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Figure S1. Screening candidate residues in NaAtm1 for disulfide crosslinking. (A) Partial 
sequence alignments of NBDs of various ABC transporters. (B) SDS-PAGE of the products of 

crosslinking with Cu (II)(1,10-phenanthroline)3 under different conditions for the three cysteine 

variants in this report. RT = room temperature, SS = crosslinked species, SH = uncrosslinked 

(disulfide reduced) species. 
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Figure S2. NaA527C inward-facing occluded structures. (A) Location of selenium sites in the 

four transporters present in the selenomethionine-substituted NaA527C asymmetric unit. The 

selenium sites identified in Autosol of Phenix (1) are shown in red spheres, the sulfur atoms of 

methionine residues from the refined model are shown in yellow spheres, and nucleotides are 

shown in sticks with Mg2+ shown in green spheres. (B) Disulfide bridges in the four transporters in 

the asymmetric unit. The Ca positions corresponding to C527 in the two chains are depicted as 

grey and yellow spheres for transporters #1-3, and grey and red spheres for transporter #4, 

separately. (C) Composite omit map showing the electron densities for the bound MgADP in 

different chains of NaA527C in the asymmetric unit. 
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Figure S3. Structural alignments of NaA527C in the inward-facing occluded conformations. 
(A) Alignment of NaA527C inward-facing occluded conformation #1 (yellow) to NaA527C inward-

facing occluded conformation #2 (red) with an overall rmsd of 1.7 Å. The relative rotation of the a-

helical subdomains in the NBDs between the two states is shown in (B). (C) Alignment of 

NaA527C inward-facing occluded conformation #1 (yellow) to NaAtm1 inward-facing 

conformation (PDB ID: 4MRN) (grey) with an overall rmsd of 2.1 Å. (D) Alignment of NaA527C 

inward-facing occluded conformation #2 (red) to NaAtm1 inward-facing conformation (PDB ID: 

4MRN) (grey) with an overall rmsd of 4.4 Å. Nucleotides are shown in sticks with Mg2+ shown as 

green spheres. 
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Figure S4. Binding of GS-Hg to NaA527C inward-facing occluded structures. Anomalous 

electron density maps calculated from data collected at the Hg edge, contoured at the 5 s levels 

(dark blue) for NaA527C crystallized in the presence of GS-Hg. For comparison, the structure of 

NaAtm1 with GS-Hg bound (PDB ID: 4MRV) is indicated (left) with mercury shown in purple 

sphere. Nucleotides are shown in sticks with Mg2+ shown as spheres. 
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Figure S5. NaAtm1 in the occluded conformations. (A) Disulfide bridge formed by S526C in 

the NaS526C structure with the Ca positions shown as grey and blue spheres. (B) Composite 

omit map showing the electron densities for the bound ATP in the dimeric NaS526C structure. (C) 

 T525C residues in the NaT525C occluded structure with the Ca positions shown as grey and 

purple spheres. (D) Composite omit map showing the electron densities for the bound ATP in the 

dimeric NaT525C structure. (E) Composite omit map showing the electron density for the bound 

ATP in the dimeric NaE523Q structure. (F) NaT525C overall structural alignment to NaS526C 

with an overall rmsd of 0.5 Å. (G) NaE523Q overall structural alignment to NaS526C with an 

overall rmsd of 0.5 Å. (H) NaE523Q overall structural alignment to NaT525C with an overall rmsd 

of 0.7 Å. In (F-H), NaS526C is colored in blue, NaT525C in purple, and NaE523Q in pink. 

Nucleotides are shown in sticks. 
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Figure S6. Structural alignments of wild type NaAtm1 with MgAMPPNP in the occluded 
conformation. (A) Composite omit map showing the electron densities for the bound 

MgAMPPNP in the three copies of NaAtm1 in the asymmetric unit. NaAtm1 occluded structure 

alignments to (B) NaS526C with an overall rmsd of 1.1 Å, (C) NaT525C with an overall rmsd of 

0.9 Å, and (D) NaE523Q with an overall rmsd of 1.1 Å. In (B-D), NaAtm1 occluded structure 

colored in orange, NaS526C in blue, NaT525C in purple and NaE523Q in pink. Nucleotides are 

shown in sticks with Mg2+ shown as green spheres.  
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Figure S7. Single particle cryo-EM structure of NaAtm1 in the closed conformation 
stabilized with MgADPVO4. (A) Examples of 2D classes. (B) Fourier shell correlation (FSC) 

curve showing the resolution estimate for the final reconstruction, generated from the final 

refinement in cryoSPARC 2 (2). (C) Density fitting for different TM helices and nucleotides 

(MgADPVO4). Overall structural alignments to the occluded crystal structures of (D) NaS526C, 

(E) NaT525C, (F) NaE523Q and (G) NaAtm1 occluded with rmsds of 2.0 Å, 2,1 Å, 2.0 Å and 1.7 
Å, respectively. In (D-G), the NaAtm1 closed structure is shown in green, NaS526C in blue, 

NaT525C in purple, NaE523Q in pink and NaAtm1 occluded structure is shown in orange. 

Nucleotides are shown as sticks and Mg2+ as green spheres.  
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Figure S8. Single particle cryo-EM structure of NaAtm1 in the wide-open inward-facing 
conformation. (A) Examples of 2D classes. (B) FSC curve showing the resolution estimate for 

the final reconstruction, generated from the final refinement in cryoSPARC 2 (2). (C) Density 

fitting for different TM helices. Overall structural alignments of the wide-open inward-facing 
conformation (cyan) to (D) NaAtm1 inward-facing conformation (PDB ID: 4MRN) (grey), (E) 

NaA527C inward-facing occluded state #1 (yellow), and (F) NaA527C inward-facing occluded 

state #2 (red) crystal structures with rmsds of 5.8 Å, 8.9 Å, and 9.3 Å, separately.  
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Figure S9. TM6 comparisons for different ABC transporter systems. (A) TM6 (residues 300 

to 340) arrangements of representative NaAtm1 structures. (B) TM6 (residues 288 to 335) 

arrangements of representative PglK structures. (C) TM6 (residues 290 to 333 of chain A and 

residues 275 to 319 of chain B) arrangements of representative TmrAB structures. (D) TM6 

(residues 324 to 370 and residues 968 to 1013) arrangements of representative ABCB1 

structures. The corresponding PDB IDs and the conformational states are labeled below the 

structures.  
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Table S1. Coupling efficiencies between ATP hydrolysis and substrate translocation for 
ABC transporters. Coupling efficiencies for different ABC transporter systems (3-17). Coupling 

efficiencies are either presented in the corresponding reference or calculated based on the 

reported ATPase and transport activities of the transporter. Coupling efficiency = ATPase 
activity/transport activity. 
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Table S2. Raw ATPase activities of NaAtm1 and variants in both proteoliposomes and 
detergent. The ATPase activities were measured in triplicate at 10 mM MgATP and 2.5 mM 

GSSG at 37 °C. 
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Table S3. Raw transport activities of NaAtm1 and variants. The transport activities for various 

controls and the different NaAtm1 variants were measured in triplicate at 10 mM MgATP and 2.5 

mM GSSG at 37 °C.  
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Table S4. Data collection and refinement statistics of NaA527C. 
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Table S5. Data collection and refinement statistics of NaS526C. 
 

 
  



 
 

16 
 

Table S6. Data collection and refinement statistics of NaT525C. 
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Table S7. Data collection and refinement statistics of NaE523Q. 
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Table S8. Data collection and refinement statistics of NaAtm1. 
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Table S9. Cryo-EM data collection, refinement and validation statistics 
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