Cell Reports, Volume 32

Supplemental Information

Human GBP1 Differentially Targets Salmonella

and Toxoplasma to License Recognition

of Microbial Ligands and Caspase-Mediated Death

Daniel Fisch, Barbara Clough, Marie-Charlotte Domart, Vesela Encheva, Hironori Bando, Ambrosius P. Snijders, Lucy M. Collinson, Masahiro Yamamoto, Avinash R. Shenoy, and Eva-Maria Frickel

Figure S1: Novel dye influx assay and split-GFP system allows quantitation of GBP1 contribution to *Toxoplasma* vacuole and parasite disruption (Related to Figure 1).

(A) Representative normalized frequency plots (Norm. frequ.) and data tables of fluorescence intensities of vacuoles in type I or type II *Tg*-infected THP-1 WT, THP-1 $\Delta GBP1$, THP-1 $\Delta GBP1$ +Tet-empty vector (EV) or THP-1 $\Delta GBP1$ +Tet-*GBP1* cells treated with IFN γ , Doxycycline (Dox) or left untreated and stained with CellMask. Mean fluorescence signal of the cytosol indicated by dashed red line and mean fluorescence intensity of the vacuoles (MFI) shown in table. N = number of vacuoles.

(B) RT-qPCR to confirm expression of GFP₁₁ fragment in the cytosol of THP-1 WT and THP-1 \triangle GBP1+Tet-GBP1 cells transduced with GFP₁₁-Lentiviral particles.

(C) Representative immunofluorescence images (top) and immunoblot (bottom) from type II *Tg* Δ *Hpt*+GFP₁₋₁₀ or type II *Tg* Δ *Hpt* to confirm expression of the GFP fragment and absence of GFP fluorescence. Red: anti-GFP for GFP₁₋₁₀; Green: GFP fluorescence; White: *Tg* surface antigen 1 (SAG1); Blue: Nuclei. Scale bar 20 µm.

(D) Representative flow cytometry analysis of proportion of GFP-fluorescing and thus disrupted parasites harvested from untreated (UT) or IFN γ -primed THP-1 WT+GFP₁₁ or from untreated, IFN γ -only or IFN γ - and Doxycycline (Dox)-treated THP-1 Δ *GBP1*+Tet-*GBP1*+GFP₁₁ cells at 2, 6 or 18 hours post infection. Proportion of fluorescing parasites above the threshold of 10³ AU indicated in the figure.

(E) Viability determination of Pru ΔHpT +GFP₁₋₁₀ parasites harvested from IFNγ-primed THP-1 WT+GFP₁₁ cells at 18 hours p.i, sorted based on their fluorescence (left), plaqued onto HFF cells (middle) and quantification of plaque area depending on number of parasites used for plaque formation (right).

Data information: Graphs show mean \pm SEM in **(B)** from n = 6 and in **(E)** from n = 3 independent experiments. Graphs in **(A)** representative of n = 3 independent experiments. *P* values in **(A)** from nested one-way ANOVA comparing means of n = 3 independent experiments from indicated condition to untreated WT cells.

THP-1 WT +IFNY

THP-1 ∆GBP1 +IFNy

Figure S2: Correlative light and electron microscopy reveals ultrastructural defects of GBP1-targeted *Toxoplasma* vacuole membranes (Related to Figure 1).

Representative images of correlative light and electron microscopy of THP-1 WT or $\triangle GBP1$ cells (flooded with CellMask for fluorescence imaging), pre-treated with IFN γ to induce GBP1 expression and infected with type I (RH) *Tg* for 6 hours. Parasites indicated boxes are shown at higher magnifications as indicated (TEM, transmission electron microscopy). Yellow arrowheads mark areas of vacuole membrane ruffling and red arrowheads mark areas of vacuole membrane disruption. Red: CellMask; Green: *Tg*; Blue: Nuclei. Scale bars as indicated.

Figure S3: CellMask dye influx assay for measuring *Salmonella* vacuole escape (Related to Figure 2).

