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Supplement	S1	

Mechanics	of	the	deflection	of	primary	cilia	by	fluid	flow	

Figure	1.	Bent	elastic	rod	under	fluid	flow	with	rod	fixed	at	s	=	0	and	free	at	s	=	L.	

The	impact	of	cELV on	primary	cilia	is	investigated	using	deflection	data	of	
cilia	with	and	without	cELV by	modeling	the	deflection	in	the	small	bending	limit	
and	solving	the	resulting	Euler-Bernoulli	equation.	The	impact	of	the	cELV is	
assumed	to	change	the	flexural	rigidity	and	shown	to	nearly	double	the	flexural	
rigidity	relative	to	cELV-less	cilia.	This	was	calculated	by	using	the	force	per	unit	
length	on	cilia	as	a	fitting	parameter	for	the	cELV-less	cilia	and	then	applied	to	the	
analysis	of	the	rigidity	of	cilia	with	an	cELV.		The	model	does	not	strictly	apply	to	
the	large	deflection	data	and	thus	the	analysis	provides	at	best	a	qualitative	impact	
of	cELV on	the	bending	of	cilia	in	fluid	flow.		

I.	Deflection	of	Cilia	under	fluid	flow	

Consider	a	model	of	cilia	as	a	thin	elastic	cylindrical	rod	of	length	L	with	
flexural	stiffness	EI	(E	is	the	Young’s	modulus	of	the	rod	and	I	is	its	second	moment	
of	inertia)	attached	to	an	infinite	surface	with	shear	flow.	The	energy	H	of	the	
deflected	elastic	rod	is	a	sum	of	the	bending	energy	(adopting	the	Kratky-Porod	or	
worm-like	chain	model)	and	the	energy	associated	with	the	force	F(s)	exerted	along	
the	arc	length	of	the	rod	due	to	shear	flow:	

H = 12EI
dt̂(s)
ds
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The	bending	energy	is	taken	to	be	the	line	integral	of	the	square	of	the	curvature	
parameterized	in	terms	of	the	unit	tangent	vector	at	arc	length	s,	!!t̂(s) 	with
inextensibility	assumption	requiring	 t̂(s) =1 .		Assuming	the	rod	lies	along	the	z-
axis	with	the	fluid	flow	along	the	x	–axis	where			 

!
F(s)= F(s)x̂ .	Parameterizing	in	
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terms	of	the	angle	θ 	with	respect	to	the	z-axis	where			t̂(s)=θ(s) 	(see	figure	1)	and	
		 
!
F(s)⋅t̂(s)= F(s)x̂ ⋅t̂(s)= F(s)sinθ(s) ,	thus	(1)	becomes	
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Where	the	boundary	conditions	are	that	the	elastic	rod	is	fixed	at	!!s =0 	thus	
!!θ(s =0)=0 	and	is	free	at	the	other	end	s	=	L	where	the	torque	is	zero,	i.e.	

!!dθ(s) ds s=L =0 .	
Consider	the	small	deflection	approximation	in	order	to	develop	an	

analytically	tractable	model,	a	reasonable	approximation	for	moderate	bending	[1].	
Thus	in	this	limit	we	assume		ds ≈dz ,			sinθ(s)≈θ(s) 	where			θ(s)≈ du(z) dz( ) 	with	
		u(z) 	the	displacement	of	the	elastic	rod	from	the	z-axis	the	energy	(1.2)	becomes	

	

		
H = dz 1
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		The	extremum	of	the	energy	(1.3),	given	by	the	Euler-Lagrange	equation,	gives	

	
		
d3u(z)
dz3

= − F(z)
EI

		 (4)	

with	the	boundary	conditions:	

	

		

u(z =0)=0
du(z) dz

z=0
=0

du2(z) dz2
z=L

=0		(zero	moment	at	free	end,	M	=	0)
		 (5)	

Let’s	assume	the	force	due	to	the	fluid	flow	is	constant			F(s)= F .	After	the	first	
integration	of	(4)	we	have	

	
		
d2u(z)
dz2

= − F
EI
z + c1 		 (6)	

where	c1	is	a	constant	and	can	be	determined	from	the	boundary	condition	at	s	=	L,	
(5),	which	gives			c1 = FL/EI .	Thus	we	have		

	
		
d2u(z)
dz2

= F
EI

L− z( ) 		 (7)	

which	is	in	the	form			d
2u(z) dz2 =M /EI ,	where	M	is	the	bending	moment.	

