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1. Inflammatory Response and Wound Healing – functions in regulating inflammation, cell 
death/survival, stress and innate immune responses, wound healing, and microglial/myeloid 
cell activity 

Summary: This was largest DESR gene category, comprising functions related to regulating 

inflammation, innate immunity, wound healing, and cell survival responses, as well as tissue repair and 
regeneration. It totaled 50%, 22%, and 60% of all DESR genes at the early, middle, and late time points, 
respectively. Inflammation is crucial for initiating and maintaining pro-regenerative responses to injury 
[16], but because inflammation also damages tissues, distinguishing inflammation-related pro-
regenerative genes from those detrimental to recovery has proved challenging in mammalian studies. 
These genes can provide insights into which are likely pro-regenerative vs. detrimental by comparing 
those that were up-regulated under the two regenerative conditions vs. those that were downregulated, 
respectively. At 3 days, DESR genes were dominated by increased expression of genes typically 
considered pro-inflammatory (leptin, C9, ecm1, ddit3), along with genes associated with increased activity 
and tissue penetrance of macrophages (ceacam8, efemp1 epx), and activation of JAK/STAT signaling 
through cytokine receptors (mmp2, mmp13, socs3). The two down-regulated DESR genes at 3 days were 
a cytokeratin associated with wound sites in mammals (krt6a) and a pro-inflammatory, calcium-binding 
protein secreted by macrophages (ocm2). At the peak phase of regenerative axon outgrowth, there were 
nine up-regulated pro-inflammatory genes [two holdovers from 3 days (leptin, C9) and 7 new ones 
(ubclp1, hbe1, gng7 tmem2, fcrl4, lgals8, mst1)], plus 32 genes that have been previously associated with 
promoting cell survival, tissue repair and regeneration, with dampening inflammation, and with mediating 
a stress response. Eight additional up-regulated genes were associated with myeloid cell activities, 
including three that were known to promote the transition from pro-inflammatory M1 to repair-promoting 
M2 macrophages (lta4h, hmox1, mmp28). Conversely, the down-regulated DESR genes at this time 
included ten genes previously associated with exacerbation of inflammation, cell death, and scar 
formation (e.g., enpp2, znf395, cal14a1), along with six genes associated with oxidative stress (scara3, 
higd1c), myeloid cell activity (ms4a4a, rasgrp3) and maintaining the blood-brain barrier (mxra8), plus a 
heat-shock protein (hspa8). At the late time point (3 weeks), all nine DESR genes in this category were 
up-regulated genes previously implicated in protecting cells from detrimental aspects of inflammation and 
in promoting cellular repair and regeneration (slc44a2, a2m, ifr8, syt11, cfh, plat, ifitm3, mst1, and ltf).   
 

3 days  

Up-regulated
1
 

Pro-Inflammatory Molecules  

C9*
,3
 The final component of the complement cascade [172; 198; 257]. 

CEACAM8 Adhesion molecule that increases vascular permeability to promote tissue invasion 
by macrophages and other myeloid cells [318]. 

DDIT3  (See also Transcription Factors) A C/EBP-related transcription factor that functions 
primarily as a transcriptional repressor by forming inactive partners with other C/EBP 
transcription factors; it is regulated by stress factors and is important for the activation 
of pro-inflammatory signals [239].  

EFEMP1 A membrane protein that promotes macrophage migration [67]. 

ECM1 An activator of the C3 alternative complement cascade [33]. 

EPX An enzyme that stimulates production and release of hydrogen peroxide and 
hypohalous acid, which act as macrophage chemoattractants [127; 128]. 

LEP
*
 Cytokine receptor ligand and activator of JAK/STAT signaling [11]. 

 

JAK/STAT-Activated Regulators of Inflammation and Wound Healing  

MMP2 A matrix metalloprotease that promotes CNS axon regeneration and axon guidance 
[204; 240; 256; 309] 

MMP13 A matrix metalloprotease that regulates scarring [66] 
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SOCS3* A negative modulator of JAK/STAT signaling, which also has pro-regenerative effects 
[[201; 202], and [15] for review]. 

 

Down-regulated
2
 

Cytokeratin Associated with Wound Healing  

KRT6A (See also Cytoskeletal, below) A cytokeratin associated with wound sites; in rodents, 
krt6a knockout increases epithelial wound site fragility [320]. 

 

Inflammatory Cell-secreted Factor  

OCM2 In rodents, oncomodulin stimulates optic axon regeneration [147; 330; 331]. 

 
1 wk/11 days 

Up-regulated 

Pro-Inflammatory Molecules  

HBE1
4
 A major component of embryonic hemoglobins in mammals, with pro-inflammatory 

properties [86]. 

LEP* see LEP at 3 days.  

C9* see C9 at 3 days.  

UBLCP1 A ubiquitin-like-domain-containing phosphatase [311]. 

GNG7 A G-protein that plays a role in CCR3 signaling in eosinophils in stroke [95]. 

TMEM2 An interferon family member that encodes a hyaluronidase and activates JAK/STAT 
signaling [348]. 

FCRL4 A marker for pro-inflammatory B cells [329]. 

LGALS9 A lectin that promotes tissue invasion by inflammatory myeloid cells [22; 208]. 

MST1 A Hippo-protein that stimulates macrophages [344; 345]. 

 

Protein Ubiquitination and Turnover  linked to suppressing socs3's anti-regenerative effects [251; 290]. 

UBE2D4 A ubiquitin conjugating enzyme E2, also see PSMA4. 

UCHL1 A ubiquitin esterase [88]; also see PSMA4. 

FBXO2 A component of the neuronal ubiquitinating SCF complex [10]. 

PSMA4 A component of the proteasome [170; 290]. 

PSMA3 see PSMA4. 

DKFZP686D09174  A proteasomal psma2 homolog implicated in axon regeneration [87]. 

PSMB5 see PSMA4. 

PSMB7 see PSMA4. 

PSMC1 see PSMA4. 

PSMC6 see PSMA4. 

PSMD12 see PSMA4. 

 

Chaperones  

CCT2 A chaperone that promotes folding of actin and tubulin and also plays a role in 
autophagy [244]. 

CRYAB A generally neuroprotective, potent inhibitor of inflammation [103]. 

CRYGB A stimulator of JAK/STAT signaling, macrophage activity, and axon regeneration [68]. 
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AHSA1 A co-chaperone for HSP90AA1, involved in cellular stress response to MAP-tau 
aggregates [272]. 

 

Protective Genes that Promote Cell Survival, Tissue Repair and Regeneration  

FADS1 (See also Lipid Metabolism) A fatty acid desaturase that is directly implicated in 
down-regulating inflammation [92]. 

LTF* A neuroprotective gene in Parkinson's disease [262]; see also 3 wk. 

OTOP3 A member of a gene family that suppresses inflammation and promotes tissue repair 
[308]. 

ANXA5 Implicated in suppressing inflammation; it is upregulated in amphibian limb 
regeneration where it inhibits cell death and inflammation [53; 136; 327]. 

CASP9 Although typically thought of as an initiator of apoptosis, it also plays a role as an 
activator of axon guidance molecules [230; 233; 282]. 

CXCR4 A chemokine receptor associated with neuronal stem cell differentiation and axon 
guidance [258]. 

PLAT* A neuroprotective modulator of inflammation [90; 90; 100], see also 3 weeks. 

SOCS3* Also at 3 days. In mammals, it is generally considered pro-inflammatory, but see 
[201; 251]. 

SLC25A1 (See also Intracellular Transport) Involved in transporting citrate across mitochondrial 
membranes. It regulates cellular metabolism and TP53 responses, and its expression 
is triggered by STAT. It is essential for NO and prostaglandin production in the 
inflammatory response [113]. 

TXN Involved in protecting neurons from oxidative stress [156]. 

 

Stress Response Genes, Including Mitochondrial Response to Oxidative Stress  

MAPK8 A stress response kinase required for regenerative and developmental axon 
outgrowth, regulating both the mRNA translation and axonal transport of key 
cytoskeletal structural proteins needed for building the axon [112; 231]. 

HBD Primarily known as a carrier of oxygen in red blood cells, but in other cells, it also 
plays a role in managing oxidative stress [50]. 

SH3BGRL3 A thioredoxin-like molecule that helps cells resist damage from free radicals [324]. 

TMEM14C Essential gene for mitochondrial heme metabolism, implicated in autoimmune 
diseases such as multiple sclerosis [2]. 

AK2 A mitochondrial AKT kinase, generally considered protective for cells [206]. 

CASP3 Activates apoptosis, but is also neuroprotective in the presence of HSP70 and 
HSC70 [197]. 

PRDX1 Regulates cellular hydrogen peroxide levels in cells to protect them from oxidative 
stress, e.g., [114]. 