(A) Representative immunofluorescence images and fluorescence intensity map of intact *Salmonella* Typhimurium (STm)-containing vacuoles (SCVs) or broken SCV/STm in the cytosol of IFNγ-primed and CellMask-flooded THP-1 WT macrophages at 4 hours p.i. Area of interest for fluorescence intensity measurement as automatically determined by HRMAn indicated by the yellow, dashed line. Red: CellMask; Grey: STm; Blue: Nuclei. Scale bars 10 µm.

(B) Representative normalized frequency plots (Norm. frequ.) of fluorescence intensities of vicinity of STm in infected THP-1 WT or THP-1 $\triangle GBP1$ +Tet-GBP1 cells treated with IFN γ , Doxycycline (Dox) or left untreated and stained with CellMask. Mean fluorescence signal of the cytosol indicated by dashed red line.

Data information: Graphs in **(B)** representative of n = 2 independent experiments.

Figure S4: SIM of caspase activation platforms, molecular determinants of GBP1 and caspase-4 recruitment to cytosolic *Salmonella* and cell line verification immunoblots (Related to Figure 3).

(A) Representative immunoblots for proCaspase-8, Flag and β -actin from THP-1 +Tet-CASP8-Flag cells showing Doxycycline (Dox)-inducible caspase-8-Flag expression. Cells were treated with Dox as indicated or left untreated. * endogenous caspase-8.

(B) Left: Representative structured illumination immunofluorescence microscopy images from THP-1 WT+Tet-*CASP8*-Flag cells treated with IFN γ and Dox to induce caspase-8 expression and infected with type II *Toxoplasma gondii* (*Tg*) for 4 hours. Right: 3D reconstruction and slices through the ASC-caspase-8 speck. Red: ASC; Grey: *Tg*; Green: caspase-8; Blue: Nuclei. Scale bar 10 µm.

(C) Representative immunoblots for Flag, caspase-8 (CASP8), AIM2, myc and β -actin from THP-1 WT, THP-1 +Tet-*CASP8*-Flag and THP-1 +Tet-*CASP8*-Flag+myc-*AIM2* cells showing Dox-inducible caspase-8-Flag expression and constitutive expression of myc-AIM2. Cells were treated with IFN γ , Dox or left untreated as indicated. * endogenous proteins.

(D) Left: Representative structured illumination immunofluorescence microscopy images from THP-1+Tet-*CASP8*-Flag+myc-*AIM2* cells treated with IFN γ and Dox and infected with type II *Tg* for 4 hours. Right: 3D reconstruction and slices through the AIM2-caspase-8 speck. Cyan: AIM2; Grey: *Tg*; Green: caspase-8; Blue: Nuclei. Scale bar 10 µm.

(E) Ring diameters of the indicated proteins within an inflammasome speck of cells shown in (B) and (D).

(F) Left: Representative structured illumination immunofluorescence microscopy images from THP-1 $\triangle GBP1$ +Tet-mCH-GBP1+YFP- $CASP4^{C258S}$ cell treated with IFNy and Dox and infected with *Salmonella* Typhimurium (STm) SL1344 (MOI = 30) for 2 hours. Right: 3D reconstruction of the GBP1-caspase-4 signaling platform on the cytosolic STm. Red: mCH-GBP1; Grey: STm-LPS; Green: YFP-caspase-4; Blue: Nuclei. Scale bar 10 µm.

(G) Representative immunofluorescence image of THP-1 $\triangle CASP4$ cells infected with STm SL1344 (MOI = 30) for 1 hour and stained with monoclonal anti-Salmonella-LPS antibody. Grey: STm-LPS; Blue: Nuclei. Scale bar: 5 µm.

(H) Representative immunoblots for mCherry, YFP and β -actin from THP-1 $\Delta GBP1$ +Tet-mCH-*GBP1* cells expressing the indicated mutant of GBP1 and also stably expressing YFP-CASP4^{C258S}. Cells were primed with IFNy and treated with Doxycycline (Dox) as indicated.

