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SUMMARY
Amyotrophic lateral sclerosis (ALS) manifests pathological changes in motor neurons and various other cell
types. Compared to motor neurons, the contribution of the other cell types to the ALS phenotypes is under-
studied. G4C2 repeat expansion inC9ORF72 is themost commongenetic cause of ALS alongwith frontotem-
poral dementia (C9-ALS/FTD), with increasing evidence supporting repeat-encoded poly(GR) in disease
pathogenesis. Here, we show in Drosophila muscle that poly(GR) enters mitochondria and interacts with
components of the Mitochondrial Contact Site and Cristae Organizing System (MICOS), altering MICOS dy-
namics and intra-subunit interactions. This impairs mitochondrial inner membrane structure, ion homeosta-
sis, mitochondrial metabolism, and muscle integrity. Similar mitochondrial defects are observed in patient
fibroblasts. Genetic manipulation of MICOS components or pharmacological restoration of ion homeostasis
with nigericin effectively rescue themitochondrial pathology and disease phenotypes in both systems. These
results implicateMICOS-regulated ion homeostasis in C9-ALS pathogenesis and suggest potential new ther-
apeutic strategies.
INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is characterized primarily by

the progressive degeneration of upper motor neurons (UMNs) in

the motor cortex and lower motor neurons (LMNs) in the brain-

stem and spinal cord (Brown and Al-Chalabi, 2017), with

possible LMN to UMN spread (Chou and Norris, 1993). The

earliest pathophysiological events initiating the disease remain

to be elucidated, although accumulating evidence suggests

that pathological changes can occur distally at the neuromus-

cular junction (NMJ) in advance of MN loss and onset of clinical

symptoms (Moloney et al., 2014). Traditionally considered a MN

disease, ALS is emerging as a ‘‘multisystem’’ disease with path-

ological changes in various cell types, including peripheral im-

mune cells, neurons, microglia, astrocytes, and muscle cells

(Pansarasa et al., 2014; Loeffler et al., 2016). Skeletal muscle de-

fects are common and occur early in ALS (Pansarasa et al., 2014;

Loeffler et al., 2016). In the copper-zinc superoxide dismutase

(SOD1)-G93A mouse model of ALS, for example, muscle

dysfunction represents one of the earliest pathological events,

preceding MN death (Dobrowolny et al., 2008), and the mus-
This is an open access article under the CC BY-N
cle-specific expression of SOD1-G93A can lead to MN death

(Wong and Martin, 2010). One possible mechanism of muscle

contribution to MN health in ALS is NMJ stability; defects in

the NMJ can cause MN denervation and death in a dying-back

manner (Moloney et al., 2014). In C9-ALS patients (Jokela

et al., 2016), BAC transgenic mice (Liu et al., 2016), and patient

induced pluripotent stem cell (iPSC)-derived muscle fibers

(Lynch et al., 2019), muscle cell pathology is observed, underlin-

ing the relevance of muscle to the pathogenesis of this most

common form of ALS. However, the nature of muscular defects

in ALS, its pathogenic mechanism, and its contribution to the

broad spectrum of disease phenotypes are not well understood.

Expansion of G4C2 repeats in C9ORF72 accounts for �40%

of familial and 5%–10% of sporadic ALS cases, with repeat

numbers ranging from a few dozen to thousands (DeJesus-Her-

nandez et al., 2011; Renton et al., 2011). A number of mecha-

nisms of disease pathogenesis by G4C2 repeat expansion

have been proposed, including haplo-insufficiency of

C9ORF72, toxicity associated with RNA foci formed by sense

and anti-sense RNAs, or proteotoxicity induced by dipeptide

repeat (DPR) proteins translated from G4C2 repeat-carrying
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transcripts (Taylor et al., 2016; Gendron and Petrucelli, 2018).

Increasing evidence emphasizes the contribution of DPR toxicity

in C9-ALS/frontotemporal dementia (FTD), especially arginine-

containing DPR proteins (GR and PR), with diverse processes

ranging from nucleolar function and nucleocytoplasmic trans-

port to RNA granule dynamics, mRNA splicing and translation,

and the DNA repair pathway having been implicated (Taylor

et al., 2016; Gendron and Petrucelli, 2018; Yuva-Aydemir et al.,

2018). The relative contribution of the various mechanisms to

the onset and progression of this multisystem disease, however,

remains uncertain. Drosophila has been an excellent model or-

ganism for investigating pathogenic mechanisms of human

neurological disorders (Jaiswal et al., 2012), and a large body

of work has been done on C9-ALS/FTD-related models in

Drosophila (Xu et al., 2013; Mizielinska et al., 2014; Freibaum

et al., 2015; Yang et al., 2015; Zhang et al., 2015; Lee et al.,

2016; Simone et al., 2018; Xu and Xu, 2018; Berson et al.,

2019; He et al., 2019; Lopez-Gonzalez et al., 2019; Moens

et al., 2019). Almost all of these studies are focused on neuronal

settings. Thus, whether disease gene products associated with

C9-ALS/FTD affect muscle cells to cause the ALS aspects of

the C9-ALS/FTD spectrum of phenotypes, and if so, the cellular

mechanisms involved, remains unclear.

RESULTS

Muscle Mitochondrial Defects Caused by Poly(GR)
Expression in Flies
We used Drosophila as a model to assess the effect of GR in

muscle. Available poly(GR) transgenic lines (Mizielinska et al.,

2014; Yang et al., 2015) were specifically expressed in fly mus-

cle using the UAS-Gal4 system. To discern the effect of repeat

length on toxicity, transgenes expressing GR36, GR80, and

GR100 were used. The GR80 protein has a FLAG tag at the

N termini to aid protein detection (Yang et al., 2015). A

G4C2-36 transgene potentially expressing all types of DPRs

and a 36RO transgene expressing G4C2-36 repeat RNA only

(Mizielinska et al., 2014) was also included. The development,

morphology, behavior, or survival appeared normal in newly en-

closed flies of all genotypes. Around 1 week after eclosion,

however, �50% of the GR100 and GR80 transgenic flies

started to exhibit held-up or droopy wing postures. After 2–

3 weeks, virtually 100% of the flies showed abnormal wing

posture and were flightless (Figures 1A, S1A, and S1B). GR36

and G4C2-36 transgenic flies exhibited a later onset and less

penetrant wing posture phenotype than GR100 and GR80 flies,

whereas 36RO flies were phenotypically normal (Figures S1A

and S1B). Quantification of GR expression in the various lines

(Figure S1C) indicated that GR100 was expressed at a slightly

lower level than GR80. However, GR36 expression level was

higher than GR100, although its phenotype was weaker.

Thus, GR repeat length correlates with toxicity. In subsequent

studies, we focused on analyzing GR80 flies, because this is

the only GR line with a FLAG tag at the N terminus that facili-

tates later biochemical and cell biological studies of GR protein,

and we have length-matched and FLAG-tagged GA80 and

PR80 as controls, which did not show obvious wing phenotype

(Figure S1A).
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The wing posture phenotype in the various fly lines correlated

with indirect flight muscle (IFM) integrity (Figure S1D), which is

often associated with mitochondrial health. We examined mito-

chondrial morphology in GR80 fly IFM using a matrix-targeted

mito-GFP reporter. Compared to the controls, GR80 fly muscle

contained swollen mitochondria when analyzed at 2–3 weeks

of age (Figure 1B). Manymitochondria were round and had areas

ofmatrix devoid of mito-GFP. Transmission electronmicroscopy

(TEM) revealed swollen mitochondria, as well as small and round

mitochondria devoid of electron-dense matrix material in GR80

flies (Figure 1C). Closer examination further revealed aberrant

cristae structure. Compared to control muscle mitochondria

abundant in lamellar cristae, each connected to the inner mito-

chondrial membrane (IMM) via cristae junctions (CJs), many

mitochondria in GR80 flies were devoid of CJs, forming concen-

tric cristae stacks inside the matrix or short tubular cristae de-

tached from IMM, indicating that GR80 damages CJ structures.

Similar mitochondrial defects were seen in GR100 flies (Figures

S1E and S1F). No obvious mitochondria defect was observed

in length-matched GA100, PA100, or PR100 fly muscle (Figures

S1E and S1F) orGA80 andPR80 flymuscle (Figure S1G), despite

similar levels of expression of FLAG-tagged GA80, PR80, and

GR80 (Figure S1H).

We next analyzed mitochondrial function in GR80 fly muscle.

There was increased ATP production in GR80 and GR100 flies

(Figures S1I and S1J). This suggests that ATP production by

oxidative phosphorylation (OxPhos), a key function of mitochon-

dria, was not compromised inGR80 flies, or that it was compen-

sated for by other means. We also found that complex I activity

was elevated, whereas complex II–V were largely unaltered in

GR80 flies (Figure 1D). Elevated complex I activity may account

for the increased ATP level. As complex I is themajor site of reac-

tive oxygen species (ROS) production, we tested whether the

redox state is altered in GR80 flies. Using the ROS dyes DCFH

(Figure 1E) and MitoSOX (Figure 1F), we detected elevated

ROS inGR80 fly IFM. GR80 thus causes structural and functional

changes in muscle mitochondria.

