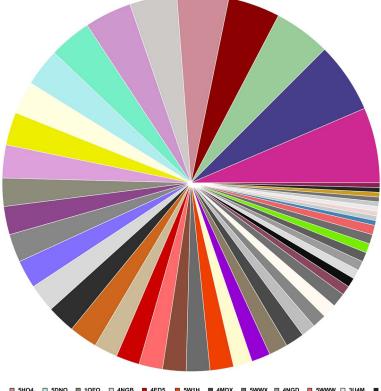
Supplementary Materials

PremPRI: Predicting the Effects of Missense Mutations on Protein-RNA Interactions


Ning Zhang¹, Haoyu Lu¹, Yuting Chen¹, Zefeng Zhu¹, Qing Yang¹, Shuqing Wang¹ and Minghui Li^{1,*}

¹Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical

Sciences, Soochow University, Suzhou 215123, China

*corresponding author, minghui.li@suda.edu.cn

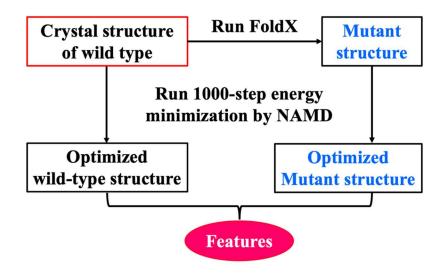
The number of mutations for each protein-RNA complex

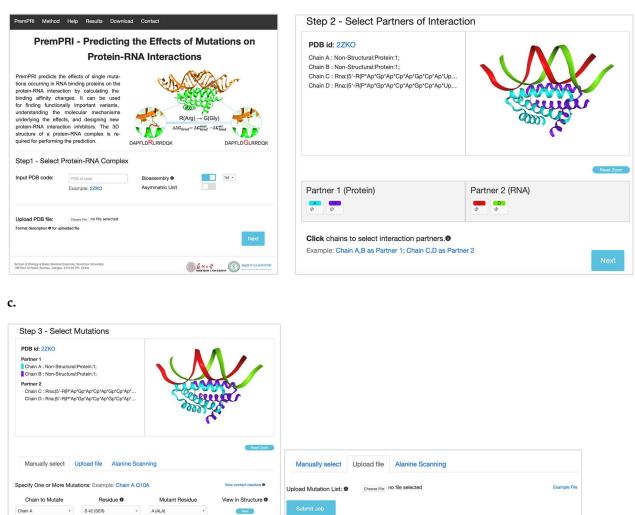
■ 4CIO ■ 5HO4 ■ 5DNO ■	1QFQ 🗆 4NGB 📕 4ED5	■ 5W1H ■ 4MDX ■ 5WWX	🔲 4NGD 🔲 5WWW	🗆 3U4M 🔳 4NHA
■ 4YVI □ 2ERR □ 1FEU ■	2IX1 🔳 400G 🔲 4PMW	1WNE 2BX2 3EQT	🔲 4NL3 🔲 1U0B	🗆 3UZS 🔳 5JBJ
🗆 30L6 🔲 3AM1 🗖 1ZDI 🔲	2M8D 🔲 5H1K 🔲 5GXH	2PJP 3L25 3K5Y	□ 5EIM □ 2XS2	3VYY
1JBS 2ZZN 2KXN	3K5Q 🔲 1URN 🗐 5UDZ	■ 2ZKO □ 5ELK □ 3VYX	5ELH 3RW6	4HT8

# of	PDB ID of complex
mutations	
16	4CIO
15	4YVI
12	30L6
11	1JBS, 5HO4
10	2ERR, 3AM1
9	2ZZN
8	5DNO
7	1FEU, 1ZDI, 2KXN
6	1QFQ, 2IX1, 2M8D, 3K5Q, 4NGB, 4OOG, 5H1K
5	1URN, 4ED5, 4PMW, 5GXH, 5UDZ, 5W1H
4	1WNE, 2PJP, 2ZKO, 4MDX
3	2BX2, 3L25, 5ELK, 5WWX
2	3EQT, 3K5Y, 3VYX, 4NGD, 4NL3, 5EIM, 5ELH, 5WWW
1	1U0B, 2XS2, 3RW6, 3U4M, 3UZS, 3VYY, 4HT8, 4NHA, 5JBJ

Figure S1. The number of mutations for each protein-RNA complex in S248 dataset, which includes 248 mutations from 50 protein-RNA complexes.

Structure optimization protocol




Figure S2. The flowchart of structure optimization protocol.

Chain A

Chain B

- R 67 (ARG)

D 39 (ASP)

Manually select

Alanine Scanning

+ -

- G (GLY)

R (ARG)

Figure S3. (a) The entry page of PremPRI server. (b) The second step for selecting interaction partners. (c) The third step for selecting mutations and three options are provided: "Specify One or More Mutations Manually", "Upload Mutation List" and "Alanine Scanning for Each Chain".

