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Supplementary Materials for “Computational Model Predicts Paracrine and 
Intracellular Drivers of Fibroblast Phenotype After Myocardial Infarction” 
 
Supplementary Methods 
 
Alterations to the original network structure 

Additions were made to the original fibroblast signaling network model [1] to make 

predictions more comprehensive of fibroblast phenotype and its effect on the 

extracellular matrix (see Figure S1). Specifically, we introduced three new nodes into the 

network: LOX, x-linked fibers (cross-linked collagen fibers), and contraction. The new 

reactions were supported by at least two published studies that used rat or human 

fibroblasts - the same criteria used in the initial development of the model network [1], 

with literature sources provided in Table S1 [2–9]. Additionally, we separated the nodes 

that represent the levels of the exogenous paracrine inputs to the model from the nodes 

that represent the paracrine signals available to bind to each receptor, as indicated by the 

green nodes at the top of the network on Figure S1. This allowed the exogenous 

paracrine signals to be defined in a time-dependent manner as described below, while still 

modeling the autocrine behavior of some signaling inputs such as AngII.  

Logic-based differential equation modeling framework 

The form of the logic-based differential equations used to model these 

interactions are the same as those used in the original model. Activation is modeled using 

a normalized saturating Hill function where fact(x=0) = 0, fact(x=EC50) = 0.5, and 

fact(x=1)=1. Inhibition is modeled using a a normalized saturating Hill function where 

finhib(x=0) = 1, finhib(x=EC50) = 0.5, and finhib (x=1)=0. Crosstalk between pathways is 

modeled using logical AND (“f(x)*f(y)”) and OR (“f(x) + f(y) - f(x)*f(y)”) operations.  

Example equations are defined below in Equations 1-2: 
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Equation 1: Example logic-based differential equation with an AND relationship 

between C&D => E 

𝑑𝐸

𝑑𝑡
=  

1

𝜏𝐸

(𝑊𝐶𝐷𝐸𝑓𝑎𝑐𝑡(𝐶)𝑓𝑖𝑛ℎ𝑖𝑏(𝐷)𝐸𝑀𝐴𝑋 − 𝐸) 

Equation 2: Example logic-based differential equation with an OR relationship between 

A or E => C 

𝑑𝐶

𝑑𝑡
=  

1

𝜏𝐶
[(𝑊𝐴𝐶𝑓𝑎𝑐𝑡(𝐴) +  𝑊𝐸𝐶𝑓𝑎𝑐𝑡(𝐸) − 𝑊𝐴𝐶𝑓𝑎𝑐𝑡(𝐴)𝑊𝐸𝐶𝑓𝑎𝑐𝑡(𝐸))𝐶𝑀𝐴𝑋 − 𝐶] 

 The default node parameters are: yinitial = 0, ymax = 1. The default, reaction parameters 

are: weight = 1, Hill coefficient = 1.4, EC50 = 0.6. The node parameter, tau, is scaled to 

the type of interaction: 0.1 for enzymatic interaction, 1 for receptor binding, and 10 for 

protein expression. All parameters outlined above are the same as those used in the 

original model[1, 10].  

Input Levels 

Given the importance of fibroblasts in the post-MI wound healing process, we sought to 

leverage a computational model of fibroblast signaling [1] to model the effect of changes 

in cytokine and chemokines on fibroblast phenotype. This allows for a uniquely 

mechanistic study of post-MI signaling. Additionally, the methods described here outline 

a protocol for utilizing similar computational models to investigate dynamic signaling 

processes that are difficult to study in vivo.   

Dynamic levels for all paracrine inputs were defined by curves based on 

measurements of those inputs in rat hearts post-MI. Measurements were used from rat 

infarct where available or from rat peri-infarct tissue, whole heart extracts, or cardiac 
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tissue remote from the infarct as indicated in Supplementary File 1. Additionally, we 

prioritized using measurements of protein levels as the basis of each paracrine signal 

curve when available, and otherwise mRNA measurements were used.  

For each paracrine signal, bi-exponential curves were fit to the post-MI input data. 

Experimental data of paracrine inputs were first converted to fold-change by normalizing 

to the first timepoint. Next, we manually fit time constants (p2 and p3 from Equation 3) 

to the data. The input curves were then normalized to start at a control normalized level 

of 0.1 and reach a peak of 0.6 at the time corresponding to the peak signal observed 

experimentally. This normalization was done by brute force optimization of the 

magnitude parameter (p1 ) to ensure that the peak of the input curves was within 10-4 of 

the indicated peak height.  

Due to the uncertainty in defining the peak height, we used an ensemble of 

paracrine curve sets where the peak height for each individual paracrine curve within a 

set was randomly sampled from a normal distribution with a mean of 0.6 and a standard 

deviation of 0.05. Simulations using an ensemble of 500 different paracrine input curve 

sets were qualitatively similar to simulations performed using paracrine input curve sets 

where the peak heights were all set to 0.6. For that reason, we show the results of 

simulations where all peak heights were set to 0.6.  Parameters for each input curve are 

provided in Table S2.  

