## **Supplementary Information**

## A decrease in NAMPT activity impairs basal PARP-1 activity in cytidine deaminase deficient-cells, independently of NAD<sup>+</sup>

Sandra Cunha Silveira<sup>1,2,3,9</sup>, Géraldine Buhagiar-Labarchède<sup>1,2,3,9</sup>, Rosine Onclercq-Delic<sup>1,2,3,9</sup>, Simon Gemble<sup>1,2,3</sup>, Elias Bou Samra<sup>1,2,3</sup>, Hamza Mameri<sup>1,2,3</sup>, Patricia Duchambon<sup>4,5</sup>, Christelle Machon<sup>6,7</sup>, Jérôme Guitton<sup>6,8</sup>, Mounira Amor-Guéret<sup>1,2,3,10\*</sup>.

<sup>1</sup>Institut Curie, PSL Research University, UMR 3348, 91405, Orsay, France

<sup>2</sup>CNRS UMR 3348, Centre Universitaire, 91405, Orsay, France

<sup>3</sup>Université Paris Sud, Université Paris-Saclay, Centre Universitaire, UMR 3348, 91405, Orsay, France

<sup>4</sup>Protein Expression and Purification Core Facility, Institut Curie, PSL Research University,

75248 Paris, France

<sup>5</sup>Université Paris Sud, Université Paris-Saclay, Centre Universitaire UMR 9187 - INSERM

U1196, 91405 Orsay, France.

<sup>6</sup>Laboratoire de Biochimie et Toxicologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France

<sup>7</sup>Laboratoire de Chimie Analytique, ISPB, Faculté de Pharmacie, Université Lyon 1, Université de Lyon, Lyon, France

<sup>8</sup>Laboratoire de Toxicologie, ISPB, Faculté de Pharmacie, Université Lyon 1, Université de Lyon, Lyon, France

<sup>9</sup>These authors contributed equally

<sup>10</sup>Lead contact

\*Correspondence: <u>mounira.amor@curie.fr</u>



Figure S1. Nucleotide metabolism is altered in CDA-deficient cells and nuclear NAMPT is inhibited by FK866. (a) and (b) Graph bars showing the relative abundance of cytidine (left panel) and uridine (right panel) in HeLa-Ctrl<sub>(CDA)</sub> and HeLa-shCDA cells (a) and in BS-BLM and BS-Ctrl<sub>(BLM)</sub> cells (b). The data shown are the means  $\pm$  SD from 3 independent experiments (c) BLM, CDA, PARP-1 and NAMPT protein levels were assessed by immunoblotting in BS-

BLM and BS-Ctrl<sub>(BLM)</sub> cells left untreated or treated with 1  $\mu$ M FK866 for 10 h. Actin was used as protein loading control. (d) *In vitro* analysis of PARP-1 activity in the presence of 1 mM 3-AB or 1  $\mu$ M FK866. (e) Analysis of PAR foci number in BS-BLM and BS-Ctrl<sub>(BLM)</sub> cells left untreated or treated with 1  $\mu$ M FK866 for 10 h. The data shown are the means  $\pm$  SD from four independent experiments (> 500 cells per condition). (f) Mean number of UFBs per anaphase cell, for BS-BLM and BS-Ctrl<sub>(BLM)</sub> cells left untreated or treated with 1  $\mu$ M FK866 for 10 h. The data shown are the means  $\pm$  SD from three independent experiments (> 80 anaphase cells per condition). (g) BLM, PARP-1, NAMPT and CDA protein levels assessed by immunoblotting in BS-BLM and BS-Ctrl<sub>(BLM)</sub> cells transiently transfected with the indicated siRNAs. GAPDH was used a protein loading control. (h) Analysis of PAR foci number in BS-BLM and BS-Ctrl<sub>(BLM)</sub> cells transiently transfected with the indicated siRNAs. The data shown are the means  $\pm$  SD from four independent experiments (> 350 cells per condition). (i) Mean number of UFBs per anaphase cell, for BS-BLM and BS-Ctrl<sub>(BLM)</sub> cell lines transiently transfected with the indicated siRNAs. The data shown are the means  $\pm$  SD from four independent experiments (> 350 cells per condition). (i) Mean number of UFBs per anaphase cell, for BS-BLM and BS-Ctrl<sub>(BLM)</sub> cell lines transiently transfected with the indicated siRNAs. The data shown are the means  $\pm$  SD from four independent experiments. The significance of differences was assessed in Student's *t*-tests.



