCACUGCAG
R.	norvegicus	UUU <mark>CCCAGGCCAUGCACAUUUAAUUU</mark> AUUUGAG <u>AGAAAC</u> <mark>U</mark> AAUUGU-AUUUUCACUGCAG
ο.	cuniculus	UUUUCCAGGCCAUCCACAUUUAAUUUAUUUAUUUGAG <u>AGAAACU</u> C-UAAUUGU-AUUUUCACUGCAG
c.	lupus familiaris	UCCCCCAGGCCAUGCAUAUUUAAUUU <mark>AUUU</mark> G <u>AGAAACU</u> CUUAAUUGU-AUUUUCACUGCAG
в.	taurus	UUCCCCAAACCAUGCACAUUUAAUUU <mark>AUUUGAG<i>AGAAACU</i>C</mark> -UAAUUGU-AUUUUCACUGCAG
Ε.	telfairi	CUCUCCAGGCCGUGCACAUUUAAUUUAUUUAUUUGAGAGAAACUC-UAAUUGU-AUUUUCACUGCAG
G.	gallus	
x.	tropicalis	

snoRNA U3

		2	.12
н.	sapiens	AAGACUAUACUUUCAGGGAUCAUUUCUAUAGUGUGUUACUAGAG <mark>AAGUUUCU</mark> CUGAACGUGUAGAGCACCGAAAACCACG	3
P.	troglodytes	AAGACUAUACUUUCAGGGAUCAUUUCUAUAGUUCGUUACUAGAG <mark>AAGUUUCU</mark> CUGAACGUGUAGAGCACCGAAAGCCACG	3
м.	mulatta	AAGACUAUACUUUCAGGGAUCAUUUCUAUAGUUUGUUACUAGAG <mark>AAGUUUCU</mark> CUGAA <mark>UGUGUAGAG</mark> CACCGAAAACCACC	3
D.	novemcinctus	AAGACUAUACUUUCAGGGAUCAUUUCUAUAGUUGUUGACUAGAG <mark>AAGGUUCU</mark> CUGAACGUGUAG <mark>G</mark> CACCGAAAGCCACG	3
L.	africana	AAGACUAUACUUUCAGGGAUCAUUUCUAUAGUUCGUUACUAGAG <mark>AAGUUUCU</mark> CUGAU <mark>CUGUGUAGAG</mark> CACCGAAAACCACC	3
м.	musculus	AAGACUAUACUUUCAGGGAUCAUUUCUAUAGUUCGUUACUAGAG <mark>A<u>AGUUUCU</u>CUGA</mark> CU <mark>GUGUAGAG</mark> CACCCGAAACCACC	3
R.	norvegicus	AAGACUAUACUUUCAGGGAUCAUUUCUAUAGUUCGUUACUAGAG <mark>A<u>AGUUUCU</u>CUGA</mark> CU <mark>GUGUAGAG</mark> CACCCGAAACCACC	3
ο.	cuniculus	AAGACUAUACUUUCAGGGAUCAUUUCUAUAGUUCGCUACUAGAG <mark>AAGUUUCU</mark> CUGAACGUGUAGAGCACCGGAAACCACG	3
c.	lupus familiaris	AAGACUAUACUUUCAGGGAUCAUUUCUAUAGUUUGUUACUAGAG <mark>AAGUUUCU</mark> CUGAACGUGUAGGGUACCCGAAACCACC	3
в.	taurus	AAGACUAUACUUUCAGGGAUCAUUUCUAUAGUUCGUUACUAGAG <mark>AAGUUUCU</mark> CUGAACGUGUAGAGCACCCGAAACCACC	3
Е.	telfairi	AAGACUAUACUUUCAGGGAUCAUUUCUAUAGUUCGUGACUAGAG <mark>A</mark> AGUUUC <mark>UCUGA</mark> CC <mark>GUGUAGAG</mark> CACCGAAAACCACC	3
G.	gallus	AGGACUAUACUUUCAGGGAUCAUUUCUGUAGUUGGUAACUAGAGG <mark>A</mark> G <mark>UGU</mark> GAUCG <mark>AA</mark> A <mark>GUGU</mark> CCGGCGUCACAAACCGCC	3
x.	tropicalis	AAGACUAUACUUUCAGGGAUCAUUUCUAUAGGUUGUACCUGGUG <mark>A</mark> GA <mark>U</mark> GCGCUCU <mark>AA</mark> A <mark>GUGU</mark> CUGAACUCACAAACCACG	3
x.	tropicalis	AAGACUAUACUUUCAGGGAUCAUUUCUAUAGGUUGUACCUGGUG <mark>A</mark> GA <mark>U</mark> GCGCUCU <mark>AA</mark> A <mark>GUGU</mark> CUGAACUCACAAACCACG	ż

Lemus-Diaz et al. Supplementary Figure S6

9280