Mitochondrial Localization of Poly(GR)
Our observation of mitochondrial changes in GR80 flies raised

the possibility that GR80 may associate with mitochondria. Us-

ing confocal microscopy, we could detect the cytosolic localiza-

tion of GR80, with some colocalizing with mitochondria in fly

muscle (Figure 2A) and mammalian cells (Figure 2B). Using im-

munoelectron microscopy (immuno-EM), we confirmed GR80

mitochondrial localization (Figure 2C). To further confirm this,

and to determine the specific compartment of GR80 localization,

we purified mitochondria from GR80 fly muscle and prepared

mitochondrial subfractions. Western blot analysis indicated the

robust expression of GR80 in fly muscle (Figure S2A). The major-

ity of mitochondrial GR80 was localized to the IMM in a pattern

similar to the intermembrane space (IMS)/IMM marker Opa1

(Figure 2D). GR80 was sensitive to proteinase K treatment of mi-

toplasts but not intact mitochondria preparations, suggesting

that it is facing the IMS (Figure S2B). The enriched mitochondrial

localization was rather specific for GR80, as neither GA80 nor

PR80 exhibited obvious mitochondrial localization (Figures

S2C and S2D).



Figure 1. Mitochondrial Defects in GR80 Transgenic Fly Muscle
(A) Images showing abnormal wing posture phenotypes in Mhc-Gal4>GR80 flies. The bar graph shows age-dependent progression of the wing posture

phenotype (n = 90 flies, 3 biological repeats). The error bars signify standard deviation (SD) in this and all of the other figures.

(B) Monitoring of mitochondrial morphology in thoracic flight muscle ofMhc-Gal4>GR80 flies expressing amito-GFP reporter. The images are representative of 3

independent samples.

(C) TEM images of IFMmitochondria of control (Mhc-Gal4/w-) andMhc-Gal4>GR80 flies at lower (1,0003) and higher (6,0003) magnifications. The graphs show

quantification (n = 5 sections from 3 independent samples).

(D) Mitochondrial respiratory chain activities in GR80 compared to control (Mhc-Gal4/w-) flies. The data represent 1-time experiment.

(E) Quantification of ROS levels measured with DCFH fluorescence in GR80 fly muscle (n = 3).

(F) Mito-SOX staining of mitochondrial ROS levels in control and GR80 flies expressing mito-GFP. The graph shows quantification (n = 3).

*p < 0.05 and **p < 0.01, 1-way ANOVA test followed by Student-Newman-Keuls (SNK) test plus Bonferroni correction. See also Figure S1.
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For GR80 to reach IMS/IMM, it most likely has to go through

the translocase of the outer membrane/inner membrane (TOM/

TIM) import complex, and interact with Tom40, a key component

of the TOM complex forming the import channel. GR80

interacted with Tom40, but not Tom20 or Tom70, in co-immuno-

precipitation (coIP) assays (Figure 2E). Functionally, Tom40

overexpression (OE) increased the GR80 protein level and

enhanced the GR80-induced wing posture phenotype, whereas

partial Tom40 knockdown by RNAi had opposite effects (Figures

2F, S2E, and S2F).

Opa1 Mediates the Effects of Poly(GR) on CJ
We next investigated how GR80 instigates mitochondrial

toxicity. By binding to Tom40, GR80 may clog the TOM/TIM

channel, thereby impairing mitochondrial import globally. Incon-

sistent with this idea was our observation that the import of mito-

GFP was not significantly affected by GR80. Given the IMS/IMM
localization of GR80 and its profound effects on CJ structure, we

testedwhether GR80may alter IMS/IMMstructures related toCJ

formation. Using immuno-EM, we observed GR80 localization to

CJ (Figure S2G). Tuning down the expression of Opa1, a key

determinant of CJ remodeling (Frezza et al., 2006), completely

suppressed GR80 effect on wing posture and cristae

morphology, which was accompanied by a reduction in GR80

level (Figures 2G–2I). In contrast, Opa1 OE significantly

enhanced GR80 toxicity and protein level (Figures 2G and 2I).

Although Opa1 is known to act in mitochondrial fusion, its mod-

ulation of GR80 toxicity ismost likely unrelated to that, as altering

fission-fusion balance by the loss- or gain-of-function of Drp1,

Fis1, or Marf had no obvious effect on GR80 toxicity (Figures

S2H and S2I). These results implicate CJ as a key site of GR80

toxicity.

We next assessed the molecular basis underlying the genetic

interaction between GR80 and Opa1. In coIP assays we
Cell Reports 32, 107989, August 4, 2020 3



Figure 2. Mitochondrial Localization and Opa1 Interaction of GR80

(A and B) Immunostaining showing mitochondrial localization of FLAG-GR80 in transgenic fly muscle (A) or transfected HeLa cells (B). Mito-GFP (A) or Tom20

staining (B) marks the mitochondria. Arrowhead: mitochondrial localization; arrow: non-mitochondrial localization. The images are representative of 3 inde-

pendent samples.

(C) Immuno-EM analysis showing mitochondrial localization of FLAG-GR80 in fly muscle. Red and blue arrows mark the signals inside and outside the mito-

chondria, respectively. The graph shows quantification (n = 4, 3 biological repeats).

(legend continued on next page)
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detected an association between GR80 and the long-form of

Opa1 (Figure 2J), suggesting that they may interact inside mito-

chondria. More supporting evidence came from immuno-EM,

which showed a juxtaposition of GR80 and Opa1 near CJs (Fig-

ure S2J). Next, we tested the effect of GR80 on the formation of

Opa1 oligomers, the presumed molecular staples that constrict

and hold the inner membranes at CJs (Frezza et al., 2006).

GR80 promotedOpa1 oligomer formation and also had amild ef-

fect on the total Opa1 (monomer) level (Figures 2K and S2K). It is

possible that by promoting Opa1 oligomer formation, GR80

causes moderate overall stabilization of steady-state Opa1

monomers. Consistent with the biochemical data,GR80 fly mus-

cle mitochondria exhibited narrower and presumably tightened

CJs, which could be loosened by reducing Opa1 oligomer for-

mation through Opa1 RNAi (Figures S2L–S2N).

Alteration of Mitochondrial Contact Site and Cristae
Organizing System (MICOS) Structure and Function by
Poly(GR)
The Opa1 interactome inDrosophila includes components of the

Mic60-Mic19 subcomplex of MICOS (Banerjee and Chinthapalli,

2014), which is centrally involved in CJ formation and function

(Koob and Reichert, 2014; Schorr and van der Laan, 2018). We

therefore tested whether GR80 may affect MICOS. In coIP

assays, GR80 exhibited a physical association withMICOS com-

ponents in mammalian cells (Figure 3A) and fly muscle (Fig-

ure 3B). Functionally, as with Opa1, the partial reduction of com-

ponents of the Mic60-Mic19 subcomplex effectively rescued the

GR80-induced wing posture phenotype (Figure S3A). This was

correlated with the restoration of cristae number and the reduc-

tion in the GR80 protein level (Figures 3C and 3D). Note that the

knockdown of Mic60 and Mic19 resulted in characteristic

concentric cristae, a characteristic phenotype seen when these

factors are inhibited (John et al., 2005). Conversely, Mic19

(CHCHD3) OE led to an increased GR80 level and an enhanced

GR80 toxicity on wing posture (Figures 3E and S3B). It thus ap-

pears that at least part of the GR80 toxicity comes from its effect

on the Mic60-Mic19 subcomplex. Moreover, MICOS may affect

GR80metabolism, as theGR80 level is altered by geneticmanip-

ulations of MICOS components.

MICOS is organized into the Mic60-Mic19 and Mic10

(Minos1)-Mic27 (Apool) subcomplexes, which are presumably

connected by Mic12 (QIL1) (Guarani et al., 2015). We next tested

the relationship between GR80 and the Mic10-Mic27 complex.

In coIP assays, we found robust GR80 interaction with Mic27

andweaker interaction withMic10 (Figures 3F and S3C). Interac-
(D) Immunoblots of sub-mitochondrial fractions, with various mitochondrial mark

(E) CoIP assays using FLAG-GR80-transfected HEK293T cells to show specific

(F) Bar graph showing quantification of the effect of Tom40 RNAi or overexpress

(G) Bar graph showing quantification of the effect of Opa1 RNAi or OE on GR80

(H) TEM images showing effect of Opa1 RNAi on GR80-induced mitochondrial m

sections, 3 biological repeats).

(I) Immunoblots showing effect of Opa1 RNAi or OE on GR80 protein level in GR

(J) CoIP assay showing GR80-Opa1 interaction in HEK293T cells (top) and fly m

(K) Immunoblots showing effect of GR80 on Opa1 oligomer formation in fly thorac

cross-link Opa1. The positions of Opa1 monomer (mono) and oligomers (oligo) a

*p < 0.05, #p < 0.05, **p < 0.01, and ##p < 0.01, 1-way ANOVA test followed by SNK

2 independent repeats. See also Figure S2.
tion was confirmed by coIP in the reverse direction (IP with

Mic27/Apool and detection of GR80) and under non-crosslinking

conditions (Figure 3G). Mic27 is the only MICOS factor that

exhibited strong coIP with GR80 under such conditions,

suggesting that it is the more proximal subunit of MICOS directly

interacting with GR80. In the presence of GR80, the interaction

between Mic10 and Mic27 was weakened, whereas the interac-

tions of Mic10 with Mic60, Mic19, Opa1, and LETM1 were

strengthened (Figure 3H), suggesting that GR80 alters MICOS

dynamics and intersubunit interactions. Functionally, RNAi of

Mic10 or Mic27, the efficiency of which was verified by qRT-

PCR (Figure S3D), reduced the GR80 protein level (Figure 3I)

and rescued the GR80-induced wing posture defect

(Figure S3E).