Upload file Alanine Scanning

In chain A 🔹

Job id: 2020050504060173705807592

• Summary

PDB ID	Protein	RNA	Number of mutation	ns Start tim	e (EST)	Processing time	Result	ts	
2ZKO	А, В	C, D	3	2020-05-0	04 23:09	5 min	Downlo	ad	
lesults									
#	Mutated (Chain	Mutation	ΔΔG 🕕	Inte	erface? 0	Structure		
1	A		S42A	1.5		Yes	Explore	Clic	ck
2	А		R67G	1.03		No	Explore		/
3	В		D39R	2.91		Yes	Explore		
Vild type Mutan Hydrogen Bor	nd 🌔 🕠	Aromatic 🌔	Polar 🔵	Vi	ild type Mutan Hydrogen Bor	nd 🚺 Aromatio	c 🚺	Polar 💽	
Vild type Mutan	it nd 🌔 🕠			Wi	ild type Mutan	nt 🚺 Aromatic	c 🚺	Polar 💽 Clash 💭	
Vild type Mutan Hydrogen Bor	it nd C / / Nic C C	kromatic C Zarbonyl C 8 P39 BER42	Polar 🔵	Vi	ild type Mutan Hydrogen Bor	nt 🚺 Aromatic			a de la companya de la

Figure S4. (a) The final results. "Processing time" refers to the running time of a job without counting the waiting time in the queue. (b) Interactive 3D viewer showing the non-covalent interactions between the mutated site in the NS1 protein of human influenza virus A (PDB ID: 2ZKO, mutation: S42A) and its adjacent residues/nucleotides in the wildtype (left) and mutant (right) complex respectively, generated by Arpeggio.

# of	# of	Description
mutations	complexes	
248	50	training set of PremPRI
264(67)	33(5)	training set of mCSM-NA including mutations from both
		protein-DNA and -RNA complexes; bracket: the number of
		mutations from protein-RNA complexes
151	32	training set of PrabHot, classification method
16	2	overlap mutations between S248 and S264
92	21	overlap mutations between S248 and S151
	mutations 248 264(67) 151 16	mutations complexes 248 50 264(67) 33(5) 151 32 16 2

Table S1. Experimental datasets used for training methods of PremPRI, mCSM-NA and PrabHot.

Different categories for mutations in S248					
Category	# of	# of	Description		
	mutations	complexes			
Alanine-scanning	213	50	substitutions of residues into alanine		
Non-alanine-scanning	35	13	substitutions of residues into non-alanine		
Interface	154	45	mutations occur at protein-RNA binding		
			interface		
Non-interface	94	31	mutations do not occur at binding interface		
Protein-ssRNA	122	24	mutations occur in protein-single stranded		
			RNA complexes		
Protein-dsRNA	126	26	mutations occur in protein-double stranded		
			RNA complexes		

Table S2. The p-value and importance of each feature in multiple linear regression scoring function of PremPRI. All

Features have significant contribution to the quality of the model (p-value < 0.01, t-test). The features are ranked with respect to the importance.

Feature	P-value	Importance
$\Delta \boldsymbol{P}_{FWY}$	1.40E-13	0.52
N _{inter}	7.24E-07	0.30
Closeness	6.90E-06	0.30
R _{L/SA}	1.23E-05	0.29
$\Delta \Delta E_{vdw.re}$	1.18E-05	0.28
P _{coil}	2.07E-05	0.26
$\Delta \Delta E_{elec}$	1.49E-03	0.20
ΔSA	7.78E-04	0.19
ΔP_{KR-DE}	5.13E-04	0.19
ΔΟΜΗ	3.27E-03	0.19
$\Delta \Delta E_{vdw}$	3.59E-03	0.15

Standardized coefficients are used for describing the importance.

Table S3. The performance using multiple linear regression (MLR), Random Forest (RF), Back Propagation Neural Network (BPNN), Support Vector Machine (SVM) and eXtreme Gradient Boosting (XGBoost) algorithms to build PremPRI model, respectively.

Algorithm	Method	R	RMSE	Slope
MLR	PremPRI	0.72	0.76	1.00
	PremPRI (CV3)	0.61	0.87	0.89
RF	PremPRI	0.70	0.79	1.21
	PremPRI (CV3)	0.46	0.98	1.15
BPNN	PremPRI	0.82	0.63	1.01
	PremPRI (CV3)	0.46	0.99	0.72
SVM	PremPRI	0.85	0.61	1.25
	PremPRI (CV3)	0.42	1.00	0.89
XGBoost	PremPRI	0.99	0.14	1.09
	PremPRI (CV3)	0.40	1.00	0.95

PremPRI: trained and tested on S248 dataset; PremPRI (CV3): leave-one-complex-out validation results.

