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Details of theoretical analysis 

1. Edge excitation with a single beam in nontrivial SSH lattices 

Details of the theoretical analysis for Fig. 3 in the main text are presented here, corresponding to 
edge excitation with a single input beam. The total potential (linear and the nonlinear terms), 
corresponding to the photorefractive medium used in experiments is  
 

𝑉𝑉(𝑥𝑥, 𝑧𝑧) = 𝑘𝑘0
𝑛𝑛0

Δ𝑛𝑛
1+𝑖𝑖𝐿𝐿(𝑥𝑥)+𝑖𝑖𝑁𝑁𝑁𝑁(𝑥𝑥,𝑧𝑧)

,              (1) 

where n0=2.35, 𝑘𝑘0  = 2𝜋𝜋𝑛𝑛0
𝜆𝜆

, 𝜆𝜆 = 532 nm, Δ𝑛𝑛 = 4.36 × 10−4; 

𝑖𝑖𝐿𝐿(𝑥𝑥) = 𝑁𝑁𝐿𝐿 �0.8 �cos (𝜋𝜋(𝑥𝑥−𝑐𝑐)
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)�
2
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𝑎𝑎/2

)�
2
�,        (2) 

where 𝑎𝑎 =38 μm is the lattice constant, c is offset constant so that the left edge is centered at 𝑥𝑥 = 0, 
and the normalization 𝑁𝑁𝐿𝐿 is such that the lattice amplitude (the maximum value of 𝑖𝑖𝐿𝐿(𝑥𝑥)) is 2.88. 
The nonlinear contribution is 
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𝑖𝑖𝑁𝑁𝑁𝑁(𝑥𝑥) = 𝛾𝛾|𝜓𝜓(𝑥𝑥, 𝑧𝑧)|2,               (3) 
 

where 𝛾𝛾 tunes the intensity of the beam without changing its shape or the bias field (and therefore 
the strength of the nonlinear index change). The quantities 𝑖𝑖𝐿𝐿(𝑥𝑥) and 𝑖𝑖𝑁𝑁𝑁𝑁(𝑥𝑥) are dimensionless. 
For the SBN crystal used in the experiments, the nonlinear index change parameter is Δ𝑛𝑛 =
−𝑛𝑛03𝑟𝑟33𝐸𝐸0 2⁄ , where 𝑟𝑟33 is the effective electro-optic coefficient of the SBN crystal, and 𝐸𝐸0 is the 
bias field. The strength and the sign of the bias field determines the strength and the sign of the 
nonlinearity. When the bias field is zero, i.e., 𝐸𝐸0 = 0, the system is linear.  
 
The initial states for Figs. 3(b, c) are identical in shape to the linear edge state, 𝜓𝜓(𝐱𝐱, 𝑧𝑧 = 0) =

�𝐼𝐼0𝜑𝜑𝐿𝐿,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. For a low nonlinearity [Fig. 3(b)], we choose 𝛾𝛾 max|𝜓𝜓(𝐱𝐱, 0)|2 =0.30, and for a high 

nonlinearity [Figs. 3(c-f)], we set 𝛾𝛾 max|𝜓𝜓(𝐱𝐱, 0)|2 = 12.5. At the critical value of 

𝛾𝛾 max|𝜓𝜓(𝐱𝐱, 0)|2 =0.72, the nonlinear eigenvalue 𝛽𝛽𝑁𝑁𝑁𝑁,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 moves from inside the gap [Fig. 3(b)] to 

above the first band [Fig. 3(c)]. 
 
The shape of the initial state for simulations (mimicking the input broad beam for lattice excitation 
used in experiment) in Figs. 3(d, e) is given by  
 

𝜓𝜓(𝑥𝑥, 𝑧𝑧 = 0) = �𝐼𝐼0 exp (−𝑖𝑖1.4𝜋𝜋𝜋𝜋
𝑎𝑎

)exp (− (𝑥𝑥−45.6 μm)2

(22.8 μm)2
).        (4) 

 
The strength of the nonlinearity is set to 𝛾𝛾𝐼𝐼0 =4.10.  
 

2. Interface excitation with two beams in nontrivial SSH lattices 

Here we provide theoretical analysis of experiments and numerical simulations presented in Fig. 2 of 
the main text. The theoretical protocol has already been applied in the main text to obtain Fig. 3 and 
to explain the experimental results of Fig. 1. 
 
The outline of Figs. S1(a-c) is identical to that of Figs. 3(a-c) in the main text, except now it is for the 
SSH lattice with an interface defect located in the center of the lattice. In Fig. S1(a) we show the 
linear SSH lattice which has three localized states in the band gap: the left (red) and the right (black) 
edge states, and the interface (magenta) defect state. When the input excitation is chosen to match the 

shape of the (linear) defect state, 𝜓𝜓(𝐱𝐱, 𝑧𝑧 = 0) = �𝐼𝐼0𝜑𝜑𝐿𝐿,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 , for a low nonlinearity 

𝛾𝛾 max|𝜓𝜓(𝐱𝐱, 0)|2 = 0.312, the eigenvalue of the defect state 𝛽𝛽𝑁𝑁𝑁𝑁,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑧𝑧) is shifted towards the 

first band due to nonlinearity but remains inside the gap, as shown in Fig. S1(b). We see that 



𝛽𝛽𝑁𝑁𝑁𝑁,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑧𝑧) essentially stays constant during the propagation. When the nonlinearity is increased 
to a threshold value, 𝛽𝛽𝑁𝑁𝑁𝑁,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑧𝑧) is found to be above the first band, as illustrated in Fig. S1(c) for 
𝛾𝛾 max|𝜓𝜓(𝐱𝐱, 0)|2 = 13.0. 
 
