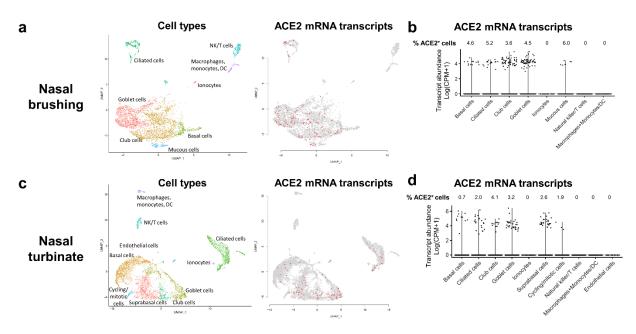
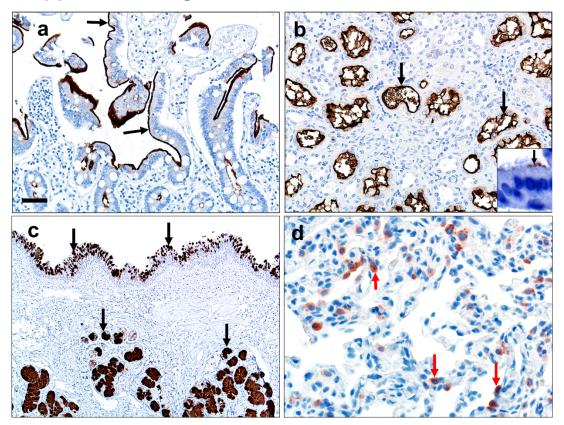

Supplemental information:

Supplemental Figure 1

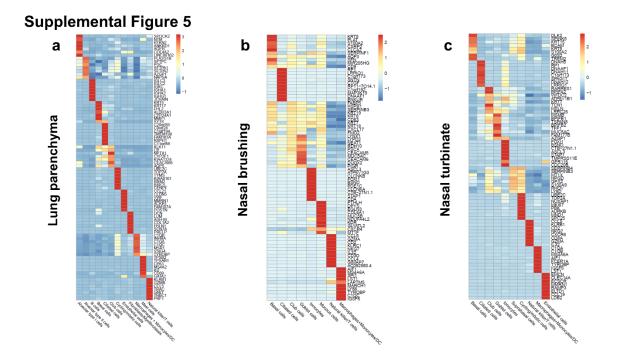
Supplemental Figure 1. Single-cell RNA sequencing reanalyses of ACE2 transcript abundance in lung parenchyma (26). Summative observations from all donors. a) Uniform manifold approximation and projection (UMAP) visualizations. Cells were clustered using a shared nearest neighbor (SNN) approach. Cell types associated with each cluster were identified by determining marker genes for each cluster. Each data point denotes a cell. On the right panel, cells with ACE2 transcripts are shown in red. b) Violin plots representing ACE2 expression in the alveoli. Airway cells (basal, mitotic, ciliated, club) are not shown. Percentage of ACE2⁺ cells within each cell type shows ACE2 transcripts in 1·2% of alveolar type II cells and in 0·1% of macrophages, monocytes, or dendritic cells. Each data point denotes a cell, most cells have no expression (0). AT2: alveolar type II. AT1: alveolar type I. Macs: Macrophages. Mono: Monocytes. DC: dendritic cells. Other immune cells: B cells, mast cells, natural killer/T cells. Endo: Endothelial. Fibro: Fibroblasts/myofibroblasts. NK: Natural killer. CPM: Counts per million.


Supplemental Figure 2

Supplemental Figure 2. Representative tissue section from submucosa of large airways (trachea/bronchi) showing ACE2 protein localization (brown color, black arrows) (a, b) and scores (c). a) Submucosal glands had uncommon to localized apical ACE2 protein (arrows) in serous (S) cells, but not mucous (M) cells. b) Submucosal glands also had absent to uncommon ACE2 protein (arrows) in the interstitium that centered on vascular walls and endothelium. This vascular staining was uncommonly seen in lung too and corresponded to the low levels seen in transcripts for these endothelial cells (Supplemental Figure 1a-b). Note the absence of ACE2 staining in serous (S) or mucous (M) cells of the gland (b). c) ACE2 protein scores for each subject for serous cells in submucosal glands from trachea and bronchi, in control versus chronic


- disease groups (P>0.9999, 0.9999, respectively, Mann-Whitney U test). Bar = 25 μ m. LOD:
- 638 Limit of detection.

