Equilibria in Aqueous Cobalt(II) – Reduced Schiff Base N-(2hydroxybenzyl)alanine System: Chemical Characterization, Kinetic Analysis, Antimicrobial and Cytotoxic Properties

Magdalena Woźniczka ^{1,*}, Manas Sutradhar ², Armando J.L. Pombeiro ², Mirosława Świątek ¹, Marek Pająk ¹, Joanna Gądek-Sobczyńska ¹, Magdalena Chmiela ³, Weronika Gonciarz ³, Beata Pasternak ⁴ and Aleksander Kufelnicki ¹

Page 3.	Figure S1. Species distribution curves as a function of pH for AlaSal; $C_{AlaSal} = 2.0 \times 10^{-2}$ M.
Page 4.	Figure S2. Tandem mass spectrum of $[LH_3]^+ - m/z = 196.0$, $C_{AlaSal} = 1.0 \times 10^{-2}$ M.
Page 5.	Figure S3. ESI-MS spectra for ligand in positive ion-mode at various pH, $C_{AlaSal} = 1.0 \times 10^{-2}$ M. Explanation of the adduct signal described in the text: $m/z = 111.0$ [fragment ion $m/z = 79 + CH_3OH$] ⁺ m/z = 174.0 [deprotonated fragment ion $m/z = 152 + Na$] ⁺ $m/z = 211.0$ [fragment ion $m/z = 152 + NaOH + H_2O$] ⁺ .
Page 6.	Figure S4. ESI-MS spectra for ligand in negative ion-mode at various pH, $C_{AlaSal} = 1.0 \times 10^{-2}$ M.
Page 7.	Figure S5. Negative-ion ESI-MS spectra for the complexes formed in the Co(NO ₃) ₂ /AlaSal system at ligand-to-metal molar ratio 2:1, at various pH, $C_{AlaSal} = 2 \times 10^{-2}$ M. Explanation of the signal described in the text: $m/z = 615.0$ [CoL ₂ H + deprotonated fragment ion $m/z = 107 + \text{HNO}_3$] ⁻ .
Page 8.	Figure S6. Positive-ion ESI-MS spectra for the complexes formed in the Co(NO ₃) ₂ /AlaSal system at ligand-to-metal molar ratio 2:1, at various pH, $C_{AlaSal} = 2 \times 10^{-2}$ M. Explanation of the signal described in the text: $m/z = 218.0$ [Co(II) + fragment ion $m/z = 79 + 2OH + NO_2$] ⁺ $m/z = 576.0$ [CoL ₂ H + fragment ion $m/z = 107 + Na$] ⁺ $m/z = 618.0$ [CoL ₂ H + fragment ion $m/z = 108 + H + HNO_3$] ⁺ $m/z = 662.0$ [CoL ₂ H + fragment ion $m/z = 152 + H + HNO_3$] ⁺ .

- Page 9. **Figure S7. (a)** UV spectra of AlaSal during titration within the pH range 1.90– 11.30, $C_{AlaSal} = 2 \times 10^{-4}$ M; **(b)** Molar absorption coefficients (ε) of various ligand ionic forms.
- Page 10. **Figure S8. (a)** UV/Vis spectra during titration of the Co(II) AlaSal system at ligand-to-metal molar ratio 2:1, pH range 1.80–11.43; $C_{AlaSal} = 2 \times 10^{-3}$ M. **(b)** Molar absorption coefficients (ε) of the two complexes accepted by HypSpec deconvolution.

Figure S1. Species distribution curves as a function of pH for AlaSal; $C_{AlaSal} = 2.0 \times 10^{-2}$ M.

Figure S2. Tandem mass spectrum of $[LH_3]^+ - m/z = 196.0$, $C_{AlaSal} = 1.0 \times 10^{-2}$ M.

m/z = 111.0 [fragment ion $m/z = 79 + CH_{3}OH$]+

m/z = 174.0 [deprotonated fragment ion m/z = 152 + Na]⁺

m/z = 211.0 [fragment ion $m/z = 152 + \text{NaOH} + \text{H}_2\text{O}$]⁺.

Figure S4. ESI-MS spectra for ligand in negative ion-mode at various pH, $C_{AlaSal} = 1.0 \times 10^{-2}$ M.

Figure S5. Negative-ion ESI-MS spectra for the complexes formed in the Co(NO₃)₂/AlaSal system at ligand-to-metal molar ratio 2:1, at various pH, $C_{AlaSal} = 2 \times 10^{-2}$ M. Explanation of the signal described in the text: m/z = 615.0 [CoL₂H + deprotonated fragment ion $m/z = 107 + \text{HNO}_3$]⁻.

ligand-to-metal molar ratio 2:1 (positive-ion mode)

Figure S6. Positive-ion ESI-MS spectra for the complexes formed in the Co(NO₃)₂/AlaSal system at ligand-to-metal molar ratio 2:1, at various pH, $C_{AlaSal} = 2 \times 10^{-2}$ M. Explanation of the signal described in the text: m/z = 218.0 [Co(II) + fragment ion $m/z = 79 + 2OH + NO_2$]⁺ m/z = 576.0 [CoL₂H + fragment ion m/z = 107 + Na]⁺ m/z = 618.0 [CoL₂H + fragment ion $m/z = 108 + H + HNO_3$]⁺ m/z = 662.0 [CoL₂H + fragment ion $m/z = 152 + H + HNO_3$]⁺.

Figure S7. (a) UV spectra of AlaSal during titration within the pH range 1.90–11.30, $C_{AlaSal} = 2 \times 10^{-4}$ M; **(b)** Molar absorption coefficients (ε) of various ligand ionic forms.

Figure S8. (a) UV/Vis spectra during titration of the Co(II) – AlaSal system at ligand-to-metal molar ratio 2:1, pH range 1.80–11.43; $C_{AlaSal} = 2 \times 10^{-3}$ M. **(b)** Molar absorption coefficients (ε) of the two complexes accepted by HypSpec deconvolution.