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Online Supplement 

Simulation Study S1  

A simple simulation design is carried out to evaluate the performance of the non-parametric 

classification (NPC, Chiu & Douglas, 2013) method with that of the commonly used profile 

estimation method MAP when the posterior weighted Kullback–Leibler Information Index 

(PWKL, Cheng, 2009) is used as the item selection method in CD-CAT. 

Design 

Item bank generation. We consider the DINA, DINO and RRUM model, respectively, with 

the number of attributes K{3, 4} and the item bank size J =350.  

The fixed test length L = 30. In the study, in order to investigate the influence of Q-matrix 

on the NPC method, we will consider two kinds of Q-matrix structures. Like Wang (2013), the 

one Q-matrix followed a simple structure, in which one Kth of the items exclusively measured 

each of the K attributes. The other type of Q-matrix followed complex structure. For complex 

Q-matrices, every entry was accompanied by a random number from Uniform(0,1). If the 

random number was smaller than 0.5, then the corresponding Q-matrix entry was 1, indicating 

that the item required the attribute. The corresponding Q-matrix entry was set to be 0, otherwise. 

It was noted that every item was constrained to measure at least one of the five attributes in 

order to avoid trivial rows in the Q-matrix. 

Another critical factor affecting the classification results is the distribution of item 

parameters. From a practical point of view, it is important to investigate conditions in which we 

can obtain good non-parametric classifications. Therefore, the guessing and slipping parameters 

in the simulations were generated from uniform distribution U(0, Max.s), where Max.s was set 

to be 0.1, 0.3, or 0.5, denoting low, medium, and high perturbations. 
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Examinees generation. Like Chiu and Douglas (2013), N = 1000 examinees’ attribute 

patterns were generated in two different ways. The first sampled attribute patterns, α, are from a 

uniform distribution on 2K possible values, each with the probability 1/2K. The second method, 

as known as multivariate normal threshold model, was used to mimic a realistic situation where 

attributes were correlated and of unequal prevalence. The discrete α were linked to an 

underlying multivariate normal distribution, θi ~ MVN(0K, Σ), where the covariance matrix Σ, 

had the structure as follows: 
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and ρ was set to be 0.5. Let θi = (θi1,θi2,...,θiK)' denote the K-dimensional vector of latent 

continuous scores for examinee i. The attribute pattern αi = (αi1, αi2,..., αiK)' was determined by 
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Item selection algorithms. The PWKL was used as the item selection method. 

Parameter estimation. The attribute pattern estimates, α̂ , are obtained via NPC method and 

maximum a posteriori (MAP) method with the uniform prior (i.e., U(0,1)). 

Stopping rule. The fixed-length method (L = 30) was used to terminate the algorithms. 

Therefore, we had 2 (Q-matrix structure) × 2 (number of attributes) × 3 (data generation 

models) × 3 (bank information) × 2 (attribute structure) = 72 data generation conditions for the 

simulation study. For each condition, 30 replications were generated. 

Results  

The tables below report not only PARs and AARs, but also their ‘relative efficiency’ for the 
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NPC versus MAP method. Note that the index’s “relative efficiency” is defined as the ratio of 

the NPC versus MAP indices, and represents the proportion of individual attributes that were 

classified correctly. 

Table S1 presents the AARs, PARs, and their relative efficiencies for the NPC method and 

MLE method when the data conformed to the DINA model. As noted by Chiu and Douglas 

(2013), “In the case of the DINA model, the ideal response pattern will always be the most like 

pattern, unless slipping and guessing values exceed 0.5.”  Both methods produce nearly perfect 

classifications when slipping and guessing values are less than 0.3. All relative efficiencies have 

values less than 1, indicating that NPC method outperformed the MAP method in almost all 

conditions. From the PARs, we can see the NPC method classified at most 14.95% more 

examinees into the correct proficiency classes than the parametric method. The table also 

indicates that larger numbers of attributes, simple Q matrix, and poor item quality each caused 

the mean PARs and AARs to decrease. Meanwhile, when attribute patterns conformed to the 

multivariate normal threshold model, the mean PARs and AARs increased. Because the 

multivariate normal threshold model incorporates a far more realistic scenario than the uniform 

distribution model (Chiu & Douglas, 2013), these findings suggest that when the data conform 

to the DINA model, the NPC method appears to be the best choice. 

Table S2 summarizes the results for the data generated from the DINO model. It contains 

same patterns as noted in Table S1. When the data conformed to the DINA model, the NPC and 

MAP methods performed well when slipping and guessing values are less than 0.3. When 

slipping and guessing values increasing, PARs and AARs of both approaches tend to decline. We 

notice that the performance of the two classification methods also depends on the size of K. The 

results showed that larger number of attributes resulted in smaller PAR and AAR scores for both 
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methods. 

For the impressive performance of the NPC method when the data conformed to the DINA 

and DINO model, a heuristic explanation can be derived from the proof given by Chiu and 

Douglas (2013): “as long as the slipping and guessing parameters do not exceed 0.5, the ideal 

response pattern will be the most like choice for the proficiency class”.  