 

Other Myeloid Cell-associated Genes  

SSR3 Associated with protein translocation across the ER membrane; it is upregulated in T-
cells upon exposure to IL-2 [60]. 

RTKN2  A Rho-GTPase target implicated in lymphopoiesis [42]. 

GCA An abundant calcium binding protein in macrophages [325]. 

LY9 A gene expressed in lymphocytes that is involved in a wide range of adaptive and 
innate immune responses, including suppressing inflammation [18]. 
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SSSCA1 A gene of unknown function, associated with autoimmune diseases; it may be part of 
the centromere of cells involved in the immune response [215]. 

 

Genes that Promote/Mark the M1/M2 Transition  

LTA4H [49]. 

HMOX1 [218]. 

MMP28 A matrix metalloprotease implicated in peripheral nerve repair in Xenopus and in 
promoting the M1 to M2 transition [79; 317]. 

 

Down-regulated 

Genes that Exacerbate Inflammation, Cell Death, and Scar Formation  

ENPP2
5
 A stimulator of inflammation in cancer [40; 137]. 

SLC9A3R2 A suppressor of STAT3 [336]. 

UGT8 (See also Lipid Metabolism) An important enzyme for sphingolipid metabolism, which 
is important for making myelin; elevated UGT8 promotes neuroinflammation in 
humans [339]. 

ZNF395 (a.k.a Huntington Disease Regulatory Region Binding Protein 2; see also 
Transcription Factors): A zinc-finger transcription factor that activates pro-
inflammatory cytokines [102]. 

BCL6 (See also Transcription Factors) A transcriptional repressor of STAT3 [213]. 

COL14A1 A collagen subtype, implicated in scar formation in liver disease [269]. 

CYR61 An angiogenic inducer [122]. 

PPT2 (See also Lipid Metabolism) A critical enzyme in the synthesis of sphingosine, which 
is especially important for the synthesis of sphingolipids in myelin. Elevated 
sphingolipid levels promote neuro-inflammation, and PPT2 knockdown in mice leads 
to neurodegeneration [89; 281; 339]. 

PDZD2 A relative of IL-16, a pro-inflammatory cytokine [181]. 

TXNIP A thioredoxin-interacting protein that promotes apoptosis in brain injury [222; 343]. 

 

Genes Associated with Oxidative Stress  

SCARA3 A macrophage scavenger receptor involved in oxidative stress [23]. 

HIGD1C A mitochondrial protein induced by oxidative stress [5; 75]. 

 

Chaperones  

HSPA8 A constitutively expressed chaperone protein, related to HSP70 [349]. 

 

Other Myeloid Cell-associated Genes  

MS4A4A A membrane protein with multiple splice forms associated with a variety of myeloid 
cells, including macrophages [265]. 

RASGRP3 A GEF that plays a role in limiting toll-like receptor-triggered inflammatory responses 
in macrophages [288]. 

 

Gene Associated with Maintaining the Blood Brain Barrier  

MXRA8 A cell adhesion molecule expressed in astrocytic endfeet lining the vasculature [8; 
333]. 

 



Appendix: Genes Implicated by Expression Analysis to be Involved in Successful CNS 
Axon Regeneration: 

Cellular Functions, Time of Differential Expression, and Key References 
 

Page 5 of 42 
 

3 wk 

Up-regulated 

Protective Genes that Promote Cellular Repair and Regeneration  

LTF See 1 wk/11 days [146]. 

SLC44A2 A choline transporter associated with neutrophil activation and increased membrane 
synthesis for cell growth and repair [13; 294]. 

A2M An inhibitor of fibrinolysis and disruptor of cytokine-induced inflammation, with 
neuroprotective qualities [207]. 

IRF8 (See also Transcription Factors) A transcription factor that responds to interferons to 
suppress the hyper-inflammatory response in macrophages [115]. 

SYT11 An inhibitor of cytokine secretion and phagocytosis by macrophages [57; 306]. 

CFH A complement factor that redirects the C3 pathway toward pathogens and away from 
tissue damage [259]. 

PLAT* See 1 wk/11 days [100]. 

IFITM3 An anti-inflammatory modulator of interferon signaling [161]. 

MST1 A hippo kinase that suppresses macrophage infiltration [160; 344]. 

 

Down-regulated 

None 

____________________________________________________________________________ 

2. Cytoskeletal – structural and regulatory functions associated with the cytoskeleton 

Summary: Except for three intermediate filament genes, cytoskeletal-related DESR genes comprised 
tubulin and actin subtypes and genes associated with regulating microtubule and microfilament transport 
and dynamics (e.g., mylk, dynlt1, dynll2, kif20b, ttl). This is understandable given the importance of these 
genes for axon outgrowth, intracellular transport, cell motility, and cellular proliferation (27 in total). Two of 
the intermediate filament genes were cytokeratins that were down-regulated at 3 days (krt75 and krt6a). 
Krt6a has been associated previously with wound sites in mammals. Our data suggest its downregulation 
is important to promote regenerative healing. The remaining intermediate filament gene was differentially 
up-regulated at 3 weeks (prph). It has been previously reported to be upregulated at all stages of 
regeneration in optic axons and reactive astrocytes. Although its precise function remains unknown, its 
preferential up-regulation in successful vs. unsuccessful regeneration at the latest stage examined, 
suggests it retains this importance into these stages.  
  
3 days 

Up-regulated 

None 

Down-regulated 

KRT75 A cytokeratin normally associated in mammals with hair follicles; one of many KRT75 
homo/paralogs in Xenopus [14; 84]. 

ACTA1 The predominant form of actin in skeletal muscle [151]. 

ACTC1 Cardiac actin, but in Xenopus it is associated with a wider range of tissue types [209; 
261]. 

KRT6A (See also Inflammatory Response and Wound Healing; 3 days, above) A cytokeratin 
associated with wound sites; in rodents, krt6a knockout increases epithelial wound 
site fragility [320]. 
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1 wk/ 11 days 

Up-regulated 

Tubulin Subtypes 

TUBB2B A neuron-specific tubulin subtype in Xenopus, present in early developing axons 
[211]. 

TUBA3D see TUBB3, below. 

TUBA1A Tubulin subtype essential for optic axon regeneration in zebrafish [301]. 

TUBA1B Tubulin subtype involved in mitosis, but not essential for optic axon regeneration in 
zebrafish [301]. 

TUBB3 Principally a neuronal tubulin subtype, implicated in axonogenesis [205]. 

TUBB see TUBB3. 

 

Motor Proteins 

DYNLT1 A neuronal minus end-directed microtubule motor protein, involved in axonal 
retrograde transport [41]. 

KIF20B A plus end-directed microtubule motor protein required for cortical neuron 
polarization and for morphogenesis [199]. 

DYNLL2 A minus end-directed motor protein component required for the retrograde axonal 
transport of proteasomes [145]. 

 KIF11 A plus end microtubule motor protein required for mitosis, as well as for transport of 
proteins and vesicles from the Golgi to the cell surface. It also transports thyroid 
receptor bound to thyroid hormone to the nucleus. Inhibiting it in cultured DRG 
neurons promotes neurite outgrowth [168]. 

 

Other Microtubule-Associated Proteins  

TTL An enzyme that restores tyrosines on de-tyrosinated tubulins; required for increasing 
levels of tyrosinated tubulin at injury sites and for retrograde axonal transport of pro-
regenerative signals, such as activators of c-Jun [278]. 

TPX2 A microtubule-associated mitotic spindle protein required for mitosis and neurite 
outgrowth; it also regulates TP53 activity [123]. 

STMN2 A microtubule associated protein important for growth cone motility and maintenance 
of axons after injury [274]. 

CKAP2 A microtubule-associated microtubule-stabilizing protein [334]. 

NCK2 A SOCS3-regulated, SH2/3 domain-interacting adaptor protein involved in 
cytoskeletal reorganization [275]. 

TCTEX1D1 A minus end-directed microtubule motor protein, potentially involved in retrograde 
axonal transport [55; 150]. 

KIFC1 A minus end-directed microtubule motor protein, potentially involved in retrograde 
axonal transport, but also regulates mitotic chromosome dynamics and macrophage 
podosome dynamics [143]. 

Actin Subtypes 

ACTB A non-muscle beta actin thought to play a role in gene transcription during axon 
outgrowth [35; 283]. 

 

Microfilament-Associated Proteins 

TAGLN2 An actin-associated protein that inhibits ARP2/3 nucleated branching of 
microfilaments [135]. 
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MYL12B A myosin light chain required for axon outgrowth [24; 237]. 

TMSB4X An actin sequestering protein that plays a major role in tissue regeneration, perhaps 
by lowering levels of pro-inflammatory cytokines [285]. 

ARPC5 A subunit of the ARP2/3 complex, which is important for axon branching in Xenopus  
[173]. 