R: Pearson correlation coefficient. RMSE (kcal mol⁻¹): root-mean-square error. Slope: the slope of the regression line between experimental and predicted $\Delta\Delta \rightarrow$ values. All presented correlation coefficients are statistically significantly different from zero (p-value << 0.01, t-test).

Table S4. Variance inflation factor (VIF) of each feature in PremPRI model. The features are ranked with respect to

the VIF. The VIF of each feature is less than three, indicating low collinear relationships among 11 independent variables.

Feature	VIF
ΔP_{FWY}	2.20
∆ 0MH	2.13
R _{L/SA}	2.12
Closeness	2.07
$\Delta \Delta E_{vdw.re}$	1.97
$\Delta \Delta E_{elec}$	1.85
P _{coil}	1.81
N _{inter}	1.69
∆ <i>SA</i>	1.61
$\Delta \boldsymbol{P}_{KR-DE}$	1.41
$\Delta \Delta E_{vdw}$	1.25

Table S5. PremPRI	performance	for d	different	categories	of mutations.

Mutation category	Method	R	RMSE	Slope
Alanine-scanning	PremPRI	0.71	0.74	1.01
	PremPRI (CV3)	0.61	0.83	0.89
Non-alanine-scanning	PremPRI	0.78	0.85	0.98
	PremPRI (CV3)	0.60	1.08	0.90
Interface	PremPRI	0.75	0.78	1.05
	PremPRI (CV3)	0.62	0.93	0.93
Non-interface	PremPRI	0.65	0.71	0.86
	PremPRI (CV3)	0.58	0.77	0.76
Protein-ssRNA	PremPRI	0.76	0.82	1.08
	PremPRI (CV3)	0.61	0.98	0.99
Protein-dsRNA	PremPRI	0.64	0.69	0.84
	PremPRI (CV3)	0.59	0.75	0.74

PremPRI: trained and tested on S248 dataset; PremPRI (CV3): leave-one-complex-out validation results.

R: Pearson correlation coefficient. RMSE (kcal mol⁻¹): root-mean-square error. Slope: the slope of the regression line between experimental and predicted $\Delta\Delta \rightarrow$ values. All presented correlation coefficients are statistically significantly different from zero (p-value << 0.01, t-test).

Table S6. Average weighting coefficient and the corresponding standard deviation (in bracket) for each feature in three types of cross-validation (CV1-CV3). The weighting coefficient in the PremPRI model is presented for the comparison. The features are ranked with respect to the absolute value of weighting coefficient in the PremPRI model.

Feature	CV1	CV2	CV3	PremPRI
$\Delta \boldsymbol{P}_{FWY}$	-218.13(31.43)	-216.40(15.44)	-215.51(9.57)	-216.23
R _{L/SA}	83.93(17.89)	83.01(10.69)	83.53(4.26)	83.51
$\Delta \boldsymbol{P}_{KR-DE}$	-31.65(16.34)	-32.70(7.45)	-33.34(3.73)	-33.48
Closeness	5.59(1.33)	5.66(0.77)	5.77(0.31)	5.77
P _{coil}	-5.95(1.68)	-5.71(0.81)	-5.66(0.44)	-5.67
∆ <i>0MH</i>	0.21(0.06)	0.21(0.03)	0.21(1.42E-02)	0.21
$\Delta \Delta E_{vdw.re}$	-0.11(2.57E-02)	.57E-02) -0.11(1.19E-02) -0.11(5.3		-0.11
$\Delta \Delta E_{vdw}$	0.02(6.90E-03)	0.02(3.81E-03)	0.02(1.20E-03)	0.02
N _{inter}	-9.55E-03(2.01E-03)	-9.27E-03(7.24E-04)	-9.21E-03(4.41E-04)	-9.20E-03
ΔSA	5.47E-03(1.70E-03)	5.56E-03(9.66E-04)	5.52E-03(3.34E-04)	5.54E-03
$\Delta \Delta E_{elec}$	1.07E-03(3.66E-04)	1.16E-03(1.72E-04)	1.14E-03(3.90E-05)	1.14E-03
Intercept	-0.33(0.54)	-0.39(0.30)	-0.41(0.14)	-0.41

Table S7. Comparison of methods' performances on three mutations from TthL1–RNA complex. $\Delta\Delta G_{exp}$ and $\Delta\Delta G_{pred}$

Mutation	$\Delta\Delta G_{exp}$	PremPRI	mCSM-NA	FoldX	PrabHot
T217A	2.49	1.32	-1.18	-1.22	hotspot
T217V	3.61	1.87	1.20	0.12	hotspot
M218L	6.58	1.67	1.59	0.13	hotspot
G219V	5.35	1.94	-1.53	0.24	non-hotspot

are experimentally determined and predicted binding affinity change (in kcal mol⁻¹), respectively.

Our training dataset of S248 includes one mutation of T217A from this complex, which was excluded from the training dataset when testing on this case.