From the effectiveness of the NPC method and the MAP method described, when the data 

were generated from the RRUM model in Table S3, PAR and AAR values under the two 

classification methods display the same trends as found in Tables S1 and S2. However, some 

relative efficiency values in Table S3 are approximately equal to 1, indicating that the NPC 

method sometimes performs about as well as MAP method. The NPC method appears generally 

less tolerant of larger slipping and guessing parameters in the RRUM model, which maybe 

because of the multiplicative effect of the larger slipping and guessing operating at the subtask 

level (Chiu & Douglas, 2013). 
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Table S1. Agreement of classification between the NPC method and MAP method with data 

generated from the DINA model in CD-CAT. 

Q-structure K Max.s 
MAP NPC 

Relative Efficiency 

(MAP/NPC) 

PAR AAR PAR AAR PAR AAR 

   Uniform Attribute Patterns 

Simple 

3 

0.1 0.9973  0.9985  0.9980  0.9989  0.9993  0.9996  

0.3 0.8917  0.9620  0.8947  0.9696  0.9966  0.9922  

0.5 0.8215  0.9010  0.9398  0.9647  0.8741  0.9340  

4 

0.1 0.8631  0.9650  0.8633  0.9657  0.9998  0.9993  

0.3 0.7775  0.8618  0.9270  0.9467  0.8387  0.9103  

0.5 0.7245  0.8431  0.8086  0.8882  0.8960  0.9492  

Complex 

3 

0.1 0.9974  0.9991  0.9984  0.9993  0.9990  0.9998  

0.3 0.9811  0.9909  0.9914  0.9960  0.9895  0.9949  

0.5 0.9618  0.9842  0.9883  0.9958  0.9732  0.9884  

4 

0.1 0.9290  0.9581  0.9870  0.9926  0.9412  0.9653  

0.3 0.9181  0.9608  0.9628  0.9828  0.9535  0.9776  

0.5 0.8485  0.9308  0.9050  0.9593  0.9376  0.9703  

   Multivariate Normal Attribute Patterns 

Simple 

3 

0.1 0.9732  0.9910  0.9742  0.9913  0.9990  0.9997  

0.3 0.9288  0.9752  0.9342  0.9767  0.9943  0.9985  

0.5 0.8841  0.9230  0.8889  0.9275  0.9945  0.9951  

4 

0.1 0.9527  0.9876  0.9588  0.9885  0.9937  0.9990  

0.3 0.8666  0.9584  0.8684  0.9590  0.9979  0.9994  

0.5 0.7821  0.8498  0.9222  0.9421  0.8481  0.9020  

Complex 

3 

0.1 0.9954  0.9964  0.9992  0.9995  0.9962  0.9969  

0.3 0.9852  0.9938  0.9937  0.9970  0.9914  0.9968  

0.5 0.9597 0.9864  0.9778 0.9919 0.9814 0.9945  

4 

0.1 0.9945  0.9986  0.9969  0.9991  0.9976  0.9995  

0.3 0.9777  0.9885  0.9806  0.9899  0.9970  0.9986  

0.5 0.9277  0.9678  0.9448  0.9723  0.9820  0.9954  

Note. ….. 
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Table S2. Agreement of classification between the NPC method and MAP method with data 

generated from the DINO model in CD-CAT. 

Q-structure K Max.s 
MAP NPC 

Relative Efficiency 

(MAP/NPC) 