 

Actin/Tubulin Chaperone Proteins 

CCT4 Chaperone protein important for proper folding of actins and tubulins. CCT's may 
play a role in microtubule dynamics in growth cones, and misregulation is associated 
with neurodegeneration [244]. 

CCT5 see CCT4. 

CCT6A see CCT4. 

CCT6A see CCT4. 

TCP1 A chaperone protein essential for actin dynamics in the healing of wounded imaginal 
discs in fly [3]. 

PFDN4 A chaperone protein important for actin and tubulin synthesis with possible nuclear 
functions [203]. 

 

Down-regulated 

Regulators of the Actin cytoskeleton 

MYLK Myosin Light Chain Kinase essential for growth cone motility and cytokinesis; 
increased MYLK activity inhibits axon retraction [73; 119]. 

ANK1 An ankyrin protein, which links plasma membrane proteins to the underlying actin 
cytoskeleton [307]. 

ANKRD26 A second ankyrin-related protein associated with obesity and with defects in primary 
cilia in regions of the brain that control appetite and energy homeostasis [1]. 

SHANK2  (Also, Cell Signaling) A third ankyrin-related protein implicated in a wide range of 
plasticity disorders, including synapse development through Wnt signaling [96; 273]. 

 

3 wk 

Up-regulated 

EBF3 (See also Transcription Factors) A protein that binds microtubules to induce bundling, 
but also acts as a transcription factor to regulate cell survival, regulating genes 
involved in cell cycle arrest and apoptosis. For example, it inhibits glial cell 
proliferation and glioma-genesis [25; 164]. 

PRPH In Xenopus, a principal intermediate filament protein of regenerating optic and 
peripheral axons, as well as reactive astrocytes [78; 191]. 

MAPT Tau, a major axonal microtubule-associated protein associated with stabilizing 
microtubules [174; 279]. 

Down-regulated 

None 

___________________________________________________________________________ 

3. Cell Signaling  – functions in cell signaling pathways and in synaptic transmission 

Summary: All the DESR genes in this category were differentially expressed at the peak phase of 
regenerative axon outgrowth. Up-regulated genes directly involved in receptor function included a 
cholinergic receptor (chrng), two ligands to Notch (dll1) and GABA receptors (dbi), and a range of 
modulators of cell signaling pathways, including Wnt, BMP, and G-protein coupled receptors. Several 
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additional genes are involved in intracellular aspects of cell signaling, including three kinases that 
regulate cell division (plk1), tp53-related functions (aurk8), and the synthesis and transport of axonal 
cytoskeletal proteins (mapk8), as well as two phosphatases associated with regulating cell division and 
axonal microtubule dynamics (ppp2t1a, and ppp2r2a). Down-regulated genes included multiple additional 
kinases (e.g., adck3, rock2, erbb4, insr, and others), a receptor tyrosine phosphatase (ptprb), a dopamine 
receptor-interacting GEF (dock10) and seven modulators of various signaling pathways [i.e., calcium-
related, phosphotidyl insositol-related, Wnt-related, and GPCR-related signaling]. In addition to these 
were five down-regulated ion channels (kcnn3, kcnh5, grik2, clcn2, and kcnj2), a sub-category not seen 
among the upregulated cell-signaling DESR genes. 
 

3 days  

Up-regulated 

None 

Down-regulated 

None 

 

1 wk/ 11 days 

Up-regulated 

Kinases 

PLK1 A polo-like kinase that regulates cell division [266]. 

AURKB An Aurora kinase that regulates TP53 activity, microtubules, and intermediate 
filaments (vimentin) dynamics, as well as histone H3 during mitosis [91; 129]. 

MAPK8 (Also listed under Inflammatory Response and Wound Healing) A stress response 
kinase (also known as JNK) required for regenerative and developmental axon 
outgrowth, regulating both the mRNA translation and axonal transport of key 
cytoskeletal structural proteins needed for building the axon [112; 231]. 

Phosphatases 

PPP2R1A A subunit of one of the major cellular serine/threonine protein phosphatases; 
generally associated with negative control of mitosis and cell growth, and more 
specifically with the dephosphorylation of MAP-tau [346]. 

PPP2R2A A regulatory subunit of a major cellular phosphatase involved in negative control of 
cell growth and division and in regulating MAP-tau dynamics [287]. 

Receptors 

CHRNG A subunit of the nicotinic cholinergic receptor, which in the CNS regulates 
communication between neurons and astrocytes in response to viral infection [169]. 

Receptor Ligands 

DLL1 A canonical Notch ligand that is broadly involved in tissue differentiation, neural crest 
development, and activation of stromal macrophages [32; 221]. 

DBI An endogenous benzodiazepam receptor ligand, implicated in successful peripheral 
axon regeneration in mammals through its effects on steroidogenesis [149]. 

 

Intracellular/Transmembranous Cell Signaling Pathway Mediators and Modulators 

SDCBP A membrane and nuclear protein that binds syndecan; associated with neuro and 
immunomodulation, and promotes spinal cord axon regeneration in zebrafish [338]. 

MEMO1 A protein that links cell membrane signaling (e.g., ERBB2 and IGF1R) with 
microtubule dynamics [120]. 

COMT A major enzyme mediating catecholamine neurotransmitters degradation with 
functions in neuronal synaptic plasticity, e.g., see [99]. 
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(Wnt-related) 

TMEM88 An inhibitor of the canonical Wnt/beta-catenin signaling pathway [234]. 

 

(BMP-related) 

TMEM221 (a.k.a. Jiraiya) A transmembrane protein that attenuates BMP signaling in Xenopus 
development and interacts with multiple miRNAs [9]. 

 

(G-protein-related) 

GNG3 A heterotrimeric G protein gamma subunit that regulates chemokine signaling in 
lymphocytes [132]. 

 

(14-3-3 protein related) 

YWHAB A 14-3-3 protein that suppresses apoptosis and mediates signal transduction for 
kinases and phosphatases associated with mitosis [45]. 

YWHAQ A 14-3-3 protein, which mediates signal transduction by binding to phosphoserine-
containing proteins; upregulated in ALS and peripheral nerve injury [185]. 

Down-regulated 

Kinases 

ADCK3 A mitochondrial kinase; inhibiting its expression inhibits p53-induced apoptosis [47]. 

MYLK (Myosin light chain kinase, also listed under Cytoskeletal DESR genes) An essential 
kinase for growth cone motility and cytokinesis; inhibiting MYLK inhibits axon 
retraction [73; 119].  

CDK18 A cyclin-dependent kinase that also regulates cell migration and adhesion by 
negatively modulating FAK activity [194]. 

ROCK2 Kinase target of Rho-GTPase; it is involved in actin-mediated changes in the 
cytoskeleton. Inhibiting ROCK stimulates neurite outgrowth [139]. 

ERBB4 A member of the EGFR family of receptor tyrosine kinases, activated by neuregulins 
to induce a variety of cellular responses, including mitogenesis and differentiation, 
e.g., see for review [85]. 

INSR A receptor tyrosine kinase that regulates cellular functions in response to insulin; 
implicated in neuro-protection and synaptic plasticity [83]. 

MINK1 A MapKKK, STE family kinase-activator of MapK p38, JNK, and ERK [152]. 

CDK19 A cyclin dependent kinase belonging to a family required for transcriptional activation 
of specific genes, including the anti-inflammatory cytokine, IL-10 [121]. 

Phosphatases 

PTPRB A receptor protein tyrosine phosphatase with a range of functions in cell adhesion, 
neurite growth and neuronal differentiation, e.g., for review see [38]. 

 

Receptors 

DOCK10 A dopamine receptor interacting GEF essential for dendrite morphogenesis [118]. 

INSR See kinases, above. 

PTPRB See phosphatases, above. 
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Ion Channels 

KCNN3 A small-conductance, calcium-activated potassium channel protein that contributes to 
neuronal after-hyperpolarization of the action potential; inhibiting its activity during 
diabetic ketoacidosis reduces brain inflammation [80]. 

KCNH5 (a.k.a., Ether-A-Go-Go-Related Gene Potassium Channel) An outward-rectifying, 
non-inactivating channel with a range of functions, including regulation of brain tumor 
growth, metastasis, and mitotic cell volume [111]. 

GRIK2 An ionotropic glutamate, Kainate type receptor linked with multiple neuropsychiatric 
and neurodevelopmental disorders [189]. 

CLCN2 A voltage-gated chloride channel associated with a range of disorders, including 
retinal degeneration, leukoencephalopathy, and epilepsy [310]. 

KCNJ2 A voltage-gated potassium channel essential for PDGF BB-stimulated vascular 
smooth muscle cell proliferation and migration [252]. 