(I) Representative immunofluorescence images and (J) quantification of GBP1 and caspase-4 recruitment to STm in IFNy-primed and Dox-treated THP-1 Δ GBP1+Tet-mCH-GBP1+YFP-CASP4^{C258S} cells infected with STm SL1344 (MOI = 30) for 2 hours. Cells expressed the indicated mutants of GBP1. Red: mCH-GBP1; Grey: STm; Green: YFP-caspase-4; Blue: Nuclei. Scale bar 10 µm; n.d. not detected.

(K) Representative immunoblots for GBP1, Flag and β -actin from THP-1 \triangle GBP1+Tet- Flag-GBP1 cells showing Dox-inducible Flag-GBP1 expression. Cells were treated with Doxycycline (Dox) as indicated or left untreated.

Data information: Graph in (E) shows quantification from n = 12 inflammasome specks and mean ± SEM. Graph in (J) shows mean ± SEM of n = 3 independent experiments. * $P \le 0.05$; **** $P \le 0.0001$ for indicated comparisons in (E) from one-way ANOVA following adjustment for multiple comparisons.

Figure S5: Verification and quality control of GBP1^{D192} mutant and fragment cell lines (Related to Figure 4 and 5).

(A) Representative immunoblots of GBP1, mCherry (mCH) and β -actin from IFN γ -primed THP-1 $\Delta GBP1$ +Tet-GBP1 or GBP1^{D192E} with and without mCH-tag for Doxycycline (Dox)-inducible expression. Cells were treated with Dox as indicated.

(B) Representative images and quantification of mean fluorescence per cell from 100 fields of view from THP-1 $\Delta GBP1$ +Tet-mCH-GBP1 or +Tet-mCH- $GBP1^{D192E}$ cells treated with IFN γ and Dox to induce mCH-GBP1 expression. Red: mCH-GBP1; Blue: Nuclei. Scale bars 100 μ m.

(C) Immunoblot for human GBPs (panGBP), mCherry and Actin to confirm Dox-inducible expression of GBP1 fragments 1-192 or 193-592 with and without mCherry-tag in THP-1 $\Delta GBP1$ +Tet cells. * Marks endogenous, other GBP family members detected by the panGBP antibody in IFN γ -treated cells.

Data information: Graph in **(B)** shows mean \pm SEM from n = 3 independent experiments. *P* values in **(B)** from t-test. ns, not significant.

Table S1: Oligonucleotide primer.Overview of oligonucleotide primers used in this study for molecular cloning of new plasmids and RT-qPCR. (Related to STAR methods section)

