Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2020.

Supporting Information

Structural and Thermodynamic Understandings in Mn-Based Sodium Layered Oxides during Anionic Redox

Seok Mun Kang[†], Duho Kim[†], Kug-Seung Lee, Min-Seob Kim, Aihua Jin, Jae-Hyuk Park, Chi-Yeong Ahn, Tae-Yeol Jeon, Young Hwa Jung, Seung-Ho Yu,* Junyoung Mun,* and Yung-Eun Sung*

/

Figure S1. Structure analysis of NLMO. a) X-ray powder diffraction data for NLMO refined using b) the P2-type layered Na_xTMO_2 structure (S.G. P6₃/mmc). Rietveld refinement was carried out using GSAS software.

S. G. P6 ₃ /mmc, <i>a</i> = b = 2.8492(1) Å, <i>c</i> = 11.1372(6) Å, V = 78.298(8) Å ³ , R _{wp} = 2.90%						
Site	Mult.	x	у	Z	Occ.	U _{iso}
Mn1	2	0	0	0	0.806 ^a	0.0081(15) ^b
Li1	2	0	0	0	0.194 ^a	0.0081(15) ^b
01	4	1/3	2/3	0.088(2)	1	0.057(15)
Na1	2	1/3	2/3	1/4	0.28(4) ^a	0.041(14) ^b
Na2	2	0	0	1/4	0.32(4) ^a	0.041(14) ^b

Table S1 Refined crystallographic parameters of NLMO from Rietveld refinement.

^{a)}The occupancies of Mn, Na, and Li are based on the ICP result.

 $^{b)}U_{iso}$ values for each atom in the same layer are assumed to be equal.

Figure S2. Morphology and elemental distributions of NLMO. a) FE-SEM image and elemental mapping of b) Na, c) O, and d) Mn for NLMO. The scale is 6 μ m for all the individual images.

Figure S3. *In situ* XAS analysis at the Mn K-edge of NLMO during the first electrochemical cycle. a) The charge/discharge profile of Na/ NLMO cell at a rate of 30 mA g⁻¹ between 1.5 and 4.4 V during the *in situ* measurement. Evolution of the Mn K-edge XANES spectra upon b) charging and c) discharging. d,e) Enlarged spectra at the edge region corresponding to the XANES spectra of b,c), respectively. Mn K-edge XANES spectra of Mn_2O_3 (Mn^{3+}), MnO_2 (Mn^{4+}), and Li_2MnO_3 (Mn^{4+}) are presented for reference. The numbers in Figure S3b, c, and f indicate the measurement points corresponding to those in Figure S3a.

Figure S4. Comparison of the Mn K-edge pre-edge normalized XANES spectra of pristine, charged (4.4 V), and discharged (1.5 V) states of NLMO.

Figure S5. Electrochemical cycling performance of Na/NLMO cell. a) Charge/discharge profiles of NLMO during 20 cycles. b) Specific capacity and Coulombic efficiency of Na/NLMO cell as a function of cycle number.

Figure S6. XPS O*1s* peak fitting results of a) no.7 and b) no.8 states in Figure 3. c) Evolution of Na KLL Auger peaks during the first charge and discharge process.