Based on the biochemical and genetic data, we hypothesized

that GR80 may enter MICOS and cause the malformation and

tightening of CJ, impairing the exchange of metabolites and os-

molytes. This may affect ion homeostasis and, in turn, the mito-

chondrial membrane potential (MMP). GR80 fly mitochondria

maintained a high MMP (Figures 3J and S3F) and contained a

higher Ca2+ level as monitored with the genetically encoded

mito-GCaMP indicator and the Rhod2-AM dye (Figure S3G), in

keeping with MMP being a driving force of calcium entry into

mitochondria. Tuning down levels of MICOS components low-

ered the MMP (Figure 3K), suggesting that GR80 acts through

MICOS to alter MMP and mitochondrial ion homeostasis. This

is presumably mediated by GR80 interference with the activity

of LETM1, a protein with K+ and Ca2+ transporter activity (Now-

ikovsky et al., 2004; Jiang et al., 2009) and an interacting partner

of the Mic60/Mic19/Opa1 subcomplex (Banerjee and Chintha-

palli, 2014). There was an increased mito-K+ level as detected

with MitoPOP (Austin et al., 2017) in GR80 fly muscle (Fig-

ure S3H). Moreover, LETM1 OE or knockdown of the MICOS

component decreased the mito-K+ level (Figures S3H and

S3L). This was also accompanied by a reduction in GR80 level

(Figure S3I), suggesting that the restoration of mitochondrial

ion homeostasis may affect the MICOS structure and, in turn,

GR80 stability.

To further test the roles of MMP and altered ion homeostasis in

GR80 toxicity, we treated GR80 flies with nigericin, a K+/H+ anti-

porter that can re-balance mitochondrial matrix ion levels (Now-

ikovsky et al., 2007). Treatment with low concentrations of niger-

icin effectively restored mitochondrial morphology (Figure 3L),

accompanied by the rescue of the fly wing posture defect (Fig-

ure 3M). The GR80 level was also significantly reduced by niger-

icin treatment (Figure 3N). The nigericin effect on the GR80
er proteins showing localization pattern of FLAG-GR80.

GR80-Tom40 interaction.

ion (OE) on the wing posture in GR80 flies (n = 90 flies, 3 biological repeats).

induced wing posture defect (n = 90 flies, 3 biological repeats).

orphology defect in fly thoracic muscle. The graph shows quantification (n = 5

80 fly muscle.

uscle (bottom).

ic muscle. 1-Ethyl-3- (3-dimethylaminopropyl)-carbodiimide (EDC) was used to

re indicated. The graph shows quantification (n = 2).

test plus Bonferroni correction. The immunoblots are representative of at least

Cell Reports 32, 107989, August 4, 2020 5



(legend on next page)

6 Cell Reports 32, 107989, August 4, 2020

Report
ll

OPEN ACCESS



Report
ll

OPEN ACCESS
protein level was specific, as it did not affect the GA80 level (Fig-

ure S3J). A similar effect on GR80 was observed in mammalian

cells treated with nigericin or monensin, another ionophore

with a similar mechanism of action (Figure 3O). Moreover, the

aberrant interactions between MICOS subunits caused by

GR80 (Figure S3K) and the elevated mito-K+ in GR80 flies were

rescued after nigericin treatment (Figures S3H and S3L). Thus,

by restoring mitochondrial ion homeostasis, nigericin may affect

theMICOS structure and, in turn, GR80 stability, similar to the ef-

fects of the genetic manipulation of MICOS, although other

mechanisms of nigericin action cannot be excluded.

Rescue of Mitochondrial Defects in C9-ALS/FTD Patient
Fibroblasts by Genetic Manipulation of MICOS
Components or by Nigericin Treatment
Finally, we tested whether the pathogenic mechanisms uncov-

ered in flies are relevant to GR toxicity in patient cells. In fibro-

blasts from C9-ALS/FTD patients carrying C9ORF72 G4C2

repeat expansion (Kramer et al., 2016), GR was present in the

mitochondrial fraction, as shown by dot blot (Figure S4A) and im-

munostaining (Figure S4B), although nuclear GR was also de-

tected (Figure S4B). Therewas increasedmitochondrial complex

I activity (Figure 4A) and ATP production (Figure S4C) in patient

cells and detachment and loss of cristae in patient mitochondria,

as revealed by EM (Figure 4B). There was also increased MMP,

mito-Ca2+, mitochondrial ROS, andmito-K+ in patient fibroblasts

(Figure 4C). Thus, altered mitochondrial inner membrane struc-

ture and ion homeostasis are conserved features of C9-ALS.

We also observed GR interactions with Mic27/Apool in patient fi-

broblasts (Figure S4D). Nigericin treatment (Figures 4D–4F) or

knockdown of key MICOS components (Figures S4E–S4G)

rescued the mitochondrial defects in patient fibroblasts. Nigeri-

cin treatment also reduced the GR-induced mito-K+ increase in

HEK293 cells transfected with GR80 (Figure S4H). Nigericin

treatment (Figure 4G) or knockdown of key MICOS components

(Figure S4I) reduced the GR level in patient cells, but nigericin

had no effect on the GA level (Figure S4J). The coexistence of

GR and other DPRs (GA and PR), the mitochondrial accumula-

tion of GR, and the specific effect of nigericin on the GR level

were observed in independent patient fibroblast cell lines (Fig-

ures S4K–S4M). These data support the notion that poly(GR)-

induced alterations of MICOS and ion homeostasis contribute

to mitochondrial toxicity in C9-ALS.
Figure 3. Effect of GR80 on MICOS and Mitochondrial Ion Homeostasi
(A and B) CoIP assay showing FLAG-GR80 interaction with MICOS components

GR80 and Myc-tagged mitofilin in fly muscle tissue (B).

(C) TEM images showing effect of RNAi of Mic19 or Mic60 on cristae morpholog

(D and E) Immunoblots showing effects of Mic19 or Mic60 RNAi (D) or Mic19 OE

(F) CoIP assay showing stronger GR80-Mic27 interaction compared with GR80-

(G) Reverse coIP under non-crosslinking condition showing Mic27/GR80 interac

(H) CoIP assay showing the effect of GR80 on Mic10 interaction with other MICO

(I) Immunoblots showing the effect of Mic27 or Mic10 RNAi on GR80 protein lev

(J and K) Increased MMP in GR80 fly muscle as detected with the tetraethylbenz

(TMRM) (K) dye, and its rescue by the genetic manipulation of MICOS component

Student’s t test.

(L and M) Effect of nigericin treatment on mitochondrial morphology (L) and wing

(N and O) Immunoblots showing the effect of nigericin on GR80 level in fly muscle

Immunoblots are representative of at least 2 independent repeats. See also Figu
DISCUSSION

Mitochondrial dysfunction is a common and early feature

observed in neurodegenerative diseases. The pathogenic role

of mitochondrial dysfunction has been extensively studied in

SOD1-linkd ALS (Palomo and Manfredi, 2015) and is also linked

to C9-ALS/FTD (Yang et al., 2015; Konrad et al., 2017; Choi et al.,

2019), but the underlying mechanism is not well defined. We

show that poly(GR) can enter mitochondria and associate with

MICOS, altering the balance and stoichiometry of the MICOS

subcomplexes and impairing mitochondrial function. Our find-

ings of poly(GR) entering mitochondria and causing mitochon-

drial toxicity resonate with previous studies (Choi et al., 2019)

that identify mitochondrial protein ATP5A1 as a binding partner

of poly(GR). These results support the notion that G4C2

repeat-derived DPRs can target diverse essential organelles

and cellular structures to cause cellular toxicity and contribute

to C9-ALS/FTD pathogenesis. The composition and length of

DPRs produced in disease have not been systematically deter-

mined. It is possible that they vary in a cell-type-specific manner

and may interact with different partners or interfere with different

cellular structures. This may confer cell-type selectivity of vulner-

ability. Supporting this notion, a recent study found a specific in-

crease in poly-GR among the DPRs tested, and evidence of

mitochondrial defect, in iPSC-derived C9-ALS/FTD muscle cells

(Lynch et al., 2019). Future studies will test whether MICOS de-

fects may underlie the mitochondrial defects in patient iPSC-

derived C9-ALS/FTD muscle cells.

Our results implicate a causal and direct link between MICOS

dysfunction and C9-ALS/FTD. MICOSs are dynamic structures

that organize the IMM into domains of a broader respiratory

network. In addition to forming membrane boundaries that limit

the dynamic distribution of membrane proteins, the MICOSs at

CJ help partition metabolites between the intracristal spaces

and IMSs and thus influence OxPhos. How these structures

change their number, composition, position, morphology, and

interactions with other mitochondrial complexes in response to

metabolic demand or stress is poorly understood. Our results

indicate that by interacting with MICOS component Mic27, pol-

y(GR) weakens the interaction between Mic27 and Mic10 while

strengthening the interaction between Mic10 and Mic60/

Mic19/Opa1/LETM1 proteins. Mic10 and Opa1 have both been

shown to form oligomers, which are required for membrane
s
Mic60 (Mitofillin) and Mic19 (CHCHD3) in HEK293T cells (A) or between FLAG-

y in GR80 flies.