PAR AAR PAR AAR PAR AAR 

   Uniform Attribute Patterns 

Simple 

3 

0.1 0.9799  0.9932  0.9809  0.9957  0.9990  0.9975  

0.3 0.9321  0.9762  0.9572  0.9780  0.9737  0.9982  

0.5 0.7911  0.9270  0.7925  0.9311  0.9982  0.9956  

4 

0.1 0.9559  0.9884  0.9592  0.9895  0.9966  0.9989  

0.3 0.8833  0.9669  0.8912  0.9733  0.9911  0.9934  

0.5 0.7855  0.9136  0.7859  0.9180  0.9995  0.9952  

Complex 

3 

0.1 0.9964  0.9987  0.9975  0.9994  0.9989  0.9993  

0.3 0.9396  0.9769  0.9516  0.9776  0.9874  0.9993  

0.5 0.8884  0.9548  0.8944  0.9560  0.9933  0.9987  

4 

0.1 0.9757  0.9885  0.9765  0.9895  0.9991  0.9990  

0.3 0.9064  0.9747  0.9284  0.9798  0.9764  0.9948  

0.5 0.8677  0.9521  0.8759  0.9558  0.9906  0.9961  

   Multivariate Normal Attribute Patterns 

Simple 

3 

0.1 0.9712  0.9934  0.9725  0.9959  0.9987  0.9975  

0.3 0.9315  0.9707  0.9525  0.9799  0.9779  0.9906  

0.5 0.8760  0.9510  0.8827  0.9562  0.9924  0.9946  

4 

0.1 0.9447  0.9852  0.9470  0.9864  0.9976  0.9988  

0.3 0.9156  0.9722  0.9213  0.9784  0.9938  0.9937  

0.5 0.8410  0.9431  0.8485  0.9481  0.9912  0.9947  

Complex 

3 

0.1 0.9957  0.9918  0.9965  0.9925  0.9993  0.9993  

0.3 0.9491  0.9826  0.9499  0.9882  0.9992  0.9943  

0.5 0.8920  0.9604  0.9151  0.9656  0.9748  0.9946  

4 

0.1 0.9603  0.9816  0.9636  0.9857  0.9966  0.9958  

0.3 0.9210  0.9786  0.9592  0.9828  0.9602  0.9957  

0.5 0.8403  0.9581  0.8521  0.9598  0.9862  0.9982  
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Table S3. Agreement of classification between the NPC method and MAP method with data 

generated from the RRUM model in CD-CAT. 

Q-structur

e 
K Max.s 

MAP NPC 
Relative Efficiency 

(MAP/NPC) 

PAR AAR PAR AAR PAR AAR 

   Uniform Attribute Patterns 

Simple 

3 

0.1 0.9391 0.9796 0.9395 0.9797 0.9996 0.9999 

0.3 0.8141 0.9372 0.8146 0.9367 0.9994 1.0005 

0.5 0.7541 0.9135 0.7547 0.9132 0.9992 1.0004 

4 

0.1 0.8712 0.9671 0.8708 0.9664 1.0005 1.0007 

0.3 0.7509 0.9114 0.7556 0.9165 0.9938 0.9944 

0.5 0.6442 0.8663 0.6439 0.8661 1.0005 1.0003 

Complex 

3 

0.1 0.9940 0.9911 0.9934 0.9901 1.0006 1.0010 

0.3 0.9486 0.9739 0.9480 0.9735 1.0006 1.0004 

0.5 0.8693 0.9492 0.8686 0.9485 1.0008 1.0007 

4 

0.1 0.9682 0.9921 0.9706 0.9933 0.9976 0.9988 

0.3 0.7881 0.9408 0.7889 0.9431 0.9990 0.9976 

0.5 0.7490 0.9131 0.7493 0.9134 0.9996 0.9997 

   Multivariate Normal Attribute Patterns 

Simple 

3 

0.1 0.9281  0.9759  0.9287  0.9766  0.9993  0.9993  

0.3 0.7341  0.9083  0.7344  0.9080  0.9995  1.0003  

0.5 0.6653  0.8774  0.6654  0.8768  0.9997  1.0007  

4 

0.1 0.8506  0.9616  0.8505  0.9614  1.0001  1.0002  

0.3 0.6363  0.9000  0.6392  0.9007  0.9954  0.9993  

0.5 0.5883  0.8640  0.5893  0.8664  0.9982  0.9972  

Complex 

3 

0.1 0.9980  0.9990  0.9979  0.9988  1.0001  1.0002  

0.3 0.9099  0.9610  0.9094  0.9627  1.0006  0.9982  

0.5 0.7638  0.9134  0.7653  0.9138  0.9981  0.9995  

4 

0.1 0.9640  0.9958  0.9681  0.9967  0.9957  0.9991  

0.3 0.8341  0.9579  0.8342  0.9581  0.9998  0.9998  

0.5 0.7019  0.9142  0.7090  0.9155  0.9899  0.9986  
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Figure S1. PARs under DINA model when K = 5 and number of strata = 3 

 

 

Figure S2. PARs under DINO model when K = 5 and number of strata = 3 
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Figure S3. PARs under the RRUM model when K = 5 and number of strata = 3 

 

 

Figure S4. mean of AARs under the DINA model when K = 5 and number of strata = 3 
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Figure S5. mean of AARs under the DINO model when K = 5 and number of strata = 3 

 

 

Figure S6. mean of AARs under the RRUM model when K = 5 and number of strata = 3 
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Figure S7. PARs under DINA model when K = 3 and number of strata = 5 

 

 

Figure S8. PARs under DINO model when K = 3 and number of strata = 5 
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Figure S9. PARs under the RRUM model when K = 3 and number of strata = 5 

 

 

Figure S10. mean of AARs under the DINA model when K = 3 and number of strata = 5 
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Figure S11. mean of AARs under the DINO model when K = 3 and number of strata = 5 

 

 

Figure S12. mean of AARs under the RRUM model when K = 3 and number of strata = 5 
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Figure S13. PARs under DINA model when K = 5 and number of strata = 5 
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Figure S14. PARs under DINO model when K = 5 and number of strata = 5 

 

 

Figure S15. PARs under the RRUM model when K = 5 and number of strata = 5 
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Figure S16. mean of AARs under the DINA model when K = 5 and number of strata = 5 

 

 

Figure S17. mean of AARs under the DINO model when K = 5 and number of strata = 5 
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Figure S18. mean of AARs under the RRUM model when K = 5 and number of strata = 5 

 