 

Intracellular/Transmembranous Cell Signaling Pathway Mediators and Modulators 

PLCB4 A subunit of phospholipase C, which catalyzes IP3 and DAG production from PIP2; 
implicated in multiple processes important for axon regeneration and inhibiting it 
attenuates scar formation [131; 347]. 

TMTC1 An ER protein involved in maintaining calcium homeostasis [286]. 

MINK1 See kinases, above. 

 

(Wnt-related) 

CCDC136 An negative-regulator of Wnt/Beta-catenin signaling during zebrafish dorsal-ventral 
patterning [315]. 

DAAM2 A regulator of canonical Wnt signaling involved in stimulating re-myelination [155]. 

SHANK2 (See also, Cytoskeletal) An ankyrin-related protein implicated in a wide range of 
plasticity disorders, including synapse development through Wnt signaling [96; 273]. 

 

(G protein-related) 

SYDE2 A rho GTPase homolog involved in p75 NTR receptor-mediated signaling, which 
stimulates cell death [312]. 

DOCK3 (See also Axon Outgrowth) A CNS-specific GEF that regulates axon outgrowth 
through activating Rac1 [220]. 

 

3 wk 

Up-regulated 

None 

 

Down-regulated 

None 

____________________________________________________________________________ 

4. Intracellular Transport – functions in the intracellular trafficking of proteins and organelles 

Summary:  Like those in the previous category, these genes were only found at the peak phase of 
regenerative axon outgrowth. Upregulated genes included five Golgi/endosome-related genes (fabp7, 
atp6v1f, nipa1, rtn2, snx10), seven nuclear transport-related genes (nutf2, ranbp1, ppid, kpna2, crabp2, 
npm1, nup43), and four genes associated with transport across the plasma membrane (abcb1, slc38a4, 
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nkain1, sfxn2). The six down-regulated DESR genes in this category included a regulator of ion transport 
(fxyd1), and two divalent metal cation transport mediators (cnnm2, slc25a25), among others. 
 

3 days  

Up-regulated 

None 

Down-regulated 

None 

 

1 wk/ 11 days 

Up-regulated 

Golgi/Endosome-related transport 

FABP7 (a.k.a. Brain Lipid Binding Protein) A transporter of fatty acids from extracellular to 
intracellular membranes; it is significantly upregulated in ependymal and radial glial 
cell endfeet during reactive gliosis in mammalian CNS injury, is stimulated by Notch 
signaling, and is important for radial glial cell development [6]. 

ATP6V1F (See also Cellular Metabolism) A vesicular proton pump that acidifies vesicles for 
protein processing and sorting. It plays a functional role in eye development [227]. 

NIPA1 A magnesium transporter that associates with the early endosome and with cell 
membranes; mutations associated with upper motor neuron disease, e.g., see for 
review [116]. 

RTN2 Essential for making tubular ER for vesicular transport; mutations cause axon 
degeneration [210]. 

SNX10 Involved in endosomal protein sorting and plays a critical role in matrix 
metalloproteinase secretion activated by stress [345]. 

 

Nuclear transport 

NUTF2 A transporter of proteins into the nucleus; it is upregulated in tail fin regeneration in 
zebrafish [267]. 

RANBP1 A small G protein involved in transporting proteins into the nucleus; its expression 
increases during axon regeneration [241]. 

PPID A peptidylprolyl isomerase D activated by stress and essential for intracellular 
transport of activated glucocorticoid receptors into the nucleus [20]. 

KPNA2 Essential for nuclear import of key proteins; it is involved in regulation of TP53 activity 
[165]. 

CRABP2 Involved in nuclear uptake of RA-bound RAR; it is upregulated in limb regeneration in 
salamanders [195]. 

NPM1 A shuttling protein between the nucleolus and the nucleoplasm; it plays multiple roles 
in cells, including regulating TP53 responses, functioning as a histone chaperone, 
playing a role in ribosome synthesis, regulating centrosome duplication during the 
cell cycle, and destabilizing RNA-helices, e.g., for review see [270]. 

NUP43 Regulates bidirectional transport across the nuclear membrane [323]. 

 

Mitochondrial transport 

FABP3 (a.k.a. Heart-type fatty acid binding protein) A protein that transports fatty acids from 
the cell membrane to mitochondria; it is released from cardiac myocytes after 
ischemic events and is a diagnostic marker for heart disease. Its increased 
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expression has been linked to partially successful spinal cord regeneration in the 
neonatal opossum [225]. 

TOMM5 A mitochondrial transmembrane protein involved in transporting proteins into 
mitochondria [130]. 

SLC25A1 (See also Inflammatory Response and Wound Healing) Involved in transporting 
citrate across mitochondrial membranes. It regulates cellular metabolism and TP53 
responses, and its expression is triggered by STAT. It is essential for NO and 
prostaglandin production in the inflammatory response [113]. 

 

Transmembrane transport 

ABCB1 An energy dependent efflux pump across intracellular membranes, implicated in a 
variety of age-related disorders [62]. 

SLC38A4 (See also General Metabolism) It functions as a neutral transmembrane amino acid 
transporter with a role in regulating protein synthesis in liver development [140]. 

NKAIN1 A regulator of sodium/potassium ATPase transporter; in Drosophila, mutants exhibit 
temperature-sensitive paralysis [82; 305]. 

SFXN2 A transmembrane transporter of tricarboxylic acids; little is known about SFXN2, but 
SFXN3 is implicated in regulating synaptic morphology [4]. 

 

Down-regulated 

FXYD1 A regulator of ion transport; overexpression reduces neuronal dendritic arborization 
[26; 54]. 

ABCA2 (See also Lipid Metabolism) A gene involved in transporting lipids across 
membranes; it is highly expressed in brain and may play a role in macrophage lipid 
metabolism [51]. 

CNNM2 A divalent metal cation transport mediator thought to play a role in Mg
++

 homeostasis; 
down-regulation may play a neuroprotective role [167]. 

SLC25A25 A mitochondrial protein involved in ATP and divalent cation transport across 
mitochondrial membranes; it is important for maintaining metabolic efficiency [7]. 

SLC5A3 (a.k.a. Sodium/myo-inositol transporter) Important for regulating inositol mediated 
intracellular cell signaling and in regulating blood pressure [280]. 

SLC45A4 A sugar co-transporter [302]. 

 

3 wk 

Up-regulated 

None 

Down-regulated 

None 

 

________________________________________________________________________________ 

5. Post-Transcriptional Regulation – functions in regulating RNA splicing, trafficking, translation, 
and decay 

Summary: Post-transcriptional control of gene expression is increasingly being seen as crucial for 
regenerative and developmental CNS axon outgrowth, as well as other forms of wound healing and 
regeneration. For example, cells under stress utilize cap-independent mRNA translation to ensure 
proteins needed for survival are synthesized, while cap-dependent mRNA translation decreases during 
the early phase of the stress response  [148], and axonal cytoskeletal-related genes needed to rebuild the 
axon, such as the neurofilaments and tau, are under strong post-transcriptional control [175; 293]. During 
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neural development, selective translation of individual mRNAs requires specific ribosomal proteins [289]. 
Examples related to each of these three processes were: 1) eif5b, a translation initiation factor that 
promotes IRES-dependent mRNA translation [74], which was up-regulated at 3 days; 2) aldoA, an RNA-
binding protein that stabilizes and increases translation of neurofilament mRNAs [28]), which was 
upregulated at 3 weeks; and 3) rplp1, a 60S ribosomal protein essential for brain development due to its 
effects on cyclin and p63 expression [248], which was down-regulated at 3 days in the two regenerative 
tissues and up-regulated in the non-regenerative one. Twenty-five additional DESR genes pointed to the 
importance of regulating RNA splicing (9 genes up-regulated at 7/11days), translation (five genes up-
regulated at 7/11 days), mRNA trafficking and turnover (four genes up-regulated at 7/11 days and one up-
regulated at 3 wk), and ribosomal composition (one genes down-regulated at 3 days; and four up-
regulated at 7/11 days) for successful CNS axon regeneration. Particularly striking were examples from 
these 28 genes of ones that regulate specific transcripts and RNA-binding proteins already linked with 
regenerative axon outgrowth, neuronal survival, and other processes important for regeneration. They 
included the two up-regulated splicing factors snrpd3 and snrpn, which have been implicated in Spinal 
Muscular Atrophy [69] and developmental axon outgrowth [337], respectively; prmt1, a methylase 
targeting hnRNP K [34], which is an RNA-binding protein essential for optic axon regeneration in Xenopus 
[175]; and igf2bp3, which binds and regulates trafficking of insulin-like growth factor mRNA in response to 

cytokine signaling [138]  and carhsp1, which stabilizes TNF [250].  
 

