THE LANCET Infectious Diseases

Supplementary appendix 6

This appendix formed part of the original submission and has been peer reviewed. We post it as supplied by the authors.

Supplement to: Jiang L, Tang K, Levin M, et al. COVID-19 and multisystem inflammatory syndrome in children and adolescents. *Lancet Infect Dis* 2020; published online August 17. https://doi.org/10.1016/S1473-3099(20)30651-4.

Supplementary materials

Table S1. Main characteristics of included studies

Author	Country	Study design		Clinical outcome			
			Total study population (N)	Mean age or age range	Sex (M:F)	Recovered	Deaths
Jones et al. ¹	US	Case report	1	6 months	F	1	-
Balasubramanian et al. ²	India	Case report	1	8 years	Μ	1	-
Rauf et al. ³	India	Case report	1	5 years	Μ	1	-
Greene et al. ⁴	US	Case report	1	11 years	F	1	-
Rivera-Figueroa, et al. ⁵	US	Case report	1	5 years	Μ	1	-
Riphagen et al. ⁶	UK	Case report	8	Mean=8 (4-14) years	5:3	7	1
Verdoni et. al. ⁷	Italy	Case series	10	Mean=7.5 (5-16) years	7:3	10	-
Toubiana et al. ⁸	France	Prospective observational study	21	Median=7.9 (3.7-16.6) years	9:12	21	-
Chiotos et al.9	US	Case series	6	Mean=7 (5-14) years	1:5	6	-
Grimaud et al. ¹⁰	France	Case series	20	Median=10 (2.9-15) years	10:10	20	-
Whittaker et al. ¹¹	UK	Case series	58	Median=9 (0.25 to 17) years	25:33	57	1
Cheung et al. ¹²	US	Case series	17	Mean=8 (1.8-16) years	8:9	17	-
Belhadjer et al. ¹³	France, Switzerland	Case series	35	Median=10 years	18:17	28	-
Dufort et al. ¹⁴	US	Case series	99	NA	53:46	97	2
Feldstein et al. ¹⁵	US	Case series	186	Median=8.3 years	115:71	130	4
Hameed et al. ¹⁶	UK	Case series	35	Median=11 years	27:8	-	-
Kaushik et al. ¹⁷	US	Case series	33	Median=10 (1 month to 21) years	20:13	32	1
Capone et al. ¹⁸	US	Case series	33	Median=8.6 (2.2-17.0) years	20:13	33	-
Miller et al. ¹⁹	US	Case series	44	Median=7.3 (7 months to 20) years	20:24	44	-
Riollano-Cruz et al.20	US	Case series	15	Mean=12 (3-20) years	11:4	14	1

Blondiaux et al. ²¹	France	Case series	4	Mean=9 (6-12) years	1:3	4	-
Ng et al. ²²	UK	Case series	3	Mean=15.3 years	2:1	3	-
Licciardi et al.23	Italy	Case series	2	9.5 years	2:0	2	-
Ouldali et al. ²⁴	France	Case series	10	Mean=10.2 (1.5 to 15.8) years	4:6	10	-
Ramcharan et al. ²⁵	UK	Case series	15	Median=8.8 (6.4-11.2) years	11:4	15	-
Schupper et al. ²⁶	US	Case series	2	NA	2:0	-	1
Pouletty, et al. ²⁷	France	Case series	16	Median=10 years	8:8	16	-
Waltuch, et al. ²⁸	US	Case series	4	Mean=10 years	3:1	-	-

Characteristics	Events	Total No.	Pooled mean proportion % (95%CI)	Heterogeneity I ² (%)
Demographics				
Female sex	287	660	44.2 (38.8-49.7)	30.7
Ethnicity				
African black	173	542	35.6 (28.5-43.4)	56.5
Hispanic	101	375	27.5 (16.8-41.6)	69.5
Non-Hispanic white	103	539	19.5 (15.1-24.7)	29.4
Asian	39	349	10.5 (4.9-21.0)	72.0
Other	109	491	22.4 (15.7-31.0)	63.2
Exposure or contact history	118	660	37.2 (27.6-48.0)	55.5
Clinical features				
Fever (lasting ≥ 4 days)	609	650	94.6 (89.9-97.2)	48.9
Conjunctivitis	291	565	50.1 (42.0-58.1)	57.0
Erythema and cracking of lips, tongue, oral mucosa	164	375	45.9 (36.4-55.8)	49.9
Cervical lymphadenopathy	81	465	25.4 (12.8-44.0)	85.8
Erythema and edema of hands and feet	116	404	32.4 (19.5-48.7)	78.9
Rash	347	600	57.2 (51.2-63.0)	35.3
Abdominal pain	127	660	68.9 (56.8-78.8)	43.2
Diarrhea	48	99	50.3 (37.0-63.6)	24.2
Vomiting	62	91	69.2 (58.8-78.2)	0
Other GI symptoms (not specified)	410	465	86.9 (81.8-90.8)	25.7
Respiratory symptoms	256	473	49.1 (37.7-60.5)	75.8
Neurologic symptoms	133	370	38.7 (29.0-49.4)	65.8
Complete KD	105	312	41.1 (27.9-55.8)	70.6
Incomplete KD	34	76	45.6 (34.4-57.2)	0
Myocarditis	124	243	57.8 (43.3-71.1)	61.3
Shock	238	438	66.5 (52.0-78.5)	81.4
Comorbidity	110	546	19.2 (13.2-27.1)	57.6
Laboratory and radiological features				
RT-PCR	275	655	34.7 (26.3-44.1)	67.6
Serological test	445	634	80.3 (70.9-87.2)	78.3
Elevation in troponin	399	519	80.9 (70.2-88.4)	69.8
Elevation in BNP	373	438	84.9 (77.3-90.3)	49.5
Elevated D-dimer	330	356	93.3 (84.5-97.3)	69.5
Hyponatremia	64	77	80.8 (64.7-90.6)	24.7
Hypoalbuminemia	75	118	70.2 (40.2-89.1)	82.1
Abnormal renal function tests	84	257	43.2 (24.1-64.6)	87.6
Coronary artery dilation	27	193	15.5 (10.9-21.6)	0
Coronary aneurysm	33	442	8.9 (6.2-12.6)	7.3