(E) on GR80 level in fly muscle.

Mic10 (Minos1) interaction in HEK293T cells.

tion.

S components in HEK293 cells.

el in fly muscle.

imidazolylcarbocyanine iodide (JC-1) (I) or tetramethylrhodamine methyl ester

s (K). The graphs show quantification (n = 5, 3 biological repeats). ***p < 0.001 in

posture (M) of GR80 flies. *p < 0.05, c2 test (n = 1).

(N) and the effect of nigericin or monensin on GR80 level in HEK293T cells (O).

re S3.
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Figure 4. Mitochondrial Defects in C9-ALS Patient Fibroblasts and Effect of Nigericin and Genetic Manipulation of MICOS Components

(A) Measurement of complex I activity in control and patient fibroblasts (n = 3).

(B) TEM images of mitochondria in control and patient fibroblasts. The graph shows quantification (n = 3).

(C) Altered MMP, mito-Ca2+, mito-ROS, and mito-K+ in patient fibroblasts. The graphs show quantification (n = 3).

(D–F) Effects of nigericin treatment onmitochondrial morphology (D), ATP level (E), ormito-K+ level (F) in patient fibroblasts. The graphs showquantification (n = 4).

(G) Dot blot assay showing effect of nigericin onGR protein levels in total or mitochondrial fraction (top) in patient fibroblasts. Complex IV subunit 1 (upper) or actin

(lower) serves as a loading control.

*p < 0.05, **p < 0.01, and ***p < 0.001, 1-way ANOVA test followed by SNK test plus Bonferroni correction (E and F), or 2-tailed Student’s t test (A and C).

Immunoblots are representative of at least 2 independent repeats. See also Figure S4.
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bending at the CJ in the case of Mic10 (Barbot et al., 2015), and

CJ remodeling in response to metabolic demand and apoptotic

stimuli in the case of Opa1 (Frezza et al., 2006). We show that

GR80 promotes Opa1 oligomer formation and tightening of CJ

and that by interacting with MICOS components, poly(GR) itself

becomes stabilized. This vicious loop may perpetuate GR

toxicity in the disease state.

We find that genetic manipulation of MICOS has a profound

effect on poly(GR) level, suggesting that a dynamic equilibrium

between the mitochondrial and extra-mitochondrial pools of

poly(GR) exists and that mitochondria play an important role in

poly(GR) metabolism. How poly(GR) interacts with and impairs

these multi-protein assemblies and the mechanism of MICOS

and mitochondria in regulating poly(GR) metabolism are inter-

esting questions for future investigation. Since aberrant cristae

morphology is frequently seen in disease (Wollweber et al.,

2017) and during aging (Takahashi et al., 1970), other disease-

causing genes or the aging process may directly or indirectly
8 Cell Reports 32, 107989, August 4, 2020
affect the MICOS to alter mitochondrial structure and function,

and further studies of the mechanisms involved will offer novel

insights into the pathophysiology.

Our results also implicate altered mitochondrial ion homeosta-

sis in C9-ALS/FTD pathogenesis. The K+/H+ antiporter nigericin

can effectively rescue mitochondrial cristae morphology and

various physiological parameters in fly models and independent

patient fibroblast cell lines. Nigericin was previously shown to

rescue LETM1 deficiency-induced mitochondrial swelling and

ion dyshomeostasis in yeast and mammalian cells (Nowikovsky

et al., 2007; Dimmer et al., 2008), suggesting that LETM1

dysfunction may be relevant to poly(GR) toxicity. Nigericin can

also affect cancer-related signaling and has been explored as

an anticancer agent in preclinical studies (Hegazy et al., 2016).

However, given its prominent pro-inflammatory activity, its use

in ALS patients may require the careful determination of an effec-

tive therapeutic window, as inflammation is implicated in ALS

pathogenesis (McCauley and Baloh, 2019). Should future
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studies validate the beneficial effects of MICOSmodification and

nigericin treatment in animal models that do not rely on GR OE

and in C9-ALS/FTD patient iPSC-derived muscle cells or motor

neurons, further modification of nigericin or related K+/H+ anti-

porters is warranted to develop potential therapeutic agents.
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Antibodies

Mouse anti-FLAG Sigma-Aldrich F1804

Rabbit anti-FLAG Sigma-Aldrich F7425

Chicken anti-GFP Abcam ab13970

Mouse anti-TOM20 Santa Cruz Biotech sc17764

Mouse anti-Opa1 BD Biosciences 612806

Mouse anti-Tom40 Santa Cruz Biotech sc365467

Mouse anti-Tom70 Santa Cruz Biotech sc390545

Mouse anti-VDAC1 Santa Cruz Biotech sc390996

Rabbit anti-cytochrome C Abcam ab90529

Rabbit anti-C-I30 Abcam ab14711

Mouse anti-Core2 Santa Cruz Biotech sc390378

Mouse anti-alpha-tubulin Proteintech 66031

Rabbit anti-Grp75 Cell Signaling 2816

Mouse anti-Hsp60 Santa Cruz sc-59567

Mouse anti-C-IV s.1 Abcam ab14705

Rat anti-HA Roche 3F10

Mouse anti-actin Sigma-Aldrich A2228

Rabbit anti-mitofilin Abcam ab48139

Rabbit anti-CHCHD3 Abcam ab98975

Mouse anti-ApooL Santa Cruz Biotech sc-390958

Mouse anti-LETM1 Abcam ab55434

Mouse anti-Myc Santa Cruz Biotech 9E10

Rabbit anti-Minos1 Abcam ab84969

Rabbit anti-fly-Opa1 Sigma-Aldrich M6319

Rat anti-poly (GR) Millipore MABN778

Rabbit anti-poly (GR) Millipore ABN1361

Rabbit anti-poly(GA) Proteintech 24492-1-AP

Rabbit anti-poly(PR) Proteintech 23979-1-AP

Rabbit anti-ATP6 Abcam AB102573

Goat anti-Mouse IgG-HRP Santa Cruz sc-2005

Goat anti-Rabbit IgG HRP Santa Cruz sc-2004

Goat anti-Chicken IgY (H+L) Secondary

Antibody, Alexa Fluor 488

Invitrogen A11039

Goat anti-Rabbit IgG (H+L) Highly Cross-

Adsorbed Secondary Antibody, Alexa Fluor

488

Invitrogen A11034

Goat anti-Rabbit IgG (H+L) Highly Cross-

Adsorbed Secondary Antibody, Alexa Fluor

568

Invitrogen A11036

Goat anti-Mouse IgG (H+L) Cross-

Adsorbed Secondary Antibody, Alexa Fluor

568

Invitrogen A11004

Goat anti-Mouse IgG (H+L) Cross-

Adsorbed Secondary Antibody, Alexa Fluor

633

Invitrogen A21050

(Continued on next page)
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DAPI Sigma-Aldrich D9542

Chemicals, Peptides, and Recombinant Proteins

Nigericin Cayman Chemical 11437

Monensin sodium salt Sigma-Aldrich M5273

EDC (1-ethyl-3-(3-dimethylaminopropyl)

carbodiimide hydrochloride)

Thermo Scientific 22980

Lipofectamine 3000 Invitrogen L3000015

Lipofectamine RNAi-MAX Invitrogen 13778150

Tris base Sigma-Aldrich 11814273001

Glycine Sigma-Aldrich G8898

SDS Sigma-Aldrich L3771

Anti-FLAG M2 affinity gel Sigma-Aldrich A2220

Normal goat serum Jackson ImmunoResearch 005-000-121

Pierce 16% Formaldehyde (w/v), Methanol-

free

Thermo Fisher 28908

TritonTM X-100 Sigma Aldrich T9284

DMEM, high glucose, GlutaMAX

Supplement

GIBCO 10566016

Schneider’s Medium GIBCO 21720-024

Percoll GE Healthcare 17089101

EDTA Sigma-Aldrich E9884

EGTA Sigma-Aldrich E3889

Dimethyl sulfoxide Sigma-Aldrich D8418

2XLaemmli sample buffer Biorad 161-0737

Protease inhibitor cocktail Bimake B14012

Critical Commercial Assays

ATP Bioluminescence Assay Kit HS II Roche 11699709001

Complex I Enzyme Activity Microplate

Assay Kit

Abcam ab109721

Protease K digestion kit Thermo Fisher AM2548

RNeasy Mini kit QIAGEN 74104

iScript cDNA synthesis ki Biorad 1708890

PowerUp SYBR Green Master Mix Applied Biosystems A25741

Western Lightning Plus-ECL PerkinElmer Inc. NEL105001EA

HyBlot CL Autoradiography Film Denville Scientific Inc. 1159M38

Tetramethylrhodamine (TMRM) Invitogen T668

MitoSox Invitogen M36008

Rhod-2, AM Invitogen R1244

MitoPOP Dr. Karin Nowikovsky N/A

JC-1 Invitogen T3168

Q5 Site-Directed Mutagenesis Kit New England Biolabs E0554S

NuPAGE� MOPS SDS running buffer Invitrogen NP0001

NuPAGE 4-12% Bis-Tris Protein Gels Invitrogen NP0321

Oligonucleotides

qRT-PCR primer: actin42A Forward:

TCTTACTGAGCGCGGTTACAG

This paper N/A

qRT-PCR primer: actin42A Reverse:

ATGTCGCGCACAATTTCAC

This paper N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

qRT-PCR primer: mic10 Forward:

TCACCCTGCTCTTCTTCCG

This paper N/A

qRT-PCR primer: mic10 Reverse:

ACGATATGCCACGCCCAC

This paper N/A

qRT-PCR primer: ApooL Forward:

AATCATGGCGGCGGTTGC

This paper N/A

qRT-PCR primer: ApooL Reverse:

TGTGCCTTAGCGGTTTCC

This paper N/A

Stealth RNAi siRNA Negative Control Hi GC Invitrogen 12935-400

Stealth RNAiTM siRNA of Opa1 Invitrogen HSS107432

Stealth RNAiTM siRNA of Letm1 Invitrogen HSS106021

Stealth RNAiTM siRNA of Tom40 Invitrogen HSS145636

Stealth RNAiTM siRNA of Mitofilin-IMMT Invitrogen HSS116992

Stealth RNAiTM siRNA of CHCHD3 Invitrogen HSS147816

Stealth RNAiTM siRNA of ApooL Invitrogen HSS175195

Stealth RNAiTM siRNA of Minos1 Invitrogen AS029RSI

Recombinant DNA

pcDNA3.1-Flag-GR80 Dr Fen-Biao Gao N/A

pCMV6-C1Orf151 (Minos1)-DDK-Myc Origene RC212930

Software and Algorithms

SPSS IBM https://www.ibm.com/analytics/

spss-statistics-software

Excel Microsoft https://www.microsoft.com/en-us/

microsoft-365/excel

Fiji ImageJ National Institute of Health https://imagej.nih.gov/ij/

Deposited Data

Mendeley Dataset This Paper https://data.mendeley.com/datasets/

sd3rtdy7sn/1

Experimental Models: Cell Lines

HEK293 cell line ATCC CRC-1573

HeLa cell line Gift from Dr. Richard Youle N/A

Normal fibroblast cell line #1 Coriell Institute ND29510

Normal fibroblast cell line #2 Coriell Institute ND29971

C9ALS fibroblast cell line #4 Gift from Dr. Aaron Gitler Kramer et al., 2016

C9ALS fibroblast cell line #6 Gift from Dr. Aaron Gitler Kramer et al., 2016

C9ALS fibroblast cell line #7 Gift from Dr. Aaron Gitler Kramer et al., 2016

Experimental Models: Organisms/Strains

UAS-Flag-GR80 Gift from Dr. Fen-Biao Gao Yang et al., 2015

UAS-Flag-GA80 Gift from Dr. Fen-Biao Gao Yang et al., 2015

UAS-Flag-PR80 Gift from Dr. Fen-Biao Gao Yang et al., 2015

UAS-mito-GFP Gift from Dr. William Saxton N/A

UAS-mito-GCaMP Gift from Dr. Fumiko Kawasaki N/A

UAS-Myc-Mitofilin Gift from Dr. Xinnan Wang N/A

UAS-dOpa1-Flag, from Dr. Leo Pallanck Gift from Dr. Leo Pallanck N/A

UAS-dOpa1-RNAi Gift from Dr. Leo Pallanck N/A

UAS-GR100 Bloomington Drosophila Stock Center

(BDSC)

#58696

UAS-PA100 BDSC #58699

UAS-G4C2-36 BDSC #58688

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

UAS-PR100 BDSC #58698

UAS-G4C2-36-RNA Only BDSC #58689

UAS-PA36 BDSC #58695

UAS-PR36 BDSC #58694

UAS-GA100 BDSC #58697

UAS-GA36 BDSC #58693

UAS-GR36 BDSC #58692

UAS-Drp1 BDSC #51647

UAS-Marf-RNAi BDSC #55189

Chchd3 RNAi BDSC #51157

Chchd3 RNAi BDSC #38984

Chchd3 EP BDSC #11599

Mitofilin RNAi BDSC #63994

Letm1 RNAi BDSC #37502

Tom40 RNAi BDSC #26005

Mic10 RNAi BDSC #63669

ApooL RNAi BDSC #66933

Minos1-HA FlyORF F002914

Letm1-HA FlyORF F001238

Tim17b RNAi VDRC v103529

Report
ll

OPEN ACCESS
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagentsmay be obtained from the LeadContact, Bingwei Lu (bingwei@stanford.

edu)

Materials Availability
All unique/stable reagents generated in this study are available from the Lead Contact with a completed Materials Transfer

Agreement.

Data and Code Availability
Original/source data for all figures in the paper is available at Mendeley Data: https://data.mendeley.com/datasets/sd3rtdy7sn/1

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Drosophila Stocks
The indicated UAS RNAi and OE fly lines were crossed toMhc-Gal4 driver line for muscle expression. See Key Resources Table for

genotypes. Fly culture and crosses were performed according to standard procedures and raised at indicated temperatures. Flies

were generally raised at 25�C andwith 12/12 hr dark/light cycles. Fly foodwas prepared with a standard receipt (Water, 17 L; Agar, 93

g; Cornmeal, 1,716 g; Brewer’s yeast extract, 310 g; Sucrose, 517 g; Dextrose, 1033 g). Unless otherwise indicated in the figure

legend, male flies at 2-3 weeks of age were used for the experimental procedures described.

Cell Lines
HeLa cell was a gift from Dr. Richard Youle (NINDS/NIH). HEK293T cells were purchased from ATCC. Control fibroblast line #1 and

control fibroblast line #2 were obtained from the Coriell Institue. Control fibroblast line #1 was from a 55-year old female subject (Cor-

iell ID ND29510). Control fibroblast line #2 was from a 61-year female subject (Coriell ID ND29971). The three C9orf72 expansion ALS

patient fibroblast lines were generously shared by Dr. Aaron Gitler and were described before (Kramer et al., 2016). C9ALS fibroblast

line #4 was from a 55-year old male patient, C9ALS fibroblast line #6 was from a 61-year old male patient, and C9ALS fibroblast line

#7 was from a 62-year old male patient. Unless otherwise indicated, C9ALS fibroblast line#6 was used for most experiments.

HEK293T cells, control fibroblasts and C9ALS patient fibroblasts were cultured under standard tissue culture conditions (1x

DMEM medium - GIBCO, 10% FBS, 5% CO2, 37�C).
e4 Cell Reports 32, 107989, August 4, 2020
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METHOD DETAILS

Drosophila behavioral tests and ATP measurement
For all wing posture assays, male flies at 1 day, 7-day and 14�15-day old were scored and all the experimental groups were aged at

25�C. 25�30 male flies were collected/raised in one vial and 3�4 independent vials were counted per genotype.

ATP measurements in fly thoracic indirect flight muscle were performed according to published protocols, using a luciferase-

based bioluminescence assay (ATP Bioluminescence Assay Kit HS II, Roche Applied Science). For each test, three thoraces were

carefully dissected by removing heads, wings, legs and abdomen from whole flies, and the remaining part quickly homogenized

in 100 ml lysis buffer (provided by kit). The tissue lysates were then boiled for 5 min at 100�C and briefly cleared by centrifugation

at 20,000 g for 2 mins. The supernatant was transferred to a new tube and kept on ice. 2.5 ml of cleared tissue lysate was mixed

with 187.5 ml dilution buffer and 10 ml luciferase reagent. The luminescence signal was briefly mixed and immediately measured

by a Lumat LB 9507 tube luminometer (Berthold Technologies). For each genotype or drug treatment group, at least 3�4 indepen-

dent tests were assayed.

Immunoblots and Immunostaining
Antibodies used for western blot and immunostaining were mouse anti-Flag (1:1,000, Sigma-Aldrich, F1804), rabbit anti-Flag

(1:1,000, Sigma-Aldrich, F7425), mouse anti-TOM20 (1:1,000, Santa Cruz, sc17764), mouse anti-Tom40 (1:1000, Santa Cruz,

sc365467), mouse anti-Tom70 (1:1000, Santa Cruz, sc390545), mouse anti-VDAC1 (1:1000, Santa Cruz, sc390996), rabbit anti-cy-

tochrome C (1:1000, Abcam, ab90529), rabbit anti-C-I30 (1:1000, Abcam, ab14711), mouse anti-Core2 (1:1000, Santa Cruz,

sc390378), mouse anti-OPA1 (1:1000, BD Biosciences 612806), rat anti-HA (1:1000, Roche, 3F10), mouse anti-actin (1:5000, Sigma,

A2228), rabbit anti-mitofilin (1:1000, Abcam, ab48139), rabbit anti-CHCHD3 (1:1000, Abcam, ab98975), mouse anti-ApooL (1:1000,

Santa Cruz, sc-390958), mouse anti-LETM1 (1:1000, Abcam, ab55434), mouse anti-Myc (1:1000, Santa Cruz, 9E10), rabbit anti-

Minos1 (1:1000, Abcam, ab84969), rabbit anti-fly-Opa1(1:1000, Sigma, M6319). Antibodies for dot blot: rat anti-poly (GR) (1:500,

Millipore, MABN778), rabbit anti-poly(GA) (1:500, Proteintech, 24492-1-AP), rabbit anti-ATP6 (1:1000, abcam, AB102573), mouse

anti-Flag (1:1000, Sigma, F1804), mouse anti-actin (1:3000, Sigma, A2228).

