	ΕRα		GPER1		ΕRβ	
	Females	Males	Females	Males	Females	Males
Total VMH	71.9 ± 9.7	93.9 ± 1.7	95.9 ± 1.1	98.8 ± 0.7	92.2 ± 1.9	96.8 ± 1.3
Dorsomedial VMH	72.6 ± 9.8	93.0 ± 2.4	97.5 ± 0.7	98.5 ± 0.9	92.0 ± 2.6	96.6 ± 1.5
Ventrolateral VMH	71.0 ± 9.7	95.3 ± 2.4	93.7 ± 1.7	99.3 ± 0.4	91.0 ± 3.1	98.0 ± 1.0

Supplementary Table 1

Percentage of SF1⁺ neurons containing mGluR5 and ER α , GPER1 or ER β in the VMH of wild type females and males (n = 3)

	% ERα+/SF1+		% SF1 ⁺ /ERα ⁺		
	Females	Males	Females	Males	
Total VMH	81.0 ± 1.1	85.8 ± 3.2	70.2 ± 9.6	92.1 ± 2.2	
Dorsomedial VMH	94.5 ± 0.5	97.1 ± 1.2	70.8 ± 9.5	90.5 ± 2.9	
Ventrolateral VMH	65.8 ± 2.2	73.2 ± 5.2	69.4 ± 9.9	94.4 ± 2.4	

Supplementary Table 2

Percentage of $ER\alpha^+$ neurons containing SF1 (left) and percentage of SF1⁺ neurons containing $ER\alpha$ in the VMH of wild type females and males (n = 3)

Gross VMH cytoarchitecture is preserved in the absence of mGluR5 in SF1 neurons

Representative brain sections obtained from mGluR5^{2L/2L} control and mGluR5^{2L/2L:SF1-cre} mutant females containing VMH (dashed lines) and stained with DAPI. Scale bar: 250 μ M

b

Supplementary Figure 2

Normal body weights in female and male mGluR5 $^{\rm 2L/2L:SF1-cre}\,mice$ challenged with a high fat diet

a. Body weights of mGluR5^{2L/2L} and mGluR5^{2L/2L:SF1-cre} females (n = 6) fed a high fat diet starting at 8 weeks of age.

b. Body weights of mGluR5^{2L/2L} (n = 7) and mGluR5^{2L/2L:SF1-cre} (n = 9) males fed a high fat diet starting at 8 weeks of age.

Abnormal responses of female but not male mGluR5^{2L/2L:SF1-cre} in the glucose tolerance test

A. Glucose tolerance test (GTT) in mGluR5^{2L/2L:SF1-cre} mutant (n = 11) and mGluR5^{2L/2L} control (n = 10) females fed a chow diet at 8 weeks of age. **, Two-way *ANOVA*: Genotype, p = 0.002; Time, p < 0.0001; Interaction of time and genotype, p = 0.002. Bonferroni's multiple comparisons test: *, p < 0.05.

B. Glucose tolerance test in mGluR5^{2L/2L:SF1-cre} (n = 13) and mGluR5^{2L/2L} (n = 11) males fed a chow diet at 8 weeks of age. Two-way ANOVA: Genotype, NS. Time, p < 0.0001

C. Glucose tolerance test in mGluR5^{2L/2L:SF1-cre} (n = 8) and mGluR5^{2L/2L} (n = 7) females, 20 weeks of age fed a high fat diet starting at 8 weeks of age. *, Two-way *ANOVA*: Genotype, p = 0.05; Time, p < 0.0001; Interaction of genotype and time, p = 0.02.

D. Glucose tolerance test in mGluR5^{2L/2L:SF1-cre} (n = 8) and mGluR5^{2L/2L} (n = 8) males 20 weeks of age fed a high fat diet starting at 8 weeks of age. Two-way *ANOVA*: Genotype, NS. Time, p < 0.0001

Adipocyte size and levels of triglycerides in serum and liver of $mGluR5^{2L/2L:SF1-cre}$ and $mGluR5^{2L/2L}$ mice.

a. Adipocyte cell area in mGluR5^{2L/2L:SF1-cre} and mGluR5^{2L/2L} (n = 5) males. Two tailed unpaired t-test: NS

b. Triglyceride (TG) levels in serum of mGluR5^{2L/2L} and mGluR5^{2L/2L:SF1-cre} (females, n = 6 and males, n = 5). *, Two-way *ANOVA*: Genotype, NS. Sex, p = 0.04.

c. Triglyceride (TG) levels in liver of mGluR5^{2L/2L} and mGluR5^{2L/2L:SF1-cre} (females, n = 6 and males, n = 4-5). *, Two-way *ANOVA*: Genotype, NS. Sex, p = 0.003.

 $\text{ER}\alpha$ and SF1 mRNA expression in the adult VMH

a. Representative brain sections from adult female mice containing dorsomedial (dmVMH), central and ventrolateral (vIVMH) showing detection of SF1 (Nr5a1) and ER α (Esr1) transcripts using RNAscope. 3V, third ventricle. Scale bar = 50uM.

b. Examination of ER α (Experiment 79591677) and SF1 (Experiment 734) mRNA expression from the Allen Brain Institute. Black arrows: ER α mRNA in dmVMH; Black arrowheads: SF1 mRNA in vIVMH

c. RNAscope detection of mGluR5 (Grm5) and SF1 (Nr5a1) transcripts dmVMH, hippocampus and cortex. Scale bar = 50 um

Body weights of mGluR5^{2L/2L} (black) and mGluR5^{2L/2L:SF1-cre} (red) females treated with estrogen receptor selective agonists PPT, DPN and G1.

Diminished VMH neuronal activity following depletion of mGluR5 in SF1 neurons

c-fos⁺ cells in VMH (arrows) of fasted (16 hours) in a second set of mGluR5^{2L/2L:SF1-cre} and mGluR5^{2L/2L:SF1-cre} females 30 minutes following injection of a bolus of glucose.

Normal expression of NMDA, AMPA1 and GABA_A receptors in the VMH of mGluR5^{2L/2L:SF1-cre} mutant females.

a. Glun1 and AMPA1 protein expression in the VMH of mGluR5^{2L/2L} control (C) (n = 5) and mGluR5^{2L/2L:SF1-cre} mutant (M) (n = 6) females. Two-tailed unpaired t-test: NS. Data presented as means \pm SEM

b. Western blot analysis and quantification of total levels of GABA_A γ 2 protein in the VMH of mGluR5^{2L/2L} control (C) (n = 5) and mGluR5^{2L/2L:SF1-cre} mutant (M) (n = 6) females. Two-tailed unpaired t-test: NS. Data presented as means ± SEM