	Cloning primer					
Name	Sequence 5'-3'	Purpose				
pTet_CASP8-fwd	TGCGGCCGCACCATGGGCGGTAGGCGTGTAC	Amplify CASP8 OPE for cloping into pTot backhopp				
Flag_CASP8-rev	GTGGTCCTTATAGTCATCAGAAGGGAAGACAAGTTTTTTTT	Anipiny CASP & OKT for cloning into precbackbone				
Casp-8_Flag-fwd	GTCTTCCCTTCTGATGACTATAAGGACCACGACGG	Amplify Elag tag for cloping into pTot backhopo with CASP8 OPE				
pTet-Flag-rev	GATCGATCAGGGATCCTACTTATCGTCATCGTCTTTGTAATCAATATC	Ampiny Flag-lag for cloning into piter backbone with CASF6 ORF				
Flag_GBP1 -fwd	GATATTGATTACAAAGACGATGACGATAAGATGGCATCAGAGATCCACATGACAGG	Amplify CRR1 ORE for cloping into pTat backhopp				
pTet_GBP1 -rev	CTAGCGAATTCGGCCGATCGATCAGGGATCTTAGCTTATGGTACATGCCTTTCGTCGTC	Ampility GBF1 ORF for cioning into pret backbone				
pTet_Flag-fwd	AATTAGCGCTACCGGTGCGGCCGCACCATGGACTATAAGGACCACGACGGAG	Amplify Flag tog for cloping into pTot backhopo with GPP1 OPE				
GBP1_Flag-rev	TGGGCCTGTCATGTGGATCTCTGATGCCATCTTATCGTCATCGTCTTTGTAATCAATATCATGATCCTTG	ranping rag-tag for clothing into prec backbone with ODF / ORF				
GBP1-D192E-fwd	CCCTGGACTTGGAAGCAGAGGGACAACCCC	Mutata CRR1 ORE				
GBP1-D192E-rev	GGGACCTGAACCTTCGTCTCCCTGTTGGGG					
pLEX-AIM2-fwd	CTCGAGCTCAAGCTTGCCACCATGGAACAGAAACTCATCTCTGAAGAGGATCTG	Amplify myc-AIM2 ORE for cloping into pLEX backhope				
pLEX-AIM2 -rev	CCGCTTTACTTGTACCCTAGAATAGGGCCCTCTAGATGCATGC	Ampiny myc-Anviz OKT for cloning into peex backbone				
pLenti-repair-1-fwd	CGGGAGTATCCG	Banair digasted lantiCRISPR V/2				
pLenti-repair-1-frev	AATTCGGATACTCCCGGTAC	Repair digested leftile (Kish K-V2				
pLenti-repair-2-fwd	CTAGACTCGAGGATCG	Penair dispoted lentiCPISPR V/2 and add multiple cloping aita				
pLenti-repair-2-rev	GATCCGATCCTCGAGT	Repair digested lentic RISER-v2 and add multiple clothing site				
GFP11-PCR-fwd	AACACAGGACCGGTTGCCACCATGCGCGATCACATGGTCCTGCT	Amplify CER11 ORE for cloping into pl opti R2A Ruro bookbong				
GFP11-PCR-rev	TTGTTGCGCCGGATCCCTTGTACAGCTCGTCCATGCCG	Ampility GFFTT OKF for cioning into plenti-rzA-ruto backbone				
pGRA-GFP1-10-fwd	ATCAAGCAAGATGCAAATGTTCGCCGTAAAACATTGTTTGCTGG	Amplify CED1 10 ORE for cloping into pCRA HA HPT backbong				
pGRA-GFP1-10-rev	TTCGTCGTAGTCTTATTATTTTTCATTTGGATCTTTGCTCAGGACTGTTTGT	Ampility GFF1-10 OKF101 cioning into pGKA-HA-HF1 backbone				
pTet-GBP1_1-192-fwd	AATTAGCGCTACCGGTGCGGCCGCACCATGGCATCAGAGATCCACATGACAGG	Amplify CDD4 fragment 4,400 for eleminar internet anti-Tat				
pTet-GBP1_1-192-rev	CTAGCGAATTCGGCCGATCGATCAGGGATCTTAATCTGCTTCCAAGTCCAGGGAGAAAT	Ampiny GBP1 tragment 1-192 for cioning into plenti-ret				
pTet-GBP1_193-593-fwd	AATTAGCGCTACCGGTGCGGCCGCACCATGGGACAACCCCTCACACCAGATG	Amplify CDD1 fragment 102 502 for eleminar interal anti Tat				
pTet-GBP1_193-593-rev	CTAGCGAATTCGGCCGATCGATCAGGGATCTTAGCTTATGGTACATGCCTTTCGTCGTC	Ampiny GBP1 fragment 193-592 for cloning into plenti-ret				
pTet-mCH-fwd	AATTAGCGCTACCGGTGCGGCCGCACCATGGTGAGCAAGGGCGAGG	Annu life on Ohanna fan alamina inde alamin tri Tatana de anima a felha tara				
GBP1_1-192-mCH-rev	TGGGCCTGTCATGTGGATCTCTGATGCCATCTTGTACAGCTCGTCCATGCC	Amplify monerry for cloning into plenti-let and tagging of the two				
GBP1_193-593-mCH-rev	TGTGAGGGGTTGTCCCATCTTGTACAGCTCGTCCATGCC	ODF T liagments				
mCH-GBP1_1-192-fwd	TCCACCGGCGGCATGGACGAGCTGTACAAGATGGCATCAGAGATCCACATGACAGG	Amplify GBP1 fragment 1-192 for cloning into pLenti-Tet and				
pTet-GBP1 1-192-rev	CTAGCGAATTCGGCCGATCGATCAGGGATCTTAATCTGCTTCCAAGTCCAGGGAGAAAT	tagging with mCherry				
mCH-GBP1 193-593-fwd	TCCACCGGCGGCATGGACGAGCTGTACAAGATGGGACAACCCCTCACACCAGATG	Amplify GBP1 fragment 193-592 for cloning into pLenti-Tet and				
pTet-GBP1 193-593-rev	CTAGCGAATTCGGCCGATCGATCAGGGATCTTAGCTTATGGTACATGCCTTTCGTCGTC	tagging with mCherry				
	qCPR primer					
Name	Sequence 5'-3'	Purpose				
GFP11-fwd	AATCCTGGACCGACCGAGTA	aPCR for GEP11				
GFP11-rev	GAGTTCTTGCAGCTCGGTGA					
HPRT-fwd	ACCAGTCAACAGGGGACATAA	qPCR for HPRT				
HPRT-rev	CTTCGTGGGGTCCTTTTCACC					