Nigericin treatment of Drosophila

Newly hatched flies were collected and placed into vials with instant fly food (Carolina Biological Supply Company, USA) mixed with

different doses (0, 2, 10 and 50 mM) of Nigericin (Cayman Chemical, 11437) from the stock solution (50 mM dissolved in DMSO). The

flies were fed for 7 days and changed with fresh vial every 24 hours. After treatments, fly thoracic samples were harvested and used

for sample preparation.

Fly muscle staining
For immunohistochemical analysis of mitochondrial morphology of adult fly indirect flight muscles, 5-day old male flies from 29�C
were assayed. In muscle staining, at least 5 individuals were examined for each genotype and the representative images were pre-

sented. Dissected tissue sampleswere brieflywashedwith 1x PBS and fixedwith 4% formaldehyde in 1x PBS containing 0.3%Triton

X-100 for 45 minutes at room temperature. Fixatives were subsequently blocked with 1x PBS containing 5% normal goat serum and

incubated for 60 minutes at room temperature followed by incubation with primary antibodies at 4�C overnight. The primary anti-

bodies used were: chicken anti-GFP (1:5,000, Abcam) and mouse anti-FLAG (1:1,000; Sigma). After three washing steps with 1x

PBS/0.25 % Triton X-100 each for 15 minutes at room temperature, the samples were incubated with Alexa Fluor� 594-conjugated

and Alexa Fluor� 488-conjugated (1:500, Molecular Probes) for 3 hours at room temperature and subsequently mounted in Slow-

Fade Gold (Invitrogen).

MitoSox, TMRM, Rhod2, JC-1, and mitoPOP staining and mito-GCaMP imaging
Fly thoraxes were isolated by removing heads, wings, legs and abdomen from whole flies and dissected in the Schneider’s Medium

(cat#: 21720-024, GIBCOTM). Samples were briefly washed oncewith freshmedium and stained in Schneider’s medium at room tem-

perature for 30 minutes in the dark box. The dilutions of the dyes are: MitoSox 5 mM, TMRM 200 nM, JC-1 5 mM, Rhod-2 5 mM and

mitoPOP 5 mM. After staining, the samples were washed 3 times with Schneider’s Medium and directly applied to observation with

Leica SP8 confocal microscope. MitoSox, TMRM, Rhod2, and JC-1 were purchased from Molecular Probes. Mito-POP was

described before (Austin et al., 2017). For mito-GCaMP live imaging, flies thoraxes were isolated as indicated before. The thoracic

muscles were dissected in the Schneider’s Medium. Samples were briefly washed once with fresh medium and then quickly

observed under confocal microscope (Leica SP8). For data quantification, signal intensity was measured and calculated using

NIH ImageJ.

Mitochondrial respiratory complexes activity assay
The individual activity of the mitochondrial respiratory complexes in Figure 1D was measured at the service of Metabiolab Inc.,

(France). Mitochondrial complex- I activities shown in Figures 4A and S4G were measured by using a Complex I Enzyme Activity Mi-

croplate Assay Kit (Colorimetric) (ab109721, abcam), with the A450 nm signal measured using a plate-reader (Cytation3, BioTek Inc).
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Dot-blot assay
Samples (fly thoraxes and human fibroblasts) were lysed in cell lysis buffer [50 mM Tris-HCl, pH7.4, 150 mMNaCl, 5 mM EDTA, 10%

glycerol, 1% Triton X-100, 0.1mg/ml cycloheximide, 1x RNase inhibitor, and Complete protease inhibitor cocktail (cat#: B14012, Bi-

make)]. The extracts were briefly pre-cleared by centrifugation and measured concentration by the BCAmethod (BioRad). The sam-

ple concentrations were adjusted to 2 mg/ml andmixed with 2x SDS sample buffer (BioRad). The samples were blotted on HybondTM-

C super NC membrane, air-dried, blocked in 5% dry milk (in TBST) and incubated with primary antibody for overnight at 4�C. The
secondary antibody incubation and developing were performed following similar procedures as for western blots. For data quanti-

fication, signal intensity was measured and calculated using NIH ImageJ.

Transmission EM, immune-gold EM, and analysis of mitochondrial morphology
For TEM, dissected fly adult thoraces from 2-3 week old flies, or control and C9orf72 patient fibroblasts were fixed 1 hour in modified

Trump’s fixative (0.1 M sodium cacodylate buffer, 1% glutaraldehyde, and 4% formaldehyde) at room temperature and kept at 4�C
overnight. All samples were processed, trimmed and stained by standard methods. For immunogold labeling, samples were fixed in

Karnovsky’s fixative: 2% Glutaraldehyde (EMS Cat# 16000) and 4% paraformaldehyde (EMS Cat# 15700) in 0.1M Sodium Cacody-

late (EMS Cat# 12300) pH 7.4 for 1 hr. The fix was replaced with cold/aqueous 1% Osmium tetroxide (EMS Cat# 19100) and were

then allowed to warm to Room Temperature (RT) for 2 hr rotating in a hood, washed 3Xwith ultrafiltered water, then en bloc stained in

1% Uranyl Acetate at RT 2hrs while rotating. Samples were then dehydrated in a series of ethanol washes for 30 minutes each @ RT

beginning at 50%, 70% EtOH then moved to 4�C overnight. They were place in cold 95% EtOH and allowed to warm to RT, changed

to 100% 2X, then Propylene Oxide (PO) for 15 min. Samples are infiltrated with EMbed-812 resin (EMS Cat#14120) mixed 1:2, 1:1,

and 2:1 with PO for 2 hr eachwith leaving samples in 2:1 resin to PO overnight rotating at RT in the hood. The samples are then placed

into EMbed-812 for 2 to 4 hours then placed into molds w/labels and fresh resin, orientated and placed into 65�C oven overnight.

Sections were taken around 80nm, picked up on formvar/Carbon coated slot Cu grids, stained for 40seconds in 3.5%Uranyl Acetate

in 50% Acetone followed by staining in Sato’s Lead Citrate for 2 minutes. For immunolabelling, sections were subjected to micro

etching with 10% periodic acid in water for 15 minutes on parafilm, followed by 3x wash with ddH2O/5 min each. This was followed

by elution of osmium with 10% sodium metaperiodate in H2O for 15 minutes on parafilm. After 3x washes with ddH2O/5 min each,

samples were blocked in Standard Block (0.5% BSA, 0.5% Ovalbumin in PBST) for 30 min, quenched with 0.5M glycine in PBS for

10min, washedwith PBS 2x/2min each, and blocked again with Standard Block for 20min. Primary antibodies were added at 1:1000

for mouse anti-Flag and 1:50 for rabbit anti-Opa1 and incubated at 4�C O/N. Samples were washed 2x in Standard Block/10 min

each, 2x in PBS/10 min each, and then incubated with secondary antibodies (EM GAR15 and EM GMHL5) at 1:20 for 1 hour and

20 min at RT. Samples were washed 2x with PBST/5 min each, 2x with ultrapure H2O (drop then stream), and contrast stained

with 3.5% Uranyl Acetate in 50% Acetone (35 s then rinse in stream) and 0.2% Lead Citrate (35 s then rinse in stream). Samples

were observed in the JEOL JEM-1400 120kV. Images were taken using a Gatan Orius 832 4k X 2.6k digital camera with 9um pixel.

For mitochondrial morphology analyses, in Figures 1C and 2H, the cristae number of mitochondria in indirect flight muscle were

counted in the TEM images with the magnification of 6,000 x. A 2 mm x 6 mm rectangle area was selected in the TEM mitochondrial

images and all the mitochondrial cristae in this area were counted. 5 individual samples were counted per genotype. In Figure 2C, the

number of gold particles in indirect flight muscle samples were counted in the TEM images with themagnification of 6,000 x. A 2 mmx

4 mm rectangle area was selected in the TEM images and the gold particles in this area were counted and categorized as inside mito-

chondria or outside mitochondria. 4 individual samples were counted per genotype. In Figure S2G, the gold particle numbers in in-

direct flightmuscle samples were counted in the TEM imageswith themagnification of 8,000�12,000 x. A 2 mmx 4 mm rectangle area

was selected in the TEM images and the gold particles in this area which were close to the mitochondrial inner membrane (less than

40 nm)were counted. 4 individual sampleswere counted per genotype. In Figure S2J, the gold particle numbers of GR80 andOPA1 in

fly indirect flight muscle samples were counted in TEM images with the magnification of 8,000 �12,000 x. A 2 mm x 4 mm rectangle

mitochondria area was selected and the gold particles in this area that were close to the mitochondrial inner membrane (less than

40 nm) were counted. 4 individual samples were counted per genotype. In Figures S2L and S2M, the cristae junction diameters in

fly indirect flight muscle samples were measured by ImageJ in the TEM images with the magnification of 8,000 �12,000 x, n = 22

�25 cristae junctions from mitochondria of 4 different samples were measured per genotype. Methods similar to mitochondrial

morphology quantification in flymuscle samples were used for patient fibroblast analysis in Figures 4B, 4D, and S4D. The total cristae

number aswell as attached and detached cristae number ofmitochondria in the normal andC9ALS patient fibroblast were counted at

magnification of 5,000 x, A 2 mmx 6 mm rectangle area was selected from the TEM images for analysis. All themitochondrial cristae in

the area were counted. 6 individual samples were counted per genetic background.