Integrating	(1.7)	twice	further	and	determining	the	constants	of	integration	from	
the	boundary	condition	at	z	=	0,		(1.5),	the	equilibrium	displacement	of	the	rod	from	
its	undeformed	shape	along	the	z-axis	is		
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(a)	 	 	 	 (b)	
Figure	2.	(a)	Deformation	of	cilia	in	fluid	flow	parameterized	in	terms	of	the	
displacement	u(z)	from	the	z-axis.	(b)	with	a	massive	cELV	at	the	tip	of	cilia,	
located	at	maximum	deflection	u(L)	=	D	where	f	is	the	force/length	while	F	is	the	
drag	force	on	the	cELV.	

		
u(z)= Fz

2

6EI 3L− z( ) (8)	

with	the	maximum	deflection	D	at	the	free	end	given	by	

D≡u(L)= FL
3

3EI 	, (9)	

equivalent	to	the	deflection	of	a	cantilever	with	spring	constant			3EI L
3 .	Thus	the	

characteristic	shearing	force	Fc	which	bends	cilia	with	D	~	L	is	

Fc ∼
3EI
L2

	.	 (10)	

To	relate	the	shearing	force	F	to	the	wall	shear	stress	σ generated	in	the	fluid	
flow	experiments	consider	the	drag	force	due	to	shear	flow	on	a	cylinder,	in	the	limit	
of	low	Reynolds	number,	given	by	Venier	et	al.	[2]	from	slender	body	theory:	

F ≈ 2πσL2
ln L/a( ) (11)	

where	σ 	is	the	wall	shear	stress	and	a	is	the	radius	of	cilia.	Thus	we	can	relate	the	
characteristic	shear	force	with	its	stress	σ from	(10)	and	(11)	to	find	

σ ≈
3EI ln L/a( )

2πL4 	.	 (12)	

If	we	take	for	the	flexural	rigidity	of	cilia	to	be			EI =3×10−23Nm2 [3],	the	radius	of	
primary	cilia	to	be	!!a=100nmwith	length	!!L=5µm ,	we	find	for	the	critical	shear
stress	to	be			 σ ∼0.09	N /m

2 ∼1	dyne/cm2which	is	on	the	order	of	magnitude	of	the	
stress	that	has	been	measured	for	bending	of	cilia.		
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II. Deflection	of	Cilia	with	cELV-mass	on	tip	of	cilia

Now	consider	an	cELV	of	mass	mex	at	the	tip	of	cilia,	see	Figure	2(b),	which	
produces	a	bending	moment	about	the	base	of	cilia	resulting	from	the	force	on	the	
cELV	due	to	the	relative	velocity	of	the	fluid	and	the	cELV	such	that	the	equations	
determining	the	equilibrium	deformation	are	given	by	the	following	equations:	

M = EI d
2u(z)
dz2

dM
dz

= EI d
3u(z)
dz3

= F 	(shear	force)

d2M = EI d
4u(z) = f 	(force	per	unit	length)

(13)	

	 dz2 dz4
where	the	boundary	conditions	are	given	by	(1.16)	and	(1.17),	wherein	the	impact	
of	the	effects	of	the	cELV	are	accounted	for	by	the	boundary	condition	at	the	free	
end:	

(i) Clamped	boundary	condition	at	the	base	of	cilia:	

u(z =0)=0	 	 du(z)
dz

=0 	 (14)	
z=0

							(ii)		At	the	free	end	include	the	effect	of	the cELV	mass	where	

		F = −FB 	and		M =0		at		z = L ,	thus	:

EI d
3u(z)
dz3

z=L

= −FB 		and 	
d2u(z)
dz2

z=L

=0 	 (15)	

where	FB	is	the	drag	force	on	thecELV.	The	general	solution	of       EI d
4u(z)
dz4

= f 	,	the	

Euler-Bernoulli	equation,	with	the	boundary	conditions	given	in	(14)	and	(15)	is	
thus	given	by:	

u(z)= f
24EI z

4 −
(FB + fL)
6EI z3 +

L(FB + fL)
2EI z2 	 (16)	

The	maximum	deflection	at	z	=	L	is	thus,	u(z=L)	=	D:	

D= L3

3EI
3 fL
8 +FB

⎛
⎝⎜

⎞
⎠⎟

(17)	

This	is	equivalent	to	the	deflection	of	a	clamped	cantilever	with	spring	constant	

		k =3EI /L
3 	with	an	effective	force	of			3 fL 8+FB 	applied	at	its	free	end.	Assuming

Stokes	law	for	the	drag	force	on	the	cELV,	taken	to	be	a	sphere	of	radius		rB ,	then

		FB =6πµrBv 	where	µ	is	the	viscosity	of	the	fluid,	and	v	is	the	velocity	of	the	fluid.
Thus	the	maximum	deflection	(17)	is	
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D= L3

3EI
3 fL
8 +6πµrBv

⎛
⎝⎜

⎞
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	.	 (18)	

Consider	the	maximum	deflection	data	in	Table	1	for	two	cilia	under	fluid	
flow	with	and	without	cELV in	the	same	frame.	We	will	assume	that	the	flexural	
rigidity	is	not	the	same	for	the	two	cases	due	to	the	cELV.	To	characterize	the	impact	
of	the	cELV,	the	force	per	unit	length	f	on	cilia	is	calculated	from	the	maximum	
deflection	data	of	cilia	without	cELV	using	the	flexural	rigidity	of	cilia	
without	cELV,			(EI)0 = 3×10−23Nm2	[3],	and	then	using	the	calculated	force	per	
unit	length	to	determine	the	flexural	rigidity	EI	with	cELV 	as	a	fitting	parameter	
that	corresponds	to	the	measured	maximum	deflection	of	8.4	µm.	Thus	without	the	
cELV,	the	maximum	deflection	is	given	by	equation	(17)	by	setting	FB	=	0,	thus	

		D0 = fL0
4 8EI ,	where	with	D0	=	5.6	µm	and			L0 =6.8	µm 	gives	for	the	force	per	unit	

length	on	cilia	of			f =8(EI)0D0 L0
4 	equaling		f =6.3×10

−7N /m .	Thus,	using	this	force	
per	unit	length	on	cilia,	and	taking	the	viscosity	to	be	that	of	water	of	

		µ = 8.9×10−4 Pa⋅s ,	and	modeling	the	4	cELV	as	one	equivalent	cELV	of	

diameter			2rB = 0.89	µm ,	the	flexural	rigidity	EI	of	cilia	with	cELV	is	given	by

		

EI = EI( )0
L
L0

⎛

⎝⎜
⎞
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4
D0
D

+
FBL

3

3D
where		FB =6πµrBv

(19)	

and	given	the	corresponding	maximum	deflection	of			D=8.4	µm ,	the	rigidity	is	
calculated	to	be	𝐸𝐼 = 5.7×10!!" 𝑁𝑚!.	Thus,	the	impact	of	the	cELV	is	to	increase	the	
flexural	rigidity,	approximately	doubling	it.	The	model	assumed	small	bending	
which	is	not	applicable	to	the	deflection	data	and	thus	the	analysis	should	only	
represent	a	qualitative	picture	of	the	impact	of	cELV	on	the	bending	cilia	in	fluid	
flow.		

Cilia	 Cilia	with	cELV 	
Cilia	length	(µm)	 L0	=	6.8		 L	=	8.8	
Cilia	diameter	(µm)	 0.20	 0.23	
cELV diameter	(µm)	 -	 4	cELV:		0.21;	0.20;	0.18;	0.15	

=	single	cELV with	diameter	2	rB =	0.30	µm

Maximum	deflection	(µm)	 D0	=	5.6	 D	=	8.4	
Fluid	velocity	(v)	(µm/s)	 14.84	 14.84	
Table	1.		Maximum	deflection	data	measured	of	cilia	under	fluid	flow	for	cilia	
with	and	without	cELV	in	the	same	frame.	
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