3 days  

Up-regulated 

Translation Initiation 

EIF5B A eukaryotic translation initiation factor that helps position the ribosome on the mRNA 
for IRES-mediated, as opposed to cap-dependent, translation [74]. IRES-mediated 
translation initiation is important for cell survival during stress, when cap-dependent 
translation is suppressed [148]. 

 

Down-regulated 

Ribosomal Subunits 

RPLP1 An acidic 60S ribosomal protein with an important role in protein elongation during 
mRNA translation; while not essential for global protein synthesis, it is essential for 
embryonic brain development and cell proliferation due to its effects on the synthesis 
of key cell cycle and apoptosis regulators, including cyclins and p63 [248]. 

RPL37 A 60S ribosomal protein [176]. 

 

RNA Splicing 

SRSF2 A splicing factor required for nuclear export and translation of mRNAs [63]. 

 

1 wk/ 11 days 

Up-regulated 

Splicing Factors 

SNRPD3 A core component of the spliceosome; it forms a complex with Spinal Muscular 
Atrophy genes and is implicated in neurodegeneration [69]. 

SNRPN A splicing co-factor implicated in axon outgrowth in zebrafish [337]. 

DDX39A An ATP-dependent RNA helicase that associates with splicing speckles and with 
histone H2A.B [276]. 

SNRPF A core component of the spliceosome, required for glioma cell migration [76]. 

LSM5 An Sm-like protein involved in nuclear mRNA splicing and mRNA decay; it facilitates 
the formation of the spliceosomal U4/U6 duplex [235]. 
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U2AF2 Required for U2 binding to the branch site during pre-mRNA splicing; it is regulated 
by hnRNP A1 in alternative splicing [107]. 

PPIH A peptidyl-prolyl Isomerase that is a component of the spliceosome; it may act as a 
chaperone for proteins joining the spliceosome [254]. 

UTP18 A gene involved in the processing of pre-18S ribosomal RNA and in RNA 
surveillance [292]. 

 

Ribosomal Subunits 

RPL22L1 A ribosomal protein needed for translation of specific mRNAs. It can substitute for 
RPL22, which normally suppresses translation of RPL22L1, suggesting that 
ribosomal composition may have an impact on translation of specific mRNAs [228]. It 
plays a critical role in embryogenesis by working together with hnRNP A1 and in 
opposition to Rpl22 to regulate alternative splicing of smad2 pre-mRNA [228; 341]. 

RPL27A Ribosomal protein L27A; it undergoes changes in gene expression in obesity [303]. 

RPS12 A 40S ribosomal protein thought to be involved in translation initiation. In Drosophila 
embryogenesis, cells expressing higher levels of RPS12 than their neighbors are 
more effectively eliminated in competition, giving it a specialized role in embryonic 
patterning [124]. 

MRPS17 A subunit of the mitochondrial 28S ribosome; in yeast, it promotes oxidative 
metabolism [94]. 

 

mRNA Translation Initiation and Elongation Factors 

EEF1G A translation elongation factor that participates in the delivery of aminoacylated 
tRNAs to the ribosome by anchoring it to other cell components. It binds specific 
mRNAs, such as vimentin, to escort them to their appropriate location in the cell for 
translation [46].  

THOC7 Part of the TREX complex, involved in efficient translation and nuclear export of 
mRNAs with tandem polynucleotide repeats [64]. 

EEF1B2 A guanine nucleotide exchange factor needed to transfer aminoacylated tRNAs to 
the ribosome to promote peptide elongation; reduced expression is associated with 
cellular senescence [27]. 

DENR A translation initiation factor that supports tissue growth by promoting re-initiation of 
translation downstream of uORFs [268]. 

EIF3I An essential component of the apparatus needed to initiate mRNA translation; its 
overexpression enhances both cap-dependent and IRES-dependent translation of 
specific transcripts over and above that associated with general increases in 
translation [260]. 

 

Regulators of mRNA Trafficking and Turnover (mRNA binding proteins and their regulators) 

IGF2BP3 An mRNA binding protein that regulates Insulin-like Growth Factor mRNA; it is 
required for cytokine signaling and is found in stress granules [138]. 

CARHSP1 An mRNA-binding protein that stabilizes TNF- mRNA [250]. 

PRMT1 (See also Epigenetics) A protein arginine N-methyltransferase involved in methylation 
of certain hnRNP's and histones; e.g., it methylates hnRNP K, an RNA-binding 
protein active in axon outgrowth [34]. 

 

Down-regulated 

None 
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3 wk 

Up-regulated 

Regulators of mRNA Trafficking and Turnover (mRNA binding proteins and their regulators) 

MEX3A An RNA binding protein that regulates transcripts involved in tumorigenesis and 
aging in fish [12]. 

ALDOA Although primarily known as a regulator of glycolysis, it is also an RNA-binding 
protein that binds to the 3'UTR of nefl mRNA. This binding stabilizes neurofilament 
mRNAs, enhancing their expression after axons reach their targets [28]. 

Down-regulated 

None 

____________________________________________________________________________ 

6. Epigenetic gene regulation – functions in DNA-chromatin interactions, post-translational 
modifications to histones, DNA methylation/hydroxymethylation 

Summary: Genes associated with epigenetic gene regulation are increasingly being recognized as 
crucial for regeneration in multiple contexts [e.g., [183]]. The 26 DESR genes in this category included 
specialized histone subclasses, chromatin proteins that associate with enzymatically modified histones 
and DNA, and the enzymes that make these modifications, as well as factors that regulate them. For 
example, at 3 days, two histone variants were down-regulated in the regenerative tissues: hist2h2ab, an 
H2 gene variant that interacts with the SWI/SNF complex to reposition nucleosomes for transcription 
[264]), and hist1h4k, an H4 gene variant whose induction is implicated in protecting cells from DNA 
damage by facilitating DNA double strand break repair [162]. At 7/11 days, there were sixteen up- and six 
down-regulated DESR genes. Two of the up-regulated genes were histone gene variants implicated in 
nucleosome repositioning: h2afz, an H2 gene variant [125; 253]] and hist2h2ab, which was down-
regulated at 3 days. Three additional DESR genes associate with the SWI/SNF nucleosome repositioning 
complex: smarca5, which also interacts with the DNA methylase DNMT3B [77]), actl6a, an actin-like 
protein that antagonizes chromatin mediated transcriptional repression  [335], and smarca1 [232]. The 
first two were up-regulated and the last was down-regulated. Yet another gene has also been implicated 
in nucleosome repositioning, hmgn2 [190]. Three DESR genes exhibited changes in expression that 
would be expected to promote histone deacetylation, which is increasingly recognized as crucial for axon 
regeneration [39], as well as regeneration of other tissues, such as cardiac muscle [277] and liver [110]. 
Two were up-regulated: anp32a, a histone acetyltransferase inhibitor [326], and rbbp4, a component of 
the Mi-2/NuRD complex [340] and one of several NuRD components required for successful fin 
regeneration in zebrafish [249]). A third was down-regulated: gpt2 (Glutamic-pyruvic transaminase 2), an 
enzyme involved in pyruvate synthesis, which is needed for histone acetylation [104]. Two additional up-
regulated DESR genes regulate acetyl CoA levels, which in turn metabolically regulate histone acetylation 
[313]: acsbg2 and acat2. The remaining DESR genes from 7/11 days were associated with functions 
related to methylated histones, DNA or both. Related up-regulated genes were: wdr77 (WD repeat 
domain 77), a histone methylase [297]); uhrf2, a protein required for 5-hydroxymethyl cytosine (5hmC) 
production [36]; ahcy, which metabolically regulates methyl group availability for DNA methylation [133]; 
idh1, which metabolically activates TET enzymes, which convert 5mC to 5hmC [299]; cyb5a, implicated in 
inducing global changes in CpG DNA methylation at promoters of inflammatory genes [186]; and ezh2 
(Enhancer Of Zeste 2 Polycomb Repressive Complex 2 subunit), a enzyme that regulates histone 
methylation and serves as a platform to recruit DNA methyltransferases [247]). Related down-regulated 
genes were: jhdm1d (KDM7A) a histone lysine demethylase [157]); suz12, involved in suppressing H3K9 
and H3K27 methylation [271]; apobec3a, a cytidine deaminase that provides an alternative pathway for 
demethylating DNA [29]); and jarid2, a transcriptional repressor that recruits the Polycomb Repressive 
Complex 2 to chromatin to promote methylation of H3K9 and H3K27 [163; 245].  Notably, jarid2 was the 
only one of these genes that persisted as a DESR gene at 3 weeks, when it continued to be down-
regulated.   
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3 days  

Up-regulated 

None 

 

Down-regulated 

HIST2H2AB* A histone H2 variant that interacts with the SWI/SNF chromatin remodeling complex, 
which repositions histones to allow transcription [264] (Note, this gene was up-
regulated at 1 wk/ 11 days). 