Supplemental Figure 3



Supplemental Figure 3. Single-cell RNA sequencing reanalyses of ACE2 transcript abundance in nasal brushing (**a**, **b**) and nasal turbinate (**c**, **d**) (27). **a**, **c**) Uniform manifold approximation and projection (UMAP) visualizations. Cells were clustered using a shared nearest neighbor (SNN) approach. Cell types associated with each cluster were identified by determining marker genes for each cluster. Each data point denotes a cell. On the right panels, cells with ACE2 transcripts are shown in red. **b**, **d**) Violin plots representing ACE2 expression. In nasal turbinate and nasal brushing, percentage of ACE2⁺ cells within each cell type shows ACE2 expression on epithelial cells. Each data point denotes a cell, most cells have no expression (0). DC: dendritic cells. NK: Natural killer. CPM: Counts per million.

Supplemental Figure 4

Supplemental Figure 4. Quality controls for ACE2 immunohistochemistry technique (a, b) and tissue quality (c, d). a, b) ACE2 protein (brown color, black arrows) was detected along the apical surface of small intestine enterocytes (a), renal tubule epithelium (b), and ciliated cells (b, inset) of primary airway cell cultures. These findings demonstrate specific detection of ACE2 protein in cells/tissues consistent with known ACE2 expression. c) Representative immunostaining of bronchus detected abundant MUC5B protein (brown color, black arrows) in mucous cells of surface epithelium (top) and submucosal glands (bottom). d) Representative sections of alveoli had SP-C⁺ alveolar type II cells (red color, red arrows). These results (c, d) demonstrate the tissues were intact and that immunostaining can be used to detect native airway (c) and lung (d) proteins. Bar = 40 (a, b), 80 (c), and 20 μm (d).

Supplemental Figure 5. Single-cell RNA sequencing reanalyses of lung parenchyma (a) (26), nasal brushing (b), and nasal turbinate (c) (27). Heatmaps depicting the marker genes for each cluster that were used to assign cell types.

Supplemental Table 1. ACE2 protein reported in surface epithelium (SE) of human

respiratory tract surface epithelium.

666

667

Reported	Primary	SN	T	В	Br	Al	Summary
Cases [n]	Ab						comments
Non-diseased	Polyclonal	SE (C++,	n.d.	SE (C+)	n.d.	AT1	Abundant ACE2
lungs / nasal		basal cells				(C++);	protein in lung
[5 each];		in				AT2 (C++)	epithelia
diseased		squamous					
lungs [5]		epithelium)					
(20)							
Non-diseased	Undefined	n.d.	SE	SE (C+,	n.d.	"Alveoli"	ACE2 is present
lungs [5]			(C+,	A+)		(A+)	on epithelia in
(21)			A+)			Mac (A+)	several parts of
							the respiratory
							tract and
							macrophages
Lung	Polyclonal	n.d.	n.d.	SE (C+,	n.d.	AT1-	ACE2 is present
[undefined]				N+, M+)		AT2 (N+)	in bronchial
(22)							epithelium, AT2
							cells, and
							macrophages
Sinus	Polyclonal	SE (N++)	SE (-)	SE (C+,	n.d.	AT1-	ACE2 is present
[undefined]				N++)		AT2	in sinus and
and Lung						(N++)	bronchial
[undefined,							epithelium, AT2
same tissues							cells, and
as above]							macrophages
(23)							

- Non-diseased: The cause of death was not directly related to lung disease
- 670 n.d.: Not described
- Tissues: Sinonasal (SN), trachea (T), bronchi (B), bronchioles (Br), and alveoli (Al)
- 672 Cellular localization: cytoplasmic (C), nuclear (N), apical membrane (A)
- 673 Cells: Surface epithelium (SE), alveolar type I cells (AT1), alveolar type II cells (AT2), alveolar
- 674 macrophages (Mac)
- ACE2 protein (based on published reports/figures): negative (-), weak (+), moderate to abundant
- 676 (++)

Supplemental Table 2. Donor demographics and ACE2 distribution scores for each tissue

678 region.