Cell lines, plasmids, cell culture and cell transfection conditions
RegularHeLacellsandHEK293Tcells (ATCC)wereculturedunderstandardconditions (1xDMEMmedium,5%FBS,5%CO2,37�C).HeLa
andHEK293TCell transfectionswereperformedbyusingLipofectamine3000 (cat#: L3000015, Invitrogen), and si-RNAknockdownexper-

iments were performed using Lipofectamine RNAiMAX reagent (cat#: 13778150, Invitrogen), according to manufacturer’s instructions.

The pcDNA3-Flag-GR80 plasmidwas reported before (Yang et al., 2015). TheMinos1-Myc plasmidwasmodified from the pCMV6-

C1Orf151 (minos1)-DDK-Myc (Origene-RC212930) plasmid by deleting the DDK sequence using the Q5 Site-Directed Mutagenesis

Kit (E0554S, NEB).
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RNAi in mammalian cells and patient fibroblasts
All siRNAs used for the RNAi experiments were purchased from Thermo Fisher. Briefly, HeLa cells and patient fibroblast cells were

transfected with lipofectamine RNAiMAX reagent (Invitrogen, 13778) according to standard protocol. After 72 hours transfection,

cells were washed with warm PBS, followed by lysis and western blot analysis. siRNA sequences used for individual are as follows:

siOPA1(HSS107432), siLetm1(HSS106021), siTom40(HSS145636), siMitofilin-IMMT(HSS116992), siCHCHD3(HSS147816), siA-

pooL(HSS175195), siMinos1(AS029RSI). C9-ALS patient fibroblasts andmatched control fibroblasts were described before (Kramer

et al., 2016) and kindly provided by Dr. Aaron Gitler.

RT-PCR
For qRT-PCR analysis of RNAi efficiency, total RNAs were extracted from fly thoraxes by using the RNeasy�Minikit (QIAGEN), and

cDNAs were obtained by reverse transcription using the iScript cDNA synthesis kit (Bio-Rad). cDNA templates were then subjected

to reaction with PowerUp SYBR Green Master Mix (Applied Biosystems) and analyzed by StepOnePlus real-time PCR system

following manufacture’s standard PCR thermal cycling procedure. Calculated data were obtained by using StepOne software

V2.3. Relative mRNA levels normalized to actin for statistical quantification in Excel. PCR primers used are as follows:

Actin42A sense: 50TCTTACTGAGCGCGGTTACAG30

Actin42A anti-sense: 50ATGTCGCGCACAATTTCAC30

Mic10 sense: 50 TCACCCTGCTCTTCTTCCG30

Mic10 anti-sense: 50 ACGATATGCCACGCCCAC30

ApooL sense: 50AATCATGGCGGCGGTTGC30

ApooL anti-sense: 50TGTGCCTTAGCGGTTTCC30

Mitochondrial assays
Tetramethylrhodamine (TMRM) (T668) was purchase from Invitrogen. For cell staining, normal and C9orf72 patient fibroblast were

cultured in standard condition. One day later, cell growth medium was removed and 100 nM TMRM solution was added into cell

to incubate for 30min. Live cell imagine was taken under 574 nm emission filter by using Leica SP8.

For muscle staining, fly muscles with various genetic manipulations were dissected in cold 1xPBS. Muscles were subsequently

incubated with 100 nM TMRM solution in PBS 30min at room temperature, followed by taking images using Leica SP8 confocal mi-

croscope. Red mitochondrial superoxide indicator-mitoSOX (M36008) was obtained from Molecular Probes. Briefly, normal and

C9orf72 patient fibroblast were cultured in 24 well plates with 12 mm coverslip. Cells were incubated with 1mM mitoSOX for

10min at 37�C. Later on, cells were washed with warm PBS for 3 times. Live cell images were taken using the 580 nm emission filter

of Leica SP8 confocal microscope. For data quantification, signal intensity was measured and calculated using NIH ImageJ.

Mitochondria isolation and cross-linking
Intact mitochondria from in vitro human cells and fly tissues were purified and quality controlled for the absence of contamination by

other organelles according to established procedures. For analysis of fly samples, male flies at appropriate ages were used for

thoracic muscle dissection. Samples were homogenized using a Dounce homogenizer. After two steps of centrifugation (1,500 g

for 5 minutes and 13,000 g for 17 minutes), the mitochondria pellet was resuspended and washed twice with HBS buffer (5 mM

HEPES, 70 mM sucrose, 210 mM mannitol, 1 mM EGTA, 1x protease inhibitor cocktail), then resuspended and loaded onto Percoll

gradients. After centrifugation (16700 rpm, 15minutes, Beckman SW-40Ti rotor), the fraction between the 22% and 50%Percoll gra-

dients containing intact mitochondria was carefully transferred into a new reaction tube, mixed with 2 volumes of HBS buffer, and

pelleted by centrifuging at 20,000 g for 20 minutes at 4�C to collect the mitochondrial samples for further analyses.

After purification, mitochondrial samples were resuspended and incubated with different cross-linking reagents – 1% Formalde-

hyde in pre-chilled HBS, 10mMEDC (#22980, Thermo Fisher) in HBS buffer. The samples were incubated under 25�Cand stopped at

different time point by adding SDS-sample buffer and boiling. The reaction products were subjected to different analyses by following

established procedures.

For the mitoplast preparation and proteinase K sensitivity assays, HEK293T cells were transfected with Flag-GR80 plasmid. After

48h transfection, mitochondria fraction was isolated. Purified mitochondria were re-suspended in a hypotonic buffer containing

20 mM HEPES-KOH pH 7.2 and incubated on ice 30 minutes to allow for mitochondrial swelling. The mitoplasts were isolated by

centrifugation at 64,000 g for 30 minutes. Crude mitochondria or mitoplasts were treated with 1ug/ml proteinase K and incubated

on ice for 30 min. The reactions were terminated by adding 2x SDS loading buffer (Biorad), followed by SDS-PAGE and western

blot analyses.

Immunohistochemical analysis of cultured cells
For immunohistochemical analysis of human cells, HeLa cells, HEK293 cells, or human fibroblasts were cultured on the ethanol-

cleaned cover glass. Cells were washed with 1x PBS 3 times and fixed with 4% formaldehyde in 1x PBS for 30 minutes at room

temperature, later washed and permeabilized with 1x PBS containing 0.25% Triton X-100 for 15 minutes. The fixed samples were

subsequently blocked with 1x PBS containing 5% normal goat serum and incubated for 1 hour at room temperature followed by
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incubation with primary antibodies at 4�C overnight. The primary antibodies used were mouse anti-Flag (1:1,000, Sigma-Aldrich),

rabbit anti-Flag (1:1,000, Sigma-Aldrich), rabbit anti-TOM20 (1:1,000, Santa Cruz), rabbit anti-GR (ABN1361, Sigma-Aldrich,

1:300). The secondary antibodies used were Alexa Fluor� 488, 594 and 633-conjugated antibodies (1:500, Molecular Probes).

Co-immunoprecipitation (co-IP), SDS-PAGE, and western blot analyses
For Flag-GR80 co-IP, HEK293T cells were transiently transfected with pcDNA3.1-Flag-GR80 plasmid. 72 hours post-transfection,

cells were either processed directly for lysis (non-crosslinking condition), or subjected to cross-linking by applying UV cross-linking

and 0.5% formaldehyde in 1x PBS to the attached cells on the Petri dish (crosslinking condition). We homogenized the cells in the

lysis buffer [50 mM Tris-HCl, pH7.4, 150 mMNaCl, 5 mM EDTA, 10% glycerol, 1% Triton X-100, 0.1mg/ml cycloheximide, 1x RNase

inhibitor, and Complete protease inhibitor cocktail (cat#: B14012, Bimake)], additional Phosphatase Inhibitor Cocktail (cat#: B15001,

Bimake) will be applied if phosphorylation signal is to be detected. After centrifugation at 10,000 g for 5 min, the supernatant was

subjected to immunoprecipitation using M2 affinity agarose (Anti-FLAGM2 affinity gel, cat#: A2220, Sigma-Aldrich) at 4�C overnight

with gentle shaking. Subsequently, the beads were washed three times (10 minutes each) at 4�C in lysis buffer, mixed with 2x SDS

Sample buffer, and loaded onto SDS-PAGE gels.

For denaturing-IP, after cross-linking with 1% FA, samples were denatured by adding 2x SDS-sample buffer and boiling, then

diluted 6 times with pre-chilled cell lysis buffer. IP experiment was performed by providing 35 ml M2-FLAG beads (Sigma) and incu-

bated at 4�C overnight.

NuPAGE 4%–12% Bis-Tris Protein Gels (cat#: NP0321BOX, Invitrogen) and NuPAGE�MOPS SDS running buffer (cat#: NP0001,

Invitrogen) were used for SDS-PAGE and immunoblot analyses according to standard procedures. For data quantification of western

blots, signal intensity was measured and calculated using NIH ImageJ.