HIST1H4K A subtype of histone H4 that has been implicated in protecting cells from DNA 
damage and in facilitating DNA double strand break repair [162]. 

 

1 wk/ 11 days 

Up-regulated 

Genes Involved in Nucleosome Repositioning during Transcription 

(Histone Variants) 

HIST2H2AB* See 3 days, when this gene was down-regulated in successful regeneration; it was 
upregulated at this peak phase of regenerative axonal outgrowth. 

H2AFZ A specialized Histone 2 variant (a.k.a., H2A.Z) required for embryonic development in 
mammals; it marks the 5' ends of genes and is involved in nucleosome repositioning 
during transcription, contributing to Pol II pausing behavior, which potentially allows 
for more interactions with transcription factors and epigenetic modifiers at specific 
sites [37; 65; 125; 253]. 

 

(Other genes involved in nucleosome repositioning) 

SMARCA5 A component of the SWI/SNF complex involved in repositioning histones to allow 
transcription; it is a helicase that promotes the open complex. It also interacts with 
DNMT3B and is therefore associated with changes in DNA methylation [77]. 

ACTL6A A component of the BAF nucleosome remodeling complex, which antagonizes 
chromatin mediated transcriptional repression; implicated in learning and long-term 
memory consolidation [335]. 

HMGN2 (See also Transcription Factors) A transcription co-factor implicated in maintaining 
DNA in the open conformation for transcription by binding to and modulating histone 
H3 and removing H1 from promoters [190]. 

 

Regulators of Histone Acetylation /De-acetylation 

ANP32A An enzyme involved in the inhibition of histone acetyltransferases (up-regulation de-
acetylates histones) [31; 255; 326]. 

RBBP4 A chromatin remodeling factor present in Mi-2/NuRD complexes involved in histone 
deacetylation, DNA methylation, and gene repression; it is required for successful fin 
regeneration in zebrafish [249; 340]. 

ACSBG2   An acyl-CoA synthetase, which helps to metabolically regulate histone acetylation 
through the availability of acyl groups to histone acetyltransferases [246; 313]. 

ACAT2 An enzyme (acetyl coA transferase) involved in pyruvate synthesis, which helps 
regulate levels of acyl-acetate in the cell. Such enzymes are metabolic regulators of 
the enzymes that acetylate histones by making the required substrates available [52; 
313]. 
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Regulators of Histone and DNA Methylation (Hydroxy-methylation)/De-Methylation  

EZH2 An enzyme that maintains and/or increases histone methylation levels, especially at 
H3K27. As a member of the Polycomb Repressive Complex; it also serves as a 
platform to recruit DNA methyltransferases to DNA and is functionally important for a 
range of developmental and physiological changes in gene expression, including 
responses to injury [247]. 

IDH1 A cytosolic isocitrate dehydrogenase: that metabolically regulates TET enzymes, 
which convert 5mC to 5hmC (hydroxy-methylation), which is needed for subsequent 
steps in the pathway that converts 5 mC to de-methylated C [299]. 

UHRF2 An E3 ubiquitin ligase that not only regulates nuclear protein ubiquitination but also 
binds methylated DNA and is required for the production of 5hmC [36]. 

AHCY An enzyme that metabolically regulates the availability of methyl groups needed for 
DNA (and possibly histone) methylation [133]. 

WDR77 A chromatin remodeling enzyme that converts histone arginines to dimethylarginines 
[297]. 

CYB5A An enzyme that regulates stearyl-CoA-desaturase activity, which in turn induces 
global changes in CpG DNA methylation at promoters to, for example, regulate 
inflammatory gene expression 3T3 adipocytes [186; 200]. 

PRMT1 (See also Post-transcriptional Regulation) A protein arginine N-methyltransferase 
involved in methylation of histones and certain hnRNP's; e.g., it methylates hnRNP K, 
an RNA-binding protein active in axon outgrowth [34]. 

CMPK1 (See also DNA Replication/Repair) A cytidine/uridine monophosphate kinase that is 
required for nucleic acid biosynthesis; it converts CMP, UMP and dCMP into the di-
phosphate forms. It also plays a role in determining the efficiency of DNA repair 
involving cytidine/uridine, and therefore may play a role in Base Excision Repair 
pathways involved in altering DNA methylation [296]. 

Down-regulated 

Genes Involved in Nucleosome Repositioning during Transcription 

SMARCA1 Part of the SWI/SNF nucleosome remodeling complex involved in repositioning 
histones for global gene regulation [232]. 

 

 

Regulators of Histone Acetylation /De-acetylation 

GPT2 An enzyme involved in pyruvate synthesis, which metabolically regulates histone 
acetylation [104]. 

 

Regulators of Histone and DNA Methylation (Hydroxymethylation)/De-Methylation  

JHDM1D A histone lysine demethylase that specifically demethylates H3K9me2, H3K27me2, 
and H4K20me1, and also binds H3K4me3 to demethylate H3K27me2; it plays an 
important role in neural differentiation [108]. 

SUZ12 A Polycomb Repressive Complex 2 subunit involved in suppressing the methylation 
of H3K9 and H3K27 and also serves as a recruitment platform for DNA 
methyltransferases; it is downregulated in successful wound healing of murine skin  
[271]. 

JARID2* A transcriptional repressor that recruits the Polycomb Repressive Complex to genes 
to promotes methylation of H3K9 and H3K27, e.g., see [163; 245]. 

GPT2 An enzyme involved in pyruvate synthesis, which metabolically regulates histone 
acetylation [104]. 
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APOBEC3A  A cytidine deaminase, which converts cytidines in DNA and RNA to uridines. In cell 
lines, it can de-methylate 5mC (5-methyl-cytosine) in DNA. Up-regulation of this 
enzyme also promotes DNA double strand breaks and cell death [29; 216]. 

3 wk 

Up-regulated 

None 

Down-regulated 

JARID2*       See 1 wk/11 days  

_________________________________________________________________________ 

7. Axon Outgrowth – functions in supporting neurite/axon outgrowth and axon guidance 

Summary: This category included fifteen genes previously implicated in promoting and inhibiting axon 
outgrowth and in axon guidance, all of which were differentially expressed at the peak phase of 
regenerative axon outgrowth. The ten up-regulated genes included lypla2, which activates GAP-43 [141], 
dpysl3, dbcbld2, and crmp1, which are associated with sempahorin/neuropilin mediated axon guidance 
[21; 196; 224], and st8sia4, the principal enzyme mediating polysialation of NCAM [236], among others. 
The down-regulated DESR genes included two oligodendrocytic myelin components (plp1, mbp), two 
protocadherins (pcdh1, pcdh10), and a GEF that regulates axon outgrowth through Rac1, dock3 [219; 
220].  
 

3 days  

Up-regulated 

None 

Down-regulated 

None 

 

1 wk/ 11 days 

Up-regulated 

Genes that Regulate Molecules Involved in Axon Guidance and Outgrowth 

LYPLA2 A Lysophospholipase that hydrolyzes fatty acids from S-acylated cysteine residues 
on GAP43 to activate it [141]. 

FSCN1 An actin bundling protein that interacts with MAPK and has functions in neurite 
outgrowth and cell migration [144; 342]. 

DPYSL3 A dihydropyraminidase that plays a role in semaphorin 3-mediated axon guidance 
[196]. 

GDAP1L1 Plays a role in ganglioside-induced neuronal differentiation and neurite outgrowth. 
Mutations in this gene are associated with peripheral axonopathy, Charcot-Marie 
Tooth disease [171; 188]. 

DCBLD2 A neuropilin-like protein (neuropilins are axon guidance receptors for semaphorins); it 
is also involved in promoting angiogenesis in zebrafish [224]. 

ODC1  (see also Cellular Metabolism) An ornithine decarboxylase that is required for 
regenerative outgrowth of frog sciatic axons [61]. 

B3GNT2 A transmembrane protein involved in regulating extracellular, poly-N-acetyl-
lactosamine chains on guidance adhesion molecules [101]. 

CRMP1 A nervous system-specific protein that is part of the semaphorin signal transduction 
pathways implicated in semaphorin-induced growth cone collapse active in axon 
guidance [21]. 

PVRL1 A cell adhesion molecule with roles in cell motility and axon guidance; for review see 
[187]. 
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ST8SIA4 The principal enzyme that adds polysialic acid (PSA) to cell adhesion molecules, 
such as N-CAM; increasing PSA-NCAM promotes functional recovery after SCI in 
mice [236]. 

 

Down-regulated 

Myelin components  

PLP1 A major component of oligodendrocytic myelin; PLP1 knockout in mice leads to CNS 
axon degeneration [179]. 

MBP A major component of myelin both in the CNS and the PNS. MBP influences neurite 
outgrowth, neuronal cell migration and survival, and myelination [180].  