 
 
Equation 3: Single-peak input equation 

 1 + 𝑝1𝑒
−

𝑡
𝑝2(1 − 𝑒

−
𝑡

𝑝3) 
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Tissue-Level Model 
 

The single-cell signaling model was coupled to a previously reported model of the 

tissue-level accumulation of collagen (collagen area fraction) [11]. Whereas the tissue-

level model previously used a fixed time-dependent curve for collagen mRNA levels, 

here we drove the model by the collagen I mRNA dynamics predicted by the fibroblast 

signaling network model. The change in collagen area fraction was modeled based on 

Equation 4. Specifically, the production of collagen is modeled as a product of the 

collagen generation rate (kg, 1.92 unit/day), the collagen I mRNA levels (cn as predicted 

by the network model), and the number of fibroblasts (nf). Fibroblast number was based 

on observed changes in fibroblast proliferation post-MI [12]. The degradation of collagen 

is the product of the degradation rate (kd, 0.0243 unit/day), the level of MMP activity (m), 

and the amount of mature collagen. The kg and kd values were optimized to fit the 

experimental data given the predicted collagen expression from a dynamic simulation 

with all peak heights set to 0.6, which was considered the standard simulation. The MMP 

activity level was modeled with Equation 5, based on the average of the tissue-level 

dynamics of MMPs 1, 2, and 9[13].  

Equation 4: 

𝑑𝐴𝑟𝑒𝑎𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛

𝑑𝑡
= 𝑘𝑔 ∗ 𝑐𝑛 ∗ 𝑛𝑓 − 𝑘𝑑 ∗ 𝑚 ∗ 𝐴𝑟𝑒𝑎𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 

Equation 5: 

 𝑚(𝑡) = 𝑘𝑑1 + 𝑘𝑑2 ∗  𝑒(−𝑘𝑑3∗𝑡) −  𝑒(−𝑘𝑑2∗𝑡) 

𝑘𝑑1 = 0.2   𝑘𝑑2 = 0.5592  𝑘𝑑3 = 0.10368 

 

 
MATLAB code of the model is freely available on GitHub at: 

https://github.com/saucermanlab/Zeigler_MIdynamics.  

https://github.com/saucermanlab/Zeigler_MIdynamics
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Supplemental Files 
Supplemental File 1: Experimental data used to determine paracrine input dynamics. 

 

Supplemental Video 1: Network visualization of dynamic post-MI model showing time-

dependent activation of each network node in response to the dynamic paracrine input 

curves.  

 

Supplemental Tables 
 

Table S1: Supporting data for additional reactions in model update 

Reaction Primary 

source cell 

type 

Primary 

Source 

PMID 

Secondary 

source cell 

type 

Secondary 

Source 

PMID 

Additional 

PMID 

Akt => LOX rat CF 21498085 rat CF 21893029  

LOX & CI => 

xlinkFibers 

human 

myocardium 

19075089 mouse lung 23345161  

AP1 & !smad3 

=> proMMP1 

human cardiac 

fibroblast 
17921324 human 

dermal 

fibroblasts 

11502752 12525489 

FA => 

contraction 

rat dermal 

fibroblast, rat 

lung fibroblast 

11553712 human 

corneal 

fibroblast 

17965264  

aSMA => 

contraction 

rat dermal 

fibroblast, rat 

lung fibroblast 

11553712 human 

corneal 

fibroblast 
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Table S2: Parameters for each of the dynamic post-MI paracrine inputs 

 

Input p1 p2 p3 

TGFb 209 1000 50 

IL6 6687 10 550 

IL1 66 18 6 

TNFa 40 1000 50 

NE 0.5 3200 750 

ET1 90 120 60 

BNP 91 120 60 

AngII 10 3200 750 

PDGF 18 400 560 
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Supplemental Figures 
 
 
 
 

 
 
Figure S1: Network Modifications. Network diagram of the fibroblast network model, 

with additions as described in Supplemental Methods. Green color highlights the 

interactions and nodes that were added to the network model in this study.  
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Figure S2: Inputs to tissue-level model for simulations of post-MI wound healing. 

Fibroblast number and MMP levels are defined by an idealized input curve based on 

post-MI data as described in Supplementary Methods. Collagen I expression is the 

collagen I mRNA level predicted by the network model, normalized to a max value of 1.   
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Figure S3: Predicted dynamics of activation of each network node in simulation of 

the post-MI environment with nine dynamic paracrine stimuli.  
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Figure S4: Effect of changing post-MI paracrine baseline and peak height on 

collagen mRNA and area fraction. Predicted collagen expression and accumulation are 

shown for paracrine curves sets where the baseline value (A) or peak height (B) for all 

paracrine curves was varied. C) For the ensemble model where peak heights were 

randomly sampled from a normal distribution centered around 0.6, the final collagen area 

fraction at 12 weeks was compared to the peak height of each individual paracrine curve.  
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Figure S5: Relationships between dynamic and static paracrine stimuli. A) The 

dynamic and static stimuli are plotted along the PC1 and PC3 axes, from the same 

analysis performed in Figure 3. B) The Euclidean distance from each static stimulus to 

the indicated post-MI timepoint based on the activity of all output nodes is plotted, with 

the best matching single and paired static paracrine stimuli indicated in red. 
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Figure S6: Network-wide activation profiles in response to each single-input and 

double-input static condition. Each row represents a different node, and each column 

represents a time point in the dynamic post-MI simulation (Days 0-42) or a static 

simulation with a single static paracrine stimulus, two static paracrine stimuli, or no 

stimulus (control).  
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Figure S7: Dynamics of overexpressed nodes from the overexpression screen with 

dynamic post-MI inputs. As in Figure 5, each row represents a simulation in which the 

nine dynamic paracrine stimuli were used as inputs, with the indicated node increased 

from ymax = 1 to ymax = 10. Here, the heatmap shows the dynamic activity of that 

overexpressed node.  
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Figure S8: Mechanisms contributing to regulation of collagen expression post-MI 

with altered expression of A) β1-integrin, B) ET1AR, and C) smad3. As in Figure 6, 

node activity, collagen mRNA expression, and collagen area fraction are shown for 

control levels of expression (black line, ymax = 1), overexpression (ymax = 5 or 10), or 

knockdown (ymax = 0.1 or 0.5) of the indicated node.  

 

 

 


