

Article **Effect of Polishing on Electrochemical Behavior and Passive Layer Composition of Different Stainless Steels**

Supplementary files:

Figure S1. Polarization curves of passive layers of mechanically polished 18Cr21Mn2NiN stainless steel in aerated water solution with NaCl (80000 ppm Ccl-, $pH = 7$; 80 °C, 200 mV/h); three colors mean three measurements at the same point in the experiment plan (**a**), one curve signifies the use of moving average (**b**).

Figure S2. Polarization curves of passive layers of electropolished 18Cr21Mn2NiN stainless steel in aerated water solution with NaCl (80000 ppm Ccl-, $pH = 7$; 80 °C, 200 mV/h); three colors mean three measurements at the same point in the experiment plan (**a**), one curve signifies the use of moving average (**b**).

Figure S3. Polarization curves of passive layers of mechanically polished 20Cr20Mn7Ni2MoN stainless steel in aerated water solution with NaCl (80000 ppm Ccl-, pH = 7; 80 °C, 200 mV/h); three colors mean three measurements at the same point in the experiment plan (**a**), one curve signifies the use of moving average (**b**).

Figure S4. Polarization curves of passive layers of electropolished 20Cr20Mn7Ni2MoN stainless steel in aerated water solution with NaCl (80000 ppm Ccl-, pH = 7; 80 °C, 200 mV/h); three colors mean three measurements at the same point in the experiment plan (**a**), one curve signifies the use of moving average (**b**).

Figure S5. Polarization curves of passive layers of mechanically polished 18Cr15Ni3Mo stainless steel in aerated water solution with NaCl (80000 ppm Ccl-, pH = 7; 80 °C, 200 mV/h); three colors mean three measurements at the same point in the experiment plan (**a**), one curve signifies the use of moving average (**b**).

Figure S6. Polarization curves of passive layers of electropolished 18Cr15Ni3Mo stainless steel in aerated water solution with NaCl (80000 ppm Ccl-, $pH = 7$; 80 °C, 200 mV/h); three colors mean three measurements at the same point in the experiment plan (**a**), one curve signifies the use of moving average (**b**).

Figure S7. Polarization curves of passive layers of mechanically polished 27Cr29Ni3Mo stainless steel in aerated water solution with NaCl (80000 ppm Ccl-, pH = 7; 80 °C, 200 mV/h); three colors mean three measurements at the same point in the experiment plan (**a**), one curve signifies the use of moving average (**b**).

Figure S8. Polarization curves of passive layers of electropolished 27Cr29Ni3Mo stainless steel in aerated water solution with NaCl (80000 ppm Ccl-, $pH = 7$; 80 °C, 200 mV/h); three colors mean three measurements at the same point in the experiment plan (**a**), one curve signifies the use of moving average (**b**).

Figure S9. XPS depth profiling results of the passive layer of mechanically polished 18Cr21Mn2NiN stainless steel, 91.6 s \approx 1 nm.

Figure S10. XPS depth profiling results of the passive layer of electropolished 18Cr21Mn2NiN stainless steel, 91.6 s \approx 1 nm.

Figure S11. XPS depth profiling results of the passive layer of mechanically polished 20Cr20Mn7Ni2MoN stainless steel, $91.6 s \approx 1$ nm.

Figure S12. XPS depth profiling results of the passive layer of electropolished 20Cr20Mn7Ni2MoN stainless steel, 91.6 s \approx 1 nm.

Figure S13. XPS depth profiling results of the passive layer of mechanically polished 18Cr15Ni3Mo stainless steel, 91.6 s \approx 1 nm.

Figure S14. XPS depth profiling results of the passive layer of electropolished 18Cr15Ni3Mo stainless steel, 91.6 s ≈ 1 nm.

Figure S15. XPS depth profiling results of the passive layer of mechanically polished 27Cr29Ni3Mo stainless steel, 91.6 s \approx 1 nm.

Figure S16. XPS depth profiling results of the passive layer of electropolished 27Cr29Ni3Mo stainless steel, 91.6 s \approx 1 nm.

Figure S17. Oxygen O1s XPS spectra of the passive layer of mechanically ground stainless steels: (**a**) 18Cr21Mn2NiN, (**b**) 20Cr20Mn7Ni2MoN, (**c**) 18Cr15Ni3Mo, (**d**) 27Cr29Ni3Mo.

Figure S18. Iron Fe2p_{3/2} XPS spectra of the passive layer of mechanically ground stainless steels: (a) 18Cr21Mn2NiN, (**b**) 20Cr20Mn7Ni2MoN, (**c**) 18Cr15Ni3Mo, (**d**) 27Cr29Ni3Mo.

Figure S19. Chromium Cr2p3/2 XPS spectra of passive layer of mechanically ground stainless steels: (**a**) 18Cr21Mn2NiN, (**b**) 20Cr20Mn7Ni2MoN, (**c**) 18Cr15Ni3Mo, (**d**) 27Cr29Ni3Mo.

Figure S20. Oxygen O1s XPS spectra of the passive layer of electropolished stainless steels: (a) 18Cr21Mn2NiN, (**b**) 20Cr20Mn7Ni2MoN, (**c**) 18Cr15Ni3Mo, (**d**) 27Cr29Ni3Mo.

Figure S21. Phosphorus P2p XPS spectra of the passive layer of electropolished stainless steels: (**a**) 18Cr21Mn2NiN, (**b**) 20Cr20Mn7Ni2MoN, (**c**) 18Cr15Ni3Mo, (**d**) 27Cr29Ni3Mo.

Figure S22. Sulphur S2p XPS spectra of the passive layer of electropolished stainless steels: (**a**) 18Cr21Mn2NiN, (**b**) 20Cr20Mn7Ni2MoN, (**c**) 18Cr15Ni3Mo, (**d**) 27Cr29Ni3Mo.

Figure S23. Iron Fe2p3/2 XPS spectra of the passive layer of electropolished stainless steels: (**a**) 18Cr21Mn2NiN, (**b**) 20Cr20Mn7Ni2MoN, (**c**) 18Cr15Ni3Mo, (**d**) 27Cr29Ni3Mo.

Figure S24. Chromium Cr2p3/2 XPS spectra of the passive layer of electropolished stainless steels: (**a**) 18Cr21Mn2NiN, (**b**) 20Cr20Mn7Ni2MoN, (**c**) 18Cr15Ni3Mo, (**d**) 27Cr29Ni3Mo

	$Fe2p_{3/2}$	P2p	S2p	O1s		Cr2 _{D3/2}	P2p	S2p	O1s
Fe ⁰	706.6-707				Cr ⁰	574.2-574.4			
FeO	709.4			530.0	Cr_2O_3	576.4–576.8			530.2
Fe ₂ O ₃	710.9			530.0	CrOOH	576.8–577.0			531.4
FeOOH	711.3-711.8			530.0	Cr(OH) ₃	577.2-577.3			531.2
FeSO ₄	711.0-712		169.1	532.2	CrO ₃	579.2			530.1
$Fe2(SO4)3$	713.4-713.5			531.8	CrO ₄ ²	579.0-579.5			
FePO ₄	712.7	133.1	$\qquad \qquad$	532.0	$Cr_2(SO_4)_3$	578.5	-	169.5	532.0
$Fe3(PO4)2$	712.5	133.3		532.0	CrPO ₄	577.9	133.7		

Table S1. Binding energies (BE, eV) of iron, chromium compounds.

Reference

1. NIST. ODI SRDATA Links. Available online: https://srdata.nist.gov/ (accessed on 31 July 2020)