

Article Effect of Polishing on Electrochemical Behavior and Passive Layer Composition of Different Stainless Steels

Supplementary files:

Figure S1. Polarization curves of passive layers of mechanically polished 18Cr21Mn2NiN stainless steel in aerated water solution with NaCl (80000 ppm Cci-, pH = 7; 80 °C, 200 mV/h); three colors mean three measurements at the same point in the experiment plan (**a**), one curve signifies the use of moving average (**b**).

Figure S2. Polarization curves of passive layers of electropolished 18Cr21Mn2NiN stainless steel in aerated water solution with NaCl (80000 ppm C_{Cl}-, pH = 7; 80 °C, 200 mV/h); three colors mean three measurements at the same point in the experiment plan (**a**), one curve signifies the use of moving average (**b**).

0

Figure S3. Polarization curves of passive layers of mechanically polished 20Cr20Mn7Ni2MoN stainless steel in aerated water solution with NaCl (80000 ppm Cci-, pH = 7; 80 °C, 200 mV/h); three colors mean three measurements at the same point in the experiment plan (a), one curve signifies the use of moving average (b).

4 of 16

Figure S4. Polarization curves of passive layers of electropolished 20Cr20Mn7Ni2MoN stainless steel in aerated water solution with NaCl (80000 ppm Cci-, pH = 7; 80 °C, 200 mV/h); three colors mean three measurements at the same point in the experiment plan (**a**), one curve signifies the use of moving average (**b**).

Figure S5. Polarization curves of passive layers of mechanically polished 18Cr15Ni3Mo stainless steel in aerated water solution with NaCl (80000 ppm Cci-, pH = 7; 80 °C, 200 mV/h); three colors mean three measurements at the same point in the experiment plan (**a**), one curve signifies the use of moving average (**b**).

Figure S6. Polarization curves of passive layers of electropolished 18Cr15Ni3Mo stainless steel in aerated water solution with NaCl (80000 ppm C_{Cl-}, pH = 7; 80 °C, 200 mV/h); three colors mean three measurements at the same point in the experiment plan (**a**), one curve signifies the use of moving average (**b**).

Figure S7. Polarization curves of passive layers of mechanically polished 27Cr29Ni3Mo stainless steel in aerated water solution with NaCl (80000 ppm Cci-, pH = 7; 80 °C, 200 mV/h); three colors mean three measurements at the same point in the experiment plan (**a**), one curve signifies the use of moving average (**b**).

Figure S8. Polarization curves of passive layers of electropolished 27Cr29Ni3Mo stainless steel in aerated water solution with NaCl (80000 ppm C_{Cl-}, pH = 7; 80 °C, 200 mV/h); three colors mean three measurements at the same point in the experiment plan (**a**), one curve signifies the use of moving average (**b**).

Figure S9. XPS depth profiling results of the passive layer of mechanically polished 18Cr21Mn2NiN stainless steel, 91.6 s \approx 1 nm.

Figure S10. XPS depth profiling results of the passive layer of electropolished 18Cr21Mn2NiN stainless steel, 91.6 s \approx 1 nm.

Figure S11. XPS depth profiling results of the passive layer of mechanically polished 20Cr20Mn7Ni2MoN stainless steel, 91.6 s \approx 1 nm.

Figure S12. XPS depth profiling results of the passive layer of electropolished 20Cr20Mn7Ni2MoN stainless steel, 91.6 s \approx 1 nm.

Figure S13. XPS depth profiling results of the passive layer of mechanically polished 18Cr15Ni3Mo stainless steel, 91.6 s \approx 1 nm.

Figure S14. XPS depth profiling results of the passive layer of electropolished 18Cr15Ni3Mo stainless steel, 91.6 s \approx 1 nm.

Figure S15. XPS depth profiling results of the passive layer of mechanically polished 27Cr29Ni3Mo stainless steel, 91.6 s \approx 1 nm.

Figure S16. XPS depth profiling results of the passive layer of electropolished 27Cr29Ni3Mo stainless steel, $91.6 \text{ s} \approx 1 \text{ nm}$.

Figure S17. Oxygen O1s XPS spectra of the passive layer of mechanically ground stainless steels: (**a**) 18Cr21Mn2NiN, (**b**) 20Cr20Mn7Ni2MoN, (**c**) 18Cr15Ni3Mo, (**d**) 27Cr29Ni3Mo.

Figure S18. Iron Fe2p_{3/2} XPS spectra of the passive layer of mechanically ground stainless steels: (**a**) 18Cr21Mn2NiN, (**b**) 20Cr20Mn7Ni2MoN, (**c**) 18Cr15Ni3Mo, (**d**) 27Cr29Ni3Mo.

Figure S19. Chromium Cr2p_{3/2} XPS spectra of passive layer of mechanically ground stainless steels: (**a**) 18Cr21Mn2NiN, (**b**) 20Cr20Mn7Ni2MoN, (**c**) 18Cr15Ni3Mo, (**d**) 27Cr29Ni3Mo.

Figure S20. Oxygen O1s XPS spectra of the passive layer of electropolished stainless steels: (a) 18Cr21Mn2NiN, (b) 20Cr20Mn7Ni2MoN, (c) 18Cr15Ni3Mo, (d) 27Cr29Ni3Mo.

Figure S21. Phosphorus P2p XPS spectra of the passive layer of electropolished stainless steels: (a) 18Cr21Mn2NiN, (b) 20Cr20Mn7Ni2MoN, (c) 18Cr15Ni3Mo, (d) 27Cr29Ni3Mo.

Figure S22. Sulphur S2p XPS spectra of the passive layer of electropolished stainless steels: (a) 18Cr21Mn2NiN, (b) 20Cr20Mn7Ni2MoN, (c) 18Cr15Ni3Mo, (d) 27Cr29Ni3Mo.

Figure S23. Iron Fe2p_{3/2} XPS spectra of the passive layer of electropolished stainless steels: (a) 18Cr21Mn2NiN, (b) 20Cr20Mn7Ni2MoN, (c) 18Cr15Ni3Mo, (d) 27Cr29Ni3Mo.

Figure S24. Chromium Cr2p_{3/2} XPS spectra of the passive layer of electropolished stainless steels: (**a**) 18Cr21Mn2NiN, (**b**) 20Cr20Mn7Ni2MoN, (**c**) 18Cr15Ni3Mo, (**d**) 27Cr29Ni3Mo

	Fe2p _{3/2}	P2p	S2p	01s		Cr2p _{3/2}	P2p	S2p	O1s
Fe ⁰	706.6-707	—	-	—	Cr ⁰	574.2-574.4	-	_	-
FeO	709.4	_	_	530.0	Cr_2O_3	576.4-576.8	_	_	530.2
Fe ₂ O ₃	710.9	_	_	530.0	CrOOH	576.8-577.0	_	_	531.4
FeOOH	711.3–711.8	-	-	530.0	Cr(OH) ₃	577.2–577.3	-	-	531.2
FeSO ₄	711.0–712	-	169.1	532.2	CrO ₃	579.2	-	_	530.1
Fe ₂ (SO ₄) ₃	713.4–713.5	_	_	531.8	$CrO_{4^{2^{-}}}$	579.0-579.5	_	_	_
FePO ₄	712.7	133.1	_	532.0	Cr ₂ (SO ₄) ₃	578.5	_	169.5	532.0
Fe3(PO4)2	712.5	133.3	-	532.0	CrPO ₄	577.9	133.7	_	-

Table S1. Binding energies (BE, eV) of iron, chromium compounds.

Reference

1. NIST. ODI SRDATA Links. Available online: https://srdata.nist.gov/ (accessed on 31 July 2020)