QUANTIFICATION AND STATISTICAL ANALYSIS

All analyses were performedwith SPSS (IBM, USA). Error bars represent standard deviation (SD). For pairwise comparisons, we used

two-tailed Student’s t test. For comparing multiple groups, we used one-way ANOVA test followed by Student–Newman–Keuls test

(SNK test) plus Bonferroni correction (multiple hypotheses correction). Data in Figure S2M was analyzed and presented by the Box-

and-Whisker Plot. In statistical comparisons, *, # and & indicating p < 0.05 and **, ## and && indicating p < 0.01 were considered as

significant differences.
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Figure S1. Analyses of transgenic flies expressing G4C2 repeats, GR or other DPRs, 

Related to Figure 1. 

(A, B) Analyses of wing posture (A) and jumping/flight ability (B) of the various transgenic flies 

(n=30 males in A and 10 males in B; 3 biological repeats). 

(C) Dot blots quantifying GR expression in the various transgenic fly lines.  

(D) H&E staining of paraffin sections of thoracic muscle showing effect of various transgene 

expression on indirect flight muscle integrity in the corresponding genotypes shown in A.  

(E) TEM images of IFM mitochondrial morphology in the various transgenic flies.  

(F) Monitoring of mitochondrial morphology in thoracic muscle of various transgenic flies co-

expressing a mito-GFP reporter.  

(G) TEM images of IFM mitochondrial morphology in transgenic flies expressing Flag-tagged 

GR80, GA80, and PR80.  

(H) Dot blots quantifying Flag-tagged GR80, GA80, and PR80 expression in the transgenic fly 

lines.  

(I, J) Quantification showing increased ATP level in GR80 (I) and GR100 (J) flies. 

(n=30 flies, 4 biological repeats). 

*, #, &, and $ indicate p<0.05; **, ##, &&, and $$ indicate p<0.01 in one-way ANOVA test 

followed by Student–Newman–Keuls test (SNK test) plus Bonferroni correction. Immunoblots 

are representative of at least two independent repeats. Images in D-G are representative of three 

independent samples. 

 
  



  



Figure S2. Additional analysis of the mitochondrial localization and Opa1 interaction of GR80, 

Related to Figure 2. 

(A) Immunoblots showing robust expression of Flag-GR80 in fly thoracic muscle extract from GR80 

flies. Tubulin serves as loading control.   

(B) Proteinase K sensitivity assay of intact mitochondria and mitoplasts showing similar behavior of 

GR80 and IMS-facing Opa1.  

(C) Dot blots showing the presence of GR80, but not GA80 or PR80, in the mitochondrial 

fraction prepared from thoracic muscle of transgenic flies. GAPDH serves as cytosolic marker; 

mt:ATP6 serves as mitochondrial marker. The residual Flag signals in Flag-GA80 and Flag-

PR80 mitochondrial fractions are largely background signals. Graph shows quantification (n=3). 

(D) Immunostaining showing lack of mitochondrial localization of Flag-GA80 or Flag-PR80 in 

fly thoracic flight muscle expressing a mito-GFP reporter. Images are representative of three 

independent samples. 

(E) Bar graph showing quantification of the effect of Tom40 RNAi or OE on ATP level in GR80 

flies (n=4).  

(F) Immunoblots showing the effect of Tom40 RNAi or OE on GR80 protein level in fly thoracic 

muscle.  

(G) Immune-EM images showing mitochondrial localization of Flag-GR80 in fly thoracic muscle. 

Arrowheads indicate GR80 localized to the matrix (blue) or close to the cristae (red). Graph shows 

quantification (n=4). 

(H, I) Lack of obvious effect on wing posture (H) or GR80 protein expression (I) by genetic 

manipulation of mitochondrial fission or fusion related proteins (n=3). 



(J) Double-label immune-EM analysis of Flag-GR80 and Opa1 co-localization on mitochondrial 

membrane in fly thoracic muscle. Red and blue arrows mark Flag-GR80 and Opa1 signals, respectively, 

labeled with different sized gold particles. Graph shows quantification (n=4). 

(K) Immunoblots showing effect of Flag-GR80 expression on Opa1 oligomer formation in HEK293T 

cells. EDC was used to cross-link Opa1 proteins. The positions of Opa1 monomers and oligomers are 

indicated.  

(L-N) Effect of Opa1 RNAi on CJ morphology (L), CJ diameter (M), or Opa1 oligomer formation (N) in 

GR80 thoracic muscle (n=22~25 CJs analyzed, 3 biological repeats for M).  

* and ** indicate p<0.05 and P<0.01 in one-way ANOVA test followed by Student–Newman–

Keuls test (SNK test) plus Bonferroni correction. Data in M was analyzed and presented by the 

Box-and-Whisker Plot. **, p<0.01. Immunoblots are representative of at least two independent 

repeats. 

 

  



                       



Figure S3. Additional data on GR80 effects on MICOS and mitochondrial ion homeostasis, 

Related to Figure 3. 

(A, B) Bar graphs showing quantification of the effects of RNAi-mediated knockdown of 

CHCHD3 and mitofilin (A) or OE of CHCHD3 with an EP line (B) on wing posture in GR80 

flies (n=90 flies analyzed, 3 biological repeats).  

(C) Immunoblots showing Co-IP between Flag-GR80 and Minos1-HA in fly muscle.  

(D) Quantification of mRNA level by qRT-PCR showing the knockdown efficiency of the 

respective RNAi lines (n=3).  

(E) Bar graph showing quantification of the effect of Mic27 (Apool) RNAi on the wing-posture 

phenotype of GR80 flies (n=3).  

(F) Confocal images showing TMRM staining of MMP in GR80 fly muscle. Graph shows quantification 

(n=6). 

(G) Images showing mito-Ca2+ levels in GR80 fly muscle monitored using mito-GCaMP reporter 

or Rhod2-AM dye. Graphs show quantification (n=3). 

(H) Images showing mito-K+ level monitored using mito-POP in GR80 fly muscle after nigericin 

treatment or after genetic manipulation of MICOS components. Graph shows quantification (n=3).  

(I) Immunoblots showing effects of knockdown or OE of LETM1 on GR80 protein expression in fly 

thoracic muscle.  

(J) Dot blot showing lack of effect of nigericin on GA80 level in HEK293 cells.  

(K) Immunoblots showing effect of nigericin treatment on the interaction between Minos1 and MICOS 

components in transfected HEK293T cells.  



(L) Bar graph showing quantification of mito-K+ level in purified mitochondria from GR80 fly muscle 

with or without genetic manipulation of LETM1 (left) or with or without nigericin treatment (right) 

(n=3). 

*, #, &, and $ indicate p<0.05; ** and *** indicate p<0.01 and P<0.001, respectively, in one-

way ANOVA test followed by Student–Newman–Keuls test (SNK test) plus Bonferroni 

correction. Immunoblots are representative of at least two independent repeats. 

 

  



     

  



Figure S4. Effect of genetic manipulation of MICOS components on mitochondrial defects 

in C9ALS patient fibroblasts, Related to Figure 4.  

(A) Dot blot assay analyzing GR peptide expression in the mitochondria of C9ALS patient 

fibroblasts. Complex-IV, subunit 1 (C-IV s.1) serves as mitochondrial marker, tubulin as 

cytosolic marker.  

(B) Immunostaining showing GR expression in patient fibroblasts and its localization to 

mitochondrial and nuclear compartments. Arrowhead and arrow mark mitochondrial and nuclear 

signals of GR, respectively. Images are representative of three independent samples. 

(C) Quantification of ATP level in normal and C9ALS patient fibroblasts (n=3).  

(D) Co-IP assay showing Apool/GR interaction in patient fibroblasts. Apool is detected by 

standard western blot, GR by dot blot.  

(E) TEM images showing aberrant mitochondrial morphology in C9ALS patient fibroblasts and 

the effect of siRNA-mediated knockdown of various MICOS components in rescuing the cristae 

loss phenotype of patient cells. Graph shows quantification (n=10, 3 biological repeats).  

(F) Quantification of ATP level in C9ALS fibroblasts showing effects of siRNA-mediated 

knockdown of various MICOS components. Scrambled siRNA (siCON) serves as control (n=3).   

(G) Measurements of complex-I activity in C9ALS fibroblasts showing effects of siRNA-

mediated knockdown of various MICOS components (n=3).  

(H) Measurement of mito-K+ level in purified mitochondria from HEK293T cells transfected 

with GR80 and treated with nigericin or LETM1 siRNA, or from control and C9ALS fibroblasts 

with or without nigericin treatment (n=4).  

(I) Dot blot analysis showing effects siRNA-mediated knockdown of various MICOS 

components on GR peptide expression. Actin serves as loading control.  



(J) Dot blot assay showing lack of effect of nigericin on GA level in patient fibroblasts. 

(K) Dot blot assays showing the co-existence of GR, GA, and PR in three independent patient 

fibroblast cell lines. Note that line #6 is used in most experiments. Actin serves as loading 

control.  

(L) Dot blot assays showing the presence of GR in the mitochondrial fraction of additional 

patient fibroblast cell lines #4 and #7. C-I30 and tubulin serve as mitochondrial and cytosolic 

markers.  

(M) Dot blot assays showing the reduction of GR but not GA level by nigericin treatment in 

additional patient fibroblast cell lines #4 and #7. Actin serves as loading control.  

*, **, and *** indicate p<0.05, p<0.01 and P<0.001, respectively, in one-way ANOVA test 

followed by Student–Newman–Keuls test (SNK test) plus Bonferroni correction. Immunoblots 

are representative of at least two independent repeats. 
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