Table S2. Pooled meta-analysis of demographic and clinical characteristics of MIS-C/PIMS-TS patients†

Cardiac dysfunction	218	327	63.3 (52.9-72.6)	47.6
Treatment				
ICU admission	481	606	79.1 (70.8-85.5)	61.7
Mechanical ventilation	187	648	29.2 (19.9-40.5)	79.3
ECMO	32	525	7.6 (4.1-13.8)	57.1
Outcomes				
Recovered	530	619	91.1 (82.3-95.7)	76.8
Death	11	625	3.5 (2.2-5.5)	0

[†] Three case series were not included in the meta-analysis due to overlapping in cases: (1) cases reported in two studies (Rivera-Figueroa EI, et al, Indian Pediatrics 2020; Waltuch T, et al, American Journal of Emergency Medicine 2020) were also included in the case series reported by Feldstein et al. (New England Journal of Medicine 2020); (2) cases reported by Riphagen S, et al. (The Lancet 2020) were also included in the study from Whittaker, et al. (JAMA 2020); Random-effect model is employed.

References

1. Jones VG, Mills M, Suarez D, et al. COVID-19 and Kawasaki disease: novel virus and novel case. *Hospital Pediatrics* 2020; **10**(6): 537-40.

2. Balasubramanian S, Nagendran T, Ramachandran B, Ramanan A. Hyper-inflammatory Syndrome in a Child With COVID-19 Treated Successfully With Intravenous Immunoglobulin and Tocilizumab. *Indian pediatrics* 2020. 2020;S097475591600180.

3. Rauf A, Vijayan A, John ST, Krishnan R, Latheef A. Multisystem inflammatory syndrome with features of atypical Kawasaki disease during COVID-19 pandemic. *The Indian Journal of Pediatrics* 2020. doi:10.1007/s12098-020-03357-1.

4. Greene AG, Saleh M, Roseman E, Sinert R. Toxic shock-like syndrome and COVID-19: A case report of multisystem inflammatory syndrome in children (MIS-C). *The American Journal of Emergency Medicine* 2020. S0735-6757(20)30492-7.

5. Rivera-Figueroa E, Santos R, Simpson S, Garg P. Incomplete Kawasaki Disease in a Child with Covid-19. *Indian pediatrics* 2020. S097475591600179.

6. Riphagen S, Gomez X, Gonzalez-Martinez C, Wilkinson N, Theocharis P. Hyperinflammatory shock in children during COVID-19 pandemic. *The Lancet* 2020; **395**(10237): 1607-8.

7. Verdoni L, Mazza A, Gervasoni A, et al. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study. *The Lancet* 2020. **395**(10239): 1771-78.

8. Toubiana J, Poirault C, Corsia A, et al. Kawasaki-like multisystem inflammatory syndrome in children during the covid-19 pandemic in Paris, France: prospective observational study. *bmj* 2020; **369**: m2094.

9. Chiotos K, Bassiri H, Behrens EM, et al. Multisystem Inflammatory Syndrome in Children during the COVID-19 pandemic: a case series. *Journal of the Pediatric Infectious Diseases Society* 2020. **9**(3): 393-98.

10. Grimaud M, Starck J, Levy M, et al. Acute myocarditis and multisystem inflammatory emerging disease following SARS-CoV-2 infection in critically ill children. *Annals of Intensive Care* 2020; **10**(1): 1-5.