Now we discuss the scenario in which two tilted beams are sent from opposite angles towards the 
interface defect site, as described in Fig. 2 of the main text. In this example we use the same 
parameters as that for Figs. 3(d-f) of the main text, that is, the same structure of the input beams 
described by Eq. (4) above (one from left, and the other from right of the defect). In Figs. S1(d, f) we 
show results for the case when two beams are in phase, and corresponding results for the 
out-of-phase beams are shown in Figs. S1(g-i). The layout of Figs. S1(d-f) [and S1(g-i)] is identical 
to that of Fig. 3(d-f) in the main text, with three shaded regions (magenta, gray, and green) 
corresponding to three different stages of nonlinear beam dynamics. 
 
When two beams are in phase, we again have three stages of the dynamics analogous to those from 
Fig. 3 in the main text. The evolution of the nonlinear eigenvalue spectrum 𝛽𝛽𝑁𝑁𝑁𝑁,𝑛𝑛(𝑧𝑧) is presented in 
Fig. S1(d). In the first stage (shaded in magenta), the wavepacket has not yet arrived at the defect site, 
and the eigenvalue 𝛽𝛽𝑁𝑁𝑁𝑁,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑧𝑧) of the nonlinear defect state 𝜑𝜑𝑁𝑁𝑁𝑁,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is the same as in the 
linear case, as denoted by the solid magenta line. In addition to two edge states and the defect state 
elaborated so far, we observe additional localized states which appear due to nonlinearity (and not 
topology of the linear lattice); their nonlinear eigenvalues are indicated with blue dotted lines. In the 
first stage, the beam does not excite the defect state, i.e., the overlap 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎(𝑧𝑧) =

��𝜓𝜓(x, 𝑧𝑧)�𝜑𝜑𝐿𝐿,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑��
2/|⟨𝜓𝜓|𝜓𝜓⟩|2 is close to zero, as illustrated in Fig. S1(e). Consequently, in this 

first stage 𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑧𝑧) = ��𝜑𝜑𝑁𝑁𝑁𝑁,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝜑𝜑𝐿𝐿,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑��
2
 is approximately one, as shown in Fig. S1(f). In 

the second stage (shaded grey), the two beams have arrived at the defect site, which changes 
significantly the local structure of the lattice. None of the nonlinear eigenmodes is similar to the 
linear defect state 𝜑𝜑𝐿𝐿,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 , as can be seen from the drop of 𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑧𝑧) illustrated in Fig. S1(f). In 
this stage, the linear defect state becomes populated, see Fig. S1(e). In the third stage (shaded green), 
the wavepacket is partially reflected, but a part of it stays at the defect site (about 20-30% as can be 
seen from Fig. S1(e)). The nonlinear defect state 𝜑𝜑𝑁𝑁𝑁𝑁,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 has again a great overlap with the linear 
defect state 𝜑𝜑𝐿𝐿,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 [Fig. S1(f)], but its propagation constant 𝛽𝛽𝑁𝑁𝑁𝑁,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑧𝑧) is now above the first 
band [Fig. S1(d)].  
 
Figures S1(g-i) illustrate results obtained for the two beams initially out of phase. Evolution of the 
nonlinear spectrum is shown in Fig. S1(g). In sharp contrast to the in-phase case, the defect 
eigenvalue 𝛽𝛽𝑁𝑁𝑁𝑁,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑧𝑧) remains inside the gap at all stages, as seen from Fig. S1(g). The overlap 
of the whole beam with the linear defect state 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎(𝑧𝑧) ≈ 0 at all times, as seen from Fig. S1(h), 
indicating that coupling to the defect state does not occur. From Fig. S1(i), we see that as the beams 
approach the defect, 𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑧𝑧) decreases. This occurs due to the change of the local index of 
refraction, i.e., the local distortion of the lattice. In this case the coupling does not occur, and 
𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑧𝑧) revives after the beams are repelled from each other at the defect. 
 
 



3. Edge excitation with a single beam in trivial SSH lattices 

For completeness and direct comparison, in Fig. S2 we present a detailed theoretical analysis 
corresponding to the excitation of the trivial SSH lattice; pertinent experiments are presented in the 
right panel of Fig. 1 in the main text. The layout of Fig. S2, and the parameters used such as the 
nonlinearity strength, are identical to those for Fig. 3 in the main text.  
 
In Fig. S2(a), we show the trivial SSH lattice used in the simulations; there are no topological edge 
or defect states. In Fig. S2(b, c), we show dynamics of the nonlinear eigenvalues for the initial 
excitation which has the shape of the topological edge state of the nontrivial SSH lattice: 𝜓𝜓(𝐱𝐱, 𝑧𝑧 =

0