Figure S2. The decrease in basal PARP-1 activity resulting from NAMPT inhibition is independent of NAD<sup>+</sup> levels

(a) Schematic representation of the experimental design, showing FK866 and NMN treatments in both CDA-proficient and CDA-deficient cells (left panel). Concentrations and timing of NMN and FK866 treatments in CDA-proficient and in CDA-deficient cells (right panel). NMN was initially added to cell culture medium for a duration of 24 h and FK866 was added to the medium 14 h later for a duration of 10 h before the analysis of NAD<sup>+</sup> levels, PAR foci and UFB frequency. (b) and (c) Analysis of intracellular NAD<sup>+</sup> levels in HeLa-Ctrl<sub>(CDA)</sub> and HeLashCDA cells by the LC-HRMS method (b), or in a luciferase assay (c). The data shown are the means  $\pm$  SD from 4 and 8 independent experiments, respectively. (d) and (e) Analysis of intracellular NAD<sup>+</sup> levels in BS-BLM and BS-Ctrl<sub>(BLM)</sub> cell lines by the LC-HRMS method (d), or in a luciferase assay (e). The data shown are the means  $\pm$  SD from 3 independent experiments. The significance of differences was assessed in Student's *t*-tests.



Figure S3. The low levels of PARP-1 activity in CDA-deficient cells are rescued by the overexpression of wild-type NAMPT. (a) and (b) Measurement of the activity of a wild-type recombinant NAMPT protein (NAMPT WT) and a mutated recombinant NAMPT protein (NAMPT H247A) (a) by LC-HRMS or (b) in an assay measuring the conversion of <sup>14</sup>C<sup>-</sup>NAM to <sup>14</sup>C-NMN. The data shown are means  $\pm$  SD from three independent experiments. (c) PARP-1, NAMPT-HIS, NAMP, and CDA protein levels assessed by immunoblotting in BS-BLM and BS-Ctrl<sub>(BLM)</sub> cells transiently transfected with EV, NAMPT WT or NAMPT H247A. GAPDH was used as protein loading control. (d) Analysis of PAR foci number in BS-BLM and BS-Ctrl<sub>(BLM)</sub> cells transiently transfected with EV, NAMPT WT or NAMPT H247A. The data shown are means  $\pm$  SD from three independent experiments (> 570 cells per condition). (e) Mean number of UFBs per anaphase cell, for BS-BLM and BS-Ctrl<sub>(BLM)</sub> cell lines transiently

transfected with EV, NAMPT WT or NAMPT H247A. Errors bars represent means  $\pm$  SD from three independent experiments (> 110 anaphase cells per condition). The significance of differences was assessed in Student's *t*-tests.

## Supplementary Materials and Methods

Supplementary Table 1

| siRNA                              | Sequence 5' to 3'   | Species | Description                              | Reference |
|------------------------------------|---------------------|---------|------------------------------------------|-----------|
| Non-<br>targeting<br>siRNA<br>pool | UGGUUUACAUGUCGACUAA | Human   | ONTARGETplus<br>SMART-pool,<br>Dharmacon |           |
|                                    | UGGUUUACAUGUUGUGUGA |         |                                          | 7         |
|                                    | UGGUUUACAUGUUUUCUGA |         |                                          |           |
|                                    | UGGUUUACAUGUUUUCCUA |         |                                          |           |
| siNAMPT<br>pool                    | GGUAAGAGUUUCCUGUUA  |         |                                          | This work |
|                                    | CAAAUUGGAUUGAGACUAU |         |                                          |           |
|                                    | UAACUUAGAUGGUCUGGAA |         |                                          |           |
|                                    | CAAGCAAAGUUUAUUCCUA |         |                                          |           |

Supplementary table 2

| PCR              |   | Sequence 5' to 3'                                         | Reference |
|------------------|---|-----------------------------------------------------------|-----------|
| primers          |   |                                                           |           |
| NAMPT<br>- H247A | F | GTTCCAGCAGCAGAAGCCAGTACCATAACAGCT                         | This work |
| NAMPT<br>- H247A | R | AGCTGTTATGGTACTGGCTTCTGCTGCTGGAAC                         | This work |
| NheI             | F | TTTGTTTAACTTTAAGAAGGAGATATACAT<br>ATGAATCCTGCGGCAGAAGCCGA | This work |
| xhoI             | R | ATCTCAATGGTGATGGTGATGGTGCTCGAG<br>ATGATGTGCTGCTTCCAGTC    | This work |



Figure 1f







10 sec exposure





185 sec exposure

1

![](_page_9_Figure_1.jpeg)

47 sec exposure

Г

73 sec exposure

1

![](_page_10_Figure_1.jpeg)

![](_page_11_Figure_0.jpeg)

40

35

-

7 sec exposure

GAPDH

120 sec exposure