11. Whittaker E, Bamford A, Kenny J, et al. Clinical Characteristics of 58 Children With a Pediatric Inflammatory Multisystem Syndrome Temporally Associated With SARS-CoV-2. *JAMA* 2020. doi:10.1001/jama.2020.10369

12. Cheung EW, Zachariah P, Gorelik M, et al. Multisystem Inflammatory Syndrome Related to COVID-19 in Previously Healthy Children and Adolescents in New York City. *JAMA* 2020. doi:10.1001/jama.2020.10374

13. Belhadjer Z, Méot M, Bajolle F, et al. Acute heart failure in multisystem inflammatory syndrome in children (MIS-C) in the context of global SARS-CoV-2 pandemic. *Circulation*; 0(0).

14. Dufort EM, Koumans EH, Chow EJ, et al. Multisystem Inflammatory Syndrome in Children in New York State. *New England Journal of Medicine* 2020. doi: 10.1056/NEJMoa2021756

15. Feldstein LR, Rose EB, Horwitz SM, et al. Multisystem Inflammatory Syndrome in U.S. Children and Adolescents. *New England Journal of Medicine* 2020. doi: 10.1056/NEJMoa2021680.

16. Hameed S, Elbaaly H, Reid CEL, et al. Spectrum of Imaging Findings on Chest Radiographs, US, CT, and MRI Images in Multisystem Inflammatory Syndrome in Children (MIS-C) Associated with COVID-19. *Radiology*; doi: 10.1148/radiol.2020202543.

17. Kaushik S, Aydin SI, Derespina KR, et al. Multisystem Inflammatory Syndrome in Children Associated with Severe Acute Respiratory Syndrome Coronavirus 2 Infection: A Multi-institutional Study from New York City. *The Journal of Pediatrics* 2020. doi: 10.1016/j.jpeds.2020.06.045

18. Capone CA, Subramony A, Sweberg T, et al. Characteristics, Cardiac involvement, and Outcomes of Multisystem Inflammatory Disease of Childhood (MIS-C) Associated with SARS-CoV-2 Infection. *The Journal of pediatrics* 2020: S0022-3476(20)30746-0.

19. Miller J, Cantor A, Zachariah P, Ahn D, Martinez M, Margolis K. Gastrointestinal symptoms as a major presentation component of a novel multisystem inflammatory syndrome in children (MIS-C) that is related to COVID-19: a single center experience of 44 cases. *Gastroenterology* 2020: S0016-5085(20)34753-3.

20. Riollano-Cruz M, Akkoyun E, Briceno-Brito E, et al. Multisystem Inflammatory Syndrome in Children (MIS-C) Related to COVID-19: A New York City Experience. *Journal of Medical Virology*; doi: 10.1002/imv.26224

Blondiaux E, Parisot P, Redheuil A, et al. Cardiac MRI of Children with Multisystem Inflammatory
Syndrome (MIS-C) Associated with COVID-19: Case Series. *Radiology* 2020. doi: 10.1148/radiol.2020202288
Ng KF, Kothari T, Bandi S, et al. COVID-19 multisystem inflammatory syndrome in three teenagers with

confirmed SARS-CoV-2 infection. *Journal of Medical Virology* 2020. doi: 10.1002/jmv.26206.

23. Licciardi F, Pruccoli G, Denina M, et al. SARS-CoV-2-Induced Kawasaki-Like Hyperinflammatory Syndrome: A Novel COVID Phenotype in Children. *Pediatrics* 2020: e20201711.

24. Ouldali N, Pouletty M, Mariani P, et al. Emergence of Kawasaki disease related to SARS-CoV-2 infection in an epicentre of the French COVID-19 epidemic: a time-series analysis. *The Lancet Child & Adolescent Health* 2020. doi: 10.1016/S2352-4642(20)30175-9.

25. Ramcharan T, Nolan O, Lai CY, et al. Paediatric Inflammatory Multisystem Syndrome: Temporally Associated with SARS-CoV-2 (PIMS-TS): Cardiac Features, Management and Short-Term Outcomes at a UK Tertiary Paediatric Hospital. *Pediatric Cardiology* 2020. doi:10.1007/s00246-020-02391-2.

26. Schupper AJ, Yaeger KA, Morgenstern PF. Neurological manifestations of pediatric multi-system inflammatory syndrome potentially associated with COVID-19. *Child's Nervous System* 2020; **36**(8): 1579-80.

27. Pouletty M, Borocco C, Ouldali N, et al. Paediatric multisystem inflammatory syndrome temporally associated with SARS-CoV-2 mimicking Kawasaki disease (Kawa-COVID-19): a multicentre cohort. *Annals of the Rheumatic Diseases* 2020; **79**(8): 999-1006.

28. Waltuch T, Gill P, Zinns LE, et al. Features of COVID-19 post-infectious cytokine release syndrome in children presenting to the emergency department. *The American Journal of Emergency Medicine* 2020. doi: 10.1016/j.ajem.2020.05.058.