 

Cell Adhesion Molecules   

PCDH1 A protocadherin cell adhesion molecule involved in neural development and neurite 
outgrowth [98]. 

PCDH10 A second protocadherin implicated in regulating neuronal connectivity; it also inhibits 
PI3K/akt signaling in liver cancer [284; 328]. 

Small G-protein Regulators  

DOCK3 (See also Cell Signaling) A CNS-specific GEF that regulates axon outgrowth through 
activating Rac1 [220]. 

 

3 wk 

Up-regulated 

None 

Down-regulated 

None 

____________________________________________________________________________ 

8. DNA Replication/Repair – functions in mitosis, DNA repair and mitotic checkpoints 

Summary:  Of the seventeen genes, five have been associated with regulating mitotic checkpoints: one 
down-regulated gene at 3 days (hp1bp3), and four up-regulated genes at 7/11 days (spc25, ccnb3, 
mad2l1, rprm). Such genes are increasingly understood to be important to allow cells time to rearrange 
their chromosomes in preparation for major changes in gene expression [217].  The remaining twelve 
were up-regulated genes at 7/11 days that are more directly involved in DNA replication and repair 
(mcm6, pcna, top2a, erh, ncaph2, rfc5, sycp2, smc2, kiaa0101, mcm7, cmpk1 (see also Epigenetic), and 
rrm2).  

 

3 days  

Up-regulated 

None 

 

Down-regulated 

Mitotic Checkpoint Protein 

HP1BP3 A heterochromatin protein with structural similarity to H1, suggesting it binds DNA in 
the linker region between nucleosomes. It principally acts as a mitotic checkpoint 
protein, maintaining heterochromatin integrity during the G1/S phase; it also 
influences gene transcription and increases cell viability during hypoxia [58; 59]. 
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1 wk/ 11 days 

Up-regulated  

Mitotic Checkpoint Proteins 

SPC25 A component of the kinetochore complex, with mitotic checkpoint activity; it is 
upregulated when cancer stem cell proliferation is activated [17; 242]. 

CCNB3 A cyclin-related positive regulator of cell division kinases and mitotic checkpoints; it is 
necessary for the progression of cells out of M phase. It plays a critical role in the 
expression of the survival signal survivin [30]. 

MAD2L1 A mitotic checkpoint protein that prevents cells from passing from anaphase to 
telophase until all chromosomes are properly aligned; it is also potentially involved in 
DNA repair and ensuring genome stability by slowing down or halting mitosis until 
repair takes place [153]. 

RPRM A TP53-dependent mitotic checkpoint protein that arrests the cell cycle at G2 [109; 
291]. 

 

Genes Involved Directly in DNA Replication and Repair 

MCM6 An essential gene for the initiation of genome replication; is implicated in stimulating 
Müller glia cell division during limited retinal regeneration in mice [177; 223]. 

PCNA The sliding clamp protein of DNA polymerase; it is predominantly used as a marker 
for proliferating cells and is found in microglia and astrocytes after spinal cord injury 
in rat [316]. 

TOP2A A DNA topoisomerase essential for both DNA replication and DNA transcription; in 
zebrafish, it is required for both embryonic development and liver regeneration [56]. 

ERH It is essential for chromosome alignment at metaphase and plays a role both in 
regulating the cell cycle and in the DNA damage response [70]. 

NCAPH2 It plays an essential role in mitotic chromosome assembly and is involved in 
chromatin architectural rearrangements associated with cellular senescence [105; 
332]. 

RFC5 It is part of the PCNA sliding clamp loader and is required for DNA replication [182; 
212]. 

SYCP2 An essential component for synapsis of sister homologous chromosomes in meiosis, 
with few known functions outside of meiosis; expression in cells not in meiosis may 
reflect changes in genome architecture [192]. 

SMC2 An essential component of the condensin complex, which condenses chromatin for 
mitosis; it also plays an important role in DNA repair [321]. 

KIAA0101 A PCNA-clamp associated factor, also involved in DNA repair (see PCNA for 
references).  

MCM7 A DNA helicase that belongs to the same complex as MCM6; it is essential for the 
initiation of genome replication [158; 223]. 

CMPK1 (See also Epigenetic Gene Regulation) A cytidine/uridine monophosphate kinase that 
is required for nucleic acid biosynthesis; it converts CMP, UMP and dCMP into the di-
phosphate forms. It also plays a role in determining the efficiency of DNA repair 
involving cytidine/uridine, and therefore may play a role in base excision repair 
pathways involved in altering DNA methylation [296]. 

RRM2 An enzyme that converts ribonucleotides to deoxyribonucleotides. It becomes more 
active during mitosis and is a rate limiting enzyme for both DNA replication and DNA 
repair; it is upregulated in liver regeneration [71; 178]. 
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Down-regulated 

None 

 

3 wk 

Up-regulated 

None 

Down-regulated 

None 

____________________________________________________________________________ 

9. Lipid Metabolism – functions in fatty acid and lipid biosynthesis and degradation 

Summary: These fifteen DESR genes have been implicated in processes related to lipid metabolism; all 
were differentially expressed at 7/11 days. Up-regulated genes had functions in cholesterol biosynthesis 
(cyb5r2, nsdhl, mvk, c140rf1, dhcr7, hmgcr), as well as the synthesis and modification of other lipids 
(fads1, fads2, ecl2, gla, lppr3). One additional up-regulated gene in this category was apoE, which is the 
major lipoprotein carrier protein in the brain and has been linked to Alzheimer's disease, as well as 
mammalian peripheral axon regeneration [44; 298]. All three down-regulated genes had functions in the 
metabolism of lipids in glia, especially sphingolipid biosynthesis (ugt8, ppt2, abca2).  
 

3 days  

Up-regulated 

None 

Down-regulated 

None 

 

1 wk/ 11 days 

Up-regulated 

Cholesterol Biosynthesis 

CYB5R2 A cytochrome B5 reductase implicated in cholesterol biosynthesis, fatty acid 
desaturation and elongation; it is associated with respiratory bursts in neutrophils 
[19]. 

NSDHL An NAD(P)-dependent steroid dehydrogenase involved in cholesterol biosynthesis. In 
the developing CNS, NSDHL knockout in radial glia leads to loss of cortical, 
hippocampal, and cerebellar granule cells as a result of defective Sonic Hedgehog 
Signaling [48]. 

MVK A key early enzyme in sterol and isoprenoid synthesis, thought to be a principal 
regulator of cholesterol biosynthesis. Deficiencies lead to severe auto-inflammation in 
the nervous system and other tissues [106; 295]. 

C14orf1 (a.k.a. Ergosterol Biosynthetic Protein 28 Homolog) An important enzyme in the 
biosynthesis of cholesterol and other sterols [72; 300]. 

DHCR7 A required enzyme for cholesterol biosynthesis. Disrupting cholesterol biosynthesis 
leads to neurodegeneration [81]. 

HMGCR A rate limiting enzyme in cholesterol synthesis and a therapeutic target of statins; 
inhibiting this enzyme inhibits neurodegeneration [263]. 

 

Metabolism of other Lipids 

FADS1 (See also Inflammatory Response and Wound Healing) A fatty acid desaturase that 
is directly implicated in down-regulating inflammation [92]. 
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FADS2 A second fatty acid desaturase; increased expression is a marker for the anti-
inflammatory state [92]. 

ECI2 An enzyme that catalyzes the conversion of cis- or trans- double bonds of fatty acids 
at gamma-carbon positions to trans double bonds at beta-carbon positions. It is 
important for the metabolism of certain fatty acids for energy in mitochondria [117]. 

GLA An important metabolic enzyme that hydrolyzes the terminal alpha-galactosyl 
moieties from glycolipids, and also glycoproteins. Mutations in GLA cause Fabry 
disease, a lysosomal storage disease involving dysfunctional metabolism of 
sphingolipids, which are abundant in the plasma membranes of neurons and glia  
[43]. 

LPPR3 A phospholipid phosphatase active during cell migration, neurite retraction, and 
mitogenesis [337]. 

 

Lipid Carrier Lipoprotein 

APOE The principal lipoprotein carrier in the brain. Mutations in APOE are strongly linked to 
Alzheimer's disease in humans. Isoforms elicit varying effects on peripheral nerve 
regeneration in mammals [44; 298]. 

Down-regulated 

Glial Lipid Metabolism  

UGT8 (See also Inflammatory Response and Wound Healing) An important enzyme for 
sphingolipid metabolism, which are important for making myelin; elevated UGT8 
promotes neuroinflammation in humans [339]. 

PPT2 (See also Inflammatory Response and Wound Healing) A critical enzyme in the 
synthesis of sphingosine, which is especially important for the synthesis of 
sphingolipids in myelin. Elevated sphingolipid levels promote neuro-inflammation, 
and PPT2 knockdown in mice leads to neurodegeneration [89; 281; 339]. 