677

679

684

Case #	Group	Age (yrs)	Sex	Comorbidities	Trachea	Bronchi	Bronchioles	Alveoli
1	Control	5	F	Trauma	NA	2	2	1
2	Control	57	M	Arrhythmia	0	0	0	1
3	Control	31	M	Stroke (Joubert syndrome)	1	1	0	0
4	Control	53	F	Trauma	NA	0	0	1
5	Control	2	M	Brain hemorrhage	0	0	0	1
6	Control	2	M	Trauma	0	0	1	2
7	Control	0.5	M	Spinomuscular atrophy	NA	0	1	0
8	Control	71	M	Stroke, Parkinson's disease, nonsmoker	0	1	1	0
9	Control	4	F	Trauma	0	0	0	2
10	Control	1.2	M	Trauma	0	NA	1	1
11	Control	53	F	Trauma, nonsmoker	0	0	2	0
12	Control	26	F	NA	0	NA	0	0
13	Control	27	F	NA	NA	0	1	0
14	Control	64	M	NA	NA	1	1	0
15	Chronic disease	53	F	Smoker	0	NA	0	1
16	Chronic disease	60	M	COPD, smoker	NA	NA	0	1
17	Chronic disease	32	M	COPD, smoker	0	0	0	1
18	Chronic disease	68	M	COPD	NA	1	0	1
19	Chronic disease	68	F	COPD	NA	NA	1	1
20	Chronic disease	9	M	Asthma	0	0	0	1
21	Chronic disease	25	F	Cystic fibrosis	NA	0	0	0
22	Chronic disease	47	F	Cardiovascular disease	1	2	2	1
23	Chronic disease	27	M	Cystic fibrosis	0	NA	NA	1
24	Chronic disease	50	F	Cardiovascular disease, diabetes, asthma	NA	0	0	0
25	Chronic disease	37	M	Drug use, smoker	0	0	0	0
26	Chronic disease	38	M	Asthma (status asthmaticus)	0	0	0	0
27	Chronic disease	32	M	Cystic fibrosis	NA	NA	0	1
28	Chronic disease	58	F	Cardiovascular disease, diabetes, NASH	0	0	0	1
29	Chronic disease	19	F	Cystic fibrosis	NA	0	0	0

NA: Not available for analyses / COPD: Chronic obstructive pulmonary disease / NASH: Non-

alcoholic steatohepatitis.

Scoring: 0 = below limit of immunohistochemical detection; 1 = rare (<1%); 2 = 1-33%; 3 = 34

683 66%; 4 = >66% of cells.

Supplemental Table 3. Parameters for immunohistochemistry on fixed tissues.

Target	Primary Antibody	Antigen Retrieval	Secondary Reagents
Angiotensin- Converting Enzyme 2 (ACE2)	Anti-ACE2, monoclonal (MAB933, R&D Systems, Minneapolis, MN USA) in diluent at 1:100 x 1 hour.	HIER, Citrate Buffer, pH 6·0, 110°C for 15 minutes; 20 min cool down (Decloaking Chamber Plus, Biocare Medical, Concord, CA	Dako EnVision+ System- HRP Labeled Polymer Anti-mouse, 60 min (Dako North America, Inc., Carpentaria, CA USA), DAB Chromogen,
MUC5B	Rabbit anti-MUC5B polyclonal, (LSBio #LS-B8121, LifeSpan BioSciences, Inc., Seattle, WA) in Dako Antibody Diluent (Dako North America, Inc., Carpentaria, CA); 1:60,0000/30 min	USA) HIER, Citrate buffer pH 6·0, 110°C for 15min; 20 min cool down	counterstain. Step 1: Biotinylated anti- Rabbit IgG (H+L) (Vector Laboratories, Inc., Burlingame, CA) in Dako Wash Buffer (Dako North America, Inc., Carpentaria, CA); 1:500, 30 min Step 2: Vectastain ABC Kit (Vector Laboratories, Inc., Burlingame, CA), 30min. DAB Chromogen, counterstain.
Surfactant Protein – C (SP-C)	Anti-SP-C, polyclonal (PA5-71680, Thermo Fisher Scientific, Waltham, MA USA) in diluent 1:100 x 1 hour	HIER, Citrate Buffer, pH 6·0, 110°C for 15 minutes; 20 min cool down (Decloaking Chamber Plus, Biocare Medical, Concord, CA USA)	Dako EnVision+ System- HRP Labeled Polymer Anti-rabbit, 60 min (Dako North America, Inc., Carpentaria, CA USA), AEC chromogen, counterstain.

687 HIER – Heat-induced epitope retrieval

685

686

688 DAB – 3,3'-Diaminobenzidine (produces brown stain)

689 AEC - aminoethyl carbazole (produces red stain)

690 Counterstain – Harris hematoxylin (blue color)