Gene	Cat. number
CASP1	L-004401
CASP4	L-004404
CASP5	L-004405
GSDMD	L-016207
Negative control	D-001810

siRNA

Manufacturer

Dharmacon

Table S2. Electron Microscopy sample preparation protocol.Full BioWave program details for preparation of samples for electron microscopy.(Related to STAR methods section)

					SteadyTemp		Vacuum cycle	Vacuum	User Prompt	Vacuum OFF (1 =	Vacuum	Vacuum ON (1 =
		Time	Time	Power	temperature	Vacuum cycle	vacuum time	set point	(1 = YES, 0 =	no vacuum, 0 =	cycle (1 =	vacuum, 0 = no
Description	Step#	(min)	(sec)	(Watts)	(ºC)	vent time (sec)	(sec)	(inch Hg)	NO)	vacuum)	ON, 0 = OFF)	vacuum)
BENCH STEP Rinse in 0.1 M PB	1	0	0	0	21	0	0	0	1	1	0	0
BENCH STEP Rinse in 0.1 M PB	2	0	0	0	21	0	0	0	1	1	0	0
Rinse in 0.1M PB	3	0	40	250	21	0	0	0	1	1	0	0
Rinse in 0.1MPB	4	0	40	250	21	0	0	0	1	1	0	0
Osmium ON	5	2	0	100	21	0	0	20	1	0	0	1
Osmium OFF	6	2	0	0	21	0	0	20	0	0	0	1
Osmium ON	7	2	0	100	21	0	0	20	0	0	0	1
Osmium OFF	8	2	0	0	21	0	0	20	0	0	0	1
Osmium ON	9	2	0	100	21	0	0	20	0	0	0	1
Osmium OEE	10	2	0	0	21	0	0	20	0	0	0	1
Osmium ON	11	2	0	100	21	0	0	20	0	0	0	1
BENCH STEP Rinse in water	12	0	0	0	21	0	0	0	1	1	0	0
BENCH STEP Pinse in water	12	0	0	0	21	0	0	0	1	1	0	0
Pince in water	14	0	40	250	21	0	0	0	1	1	0	0
Pince in water	15	0	40	250	21	0	0	0	1	1	0	0
Thiocarbohydrazido ON	15	2	40	100	40	0	0	20	1		0	1
Thiocarbohydrazide ON	17	2	0	100	40	0	0	20	1	0	0	1
This can be shared as ide ON	17	2	0	100	40	0	0	20	0	0	0	1
This such a budget ide ON	18	2	0	100	40	0	0	20	0	0	0	1
Iniocarbonydrazide OFF	19	2	0	0	40	0	0	20	0	0	0	1
Iniocarbonydrazide ON	20	2	0	100	40	0	0	20	0	0	0	1
Thiocarbohydrazide OFF	21	2	0	0	40	0	0	20	0	0	0	1
Iniocarbonydrazide ON	22	2	0	100	40	0	0	20	0	0	0	1
BENCH STEP Rinse in water	23	0	0	0	21	0	0	0	1	1	0	0
BENCH STEP Rinse in water	24	0	0	0	21	0	0	0	1	1	0	0
Rinse in water	25	0	40	250	21	0	0	0	1	1	0	0
Rinse in water	26	0	40	250	21	0	0	0	1	1	0	0
Osmium ON	27	2	0	100	21	0	0	20	1	0	0	1
Osmium OFF	28	2	0	0	21	0	0	20	0	0	0	1