ABCA2 (See also Intracellular Transport) A gene involved in transporting lipids across 
membranes; it is highly expressed in brain and may play a role in macrophage lipid 
metabolism [51]. 

 

3 wk 

Up-regulated 

None 

Down-regulated 

None 

____________________________________________________________________________ 

10. Transcription Factors – functions in regulating gene transcription by binding to DNA 

Summary: Transcription factors were found among DESR genes at all three time points. At the earliest 
time point, only a single transcription factor, ddit3, was up-regulated. Ddit3 is a C/EBP-related 
transcriptional repressor involved in the activation of pro-inflammatory signals [239]. At 7/11 days, there 
were eight up-regulated and three down-regulated transcription factors and co-factors. Among the up-
regulated DESR transcription factors at this time were two homeodomain-related genes [a LIM 
homeodomain protein (fhl3) and a triple-homeobox factor (tgif1) previously shown to be required for 
retinal regeneration in zebrafish [159]], two bHLH transcription factors [hes5, which is activated by Notch 
signaling after spinal cord injury in mammals [126], and mycl1, a proto-oncogene], a transcriptional co-
factor involved in nucleosome repositioning (hmgn2), a transcription co-factor involved in activating 
STAT3 (mllt11), a Scratch/Snail transcriptional repressor (scrt2), and the SRY-box family member 
(sox11), which is already known to play a critical role in both spinal cord and optic nerve injury in mammal 
[226; 314]. The three down-regulated DESR transcription factor/co-factor genes were znf395 (a zinc-
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finger transcription factor that activates pro-inflammatory cytokines [102]), bcl6 (a transcriptional repressor 
of STAT3 [214]), and prr12. Only two transcription factors were among DESR genes at 3 weeks (ebf3 and 
irf8). Both were up-regulated and have roles in regulating genes involved in apoptosis and in suppressing 
a hyper-immune response in macrophages, respectively [115; 164]. 
 

3 days  

Up-regulated 

DDIT3  (See also Inflammatory Response and Wound Healing) A C/EBP-related transcription 
factor that functions primarily as a transcriptional repressor by forming inactive 
partners with other C/EBP transcription factors; it is regulated by stress factors and is 
important for the activation of pro-inflammatory signals [239].  

Down-regulated 

None 

 

1 wk/ 11 days 

Up-regulated 

FHL3 A LIM domain, double-zinc-finger-motif transcriptional co-activator/co-repressor. It 
interacts with SMAD2, SMAD3, and SMAD4, MyoD, and the high-affinity IgE beta 
chain regulator MZF-1 [93]. 

HES5 (3) A HES family bHLH transcription repressor of bHLH genes; it is activated by 
notch/delta signaling, and stimulation of Hes5 has been shown to promote spinal 
cord injury repair [126]. 

HMGN2 (See also Epigenetic Gene Regulation) A transcription co-factor implicated in 
maintaining DNA in the open conformation for transcription by binding to and 
modulating histone H3 and removing H1 from promoters [190]. 

MYCL1 The L-Myc proto-oncogene; a bHLH transcription factor implicated in cellular trans-
differentiation, e.g., fibroblasts into myoblasts [304]. 

MLLT11 A transcription co-factor that increases activation of STAT3, a transcription factor that 
is important for axon regeneration; exogenous expression in cell lines (HEK) also 
induces expression of TuJ1, a neuron-specific tubulin [166; 238]. 

SCRT2 A Scratch/Snail family transcriptional repressor that regulates neuronal differentiation 
and subsequent neuronal cellular migration in opposition to the bHLH transcription 
factors, Ngn/NeuroD1 [243]. 

SOX11 A member of the family of SRY-box family of transcription factors. SOX11 plays an 
important role in neural development, and overexpression in mouse SCI promotes 
corticospinal tract regeneration but interferes with functional recovery. In ONC, it 
promotes axon regeneration of a subset of RGCs, but kills others in mice [226; 314]. 

TGIF1 A transcription factor of the triple homeobox family; it inhibits RAREs and SMAD2. Its 
expression is required for regeneration of retina in zebrafish from Müller cells [159]. 

 

Down-regulated 

ZNF395 (a.k.a Huntington Disease Regulatory Region Binding Protein 2; see also 
Inflammatory Response and Wound Healing): A zinc-finger transcription factor that 
activates pro-inflammatory cytokines [102]. 

BCL6 A transcriptional repressor of STAT3 [213]. 

PRR12 A DNA binding protein with a role in neurodevelopment [154]. 
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3 wk 

Up-regulated 

EBF3 (See also Cytoskeletal) A transcription factor that regulates cell survival by regulating 
genes involved in cell cycle arrest and apoptosis. It inhibits glial cell proliferation and 
glioma-genesis and also binds directly to microtubules to induce bundling [25; 164]. 

IRF8 (See also Inflammatory Response and Wound Healing) A transcription factor that 
responds to interferons to suppress the hyper-inflammatory response in 
macrophages [115]. 

Down-regulated 

None 

____________________________________________________________________________ 

11. Cellular Metabolism – functions in regulating general aspects of cellular metabolism 

Summary: This group of DESR genes has known roles in regulating cellular metabolism. Eight were up-
regulated, and one (fndc7) was down-regulated, all at 7/11 days. Up-regulated genes included an 
ornithine decarboxylase (odc1) required for peripheral axon regeneration [61], and c2orf47, which is a 
mitochondrial protein implicated in protecting cells from mitochondrial dysregulation in spinocerebellar 
ataxia [142]. 
 

3 days  

Up-regulated 

None 

Down-regulated 

None 

 

1 wk/ 11 days 

Up-regulated 

SLC38A4 (See also Intracellular Transport) It functions as a neutral transmembrane amino acid 
transporter with a role in regulating protein synthesis in liver development [140]. 

ATP5E An ATP synthase that is used as a mitochondrial marker for increased cellular 
metabolism; it co-localizes with galectin-3 and has been implicated in inflammation 
[97; 134; 229]. 

ATP6V1F (see also Intracellular Transport) A vesicular proton pump that acidifies vesicles for 
protein processing and sorting. It plays a functional role in eye development [227]. 

ODC1 (See also Axon Outgrowth) Ornithine decarboxylase, which catalyzes conversion of 
ornithine to putrescine; it is required for regeneration of frog sciatic axons [61]. 

C2orf47 An uncharacterized mitochondrial protein; it protects cells from mitochondrial 
dysregulation in spinocerebellar ataxia [142]. 

C21orf33 (a.k.a. mitochondrial ES1 homolog, KPNI, and HES1) A member of the multi-
functional DJ-1/Pfpl gene family found in mitochondria, where it regulates energy 
metabolism [193]. 

GPD1L A glycerol phosphate dehydrogenase, which is a family of enzymes that catalyze 
conversion of dihydroxyacetone phosphate to glycerol 3-phosphate, forming an 
important link between carbohydrate and lipid metabolism. It is a genetic cause of 
Brugada syndrome [184]. 

GNPDA2 An enzyme that converts D-glucosamine-6-phosphate into D-fructose-6-phosphate 
and ammonium. It is a metabolic enzyme associated with regulating body weight and 
obesity [319]. 
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Down-regulated 

FNDC7 A fibronectin-domain-containing protein whose precise function is unknown, but a 
related gene (FNDC5) promotes energy expenditure by stimulating production of 
brown adipose tissue to attenuate inflammation [322]. It may therefore have some 
function in regulating cellular metabolism. 

3 wk 

Up-regulated 

None 

Down-regulated 

None 

____________________________________________________________________________ 

*The same gene is listed at another time point in this functional category. 
 
1
These genesʼ expression increased significantly (FDR < 0.05) in both regenerative tissues after injury 

(tadpole SCI hindbrain & frog ONC eye), but not in the non-regenerative frog SCI hindbrain.  
 
2
These genesʼ expression decreased significantly (FDR < 0.05) in both regenerative tissues after injury 

(tadpole SCI hindbrain & frog ONC eye), but not in the non-regenerative frog SCI hindbrain.  
 
3
Genes in Black: In using an FDR (Q) < 0.05 as the criterion for statistical significance, these genes 

changed significantly in expression (either up or down as indicated) in successful CNS regeneration, 
but not in unsuccessful regeneration.  

 

4
Genes in Green: These genes were significantly up-regulated in successful CNS regeneration and down-

regulated with unsuccessful CNS regeneration. They are therefore likely to be particularly pro-
regenerative. 

 
5
Genes in Red: These genes were significantly down-regulated in successful CNS regeneration and up-

regulated with unsuccessful CNS regeneration. They are therefore likely to be particularly anti-
regenerative. 
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