Osmium ON	29	2	0	100	21	0	0	20	0	0	0	1
Osmium OFF	30	2	0	0	21	0	0	20	0	0	0	1
Osmium ON	31	2	0	100	21	0	0	20	0	0	0	1
Osmium OFF	32	2	0	0	21	0	0	20	0	0	0	1
Osmium ON	33	2	0	100	21	0	0	20	0	0	0	1
BENCH STEP Rinse in water	34	0	0	0	21	0	0	0	1	1	0	0
BENCH STEP Rinse in water	35	0	0	0	21	0	0	0	1	1	0	0
Rinse in water	36	0	40	250	21	0	0	0	1	1	0	0
Rinse in water	37	0	40	250	21	0	0	0	1	1	0	0
Uranyl acetate ON	38	2	0	100	40	0	0	20	1	0	0	1
Uranyl acetate OFF	39	2	0	0	40	0	0	20	0	0	0	1
Uranyl acetate ON	40	2	0	100	40	0	0	20	0	0	0	1
Uranyl acetate OFF	41	2	0	0	40	0	0	20	0	0	0	1
Uranlyl acetate ON	42	2	0	100	40	0	0	20	0	0	0	1
Uranyl acetate OFF	43	2	0	0	40	0	0	20	0	0	0	1
Uranyl acetate ON	44	2	0	100	40	0	0	20	0	0	0	1
BENCH STEP Rinse in water	45	0	0	0	40	0	0	0	1	1	0	0
BENCH STEP Rinse in water	46	0	0	0	40	0	0	0	1	1	0	0
Rinse in water	47	0	45	250	40	0	0	0	1	1	0	0
Rinse in water	48	0	45	250	40	0	0	0	1	1	0	0
Lead aspartate ON	49	2	0	100	50	0	0	20	1	0	0	1
Lead aspartate OFF	50	2	0	0	50	0	0	20	0	0	0	1
Lead aspartate ON	51	2	0	100	50	0	0	20	0	0	0	1
Lead aspartate OFF	52	2	0	0	50	0	0	20	0	0	0	1
Lead aspartate ON	53	2	0	100	50	0	0	20	0	0	0	1
Lead aspartate OFF	54	2	0	0	50	0	0	20	0	0	0	1
Lead aspartate ON	55	2	0	100	50	0	0	20	0	0	0	1
BENCH STEP Rinse in water	56	0	0	0	21	0	0	0	1	1	0	0
BENCH STEP Rinse in water	57	0	0	0	21	0	0	0	1	1	0	0
Rinse in water	58	0	45	250	21	0	0	0	1	1	0	0
Rinse in water	59	0	45	250	21	0	0	0	1	1	0	0
70% Ethanol ON	60	0	40	250	21	0	0	0	1	1	0	0
70% Ethanol ON	61	0	40	250	21	0	0	0	1	1	0	0
90% Ethanol ON	62	0	40	250	21	0	0	0	1	1	0	0
90% Ethanol ON	62	0	40	250	21	0	0	0	1	1	0	0
100% Etheral ON	64	0	40	250	21	0	0	0	1	1	0	0
	65	0	40	250	21	0	0	0	1	1	0	0
EOW Resis ON	60	0	40	250	21	U 20	U 20	20	1	1	U 1	0
	00	5	0	250	21	30	30	20	1	0	1	0
100% Resin UN	6/	3	0	250	21	30	30	20	1	U	1	U
100% Resin ON	68	3	0	250	21	30	30	20	1	0	1	U
100% Resin UN	69	3	0	250	21	30	30	20	1	U	1	U
	70	3	0	250	21	30	30	20	1	U	1	0
IUKIN STSTEWIUFF	/1	0	U U	0	21	U	0	0	U	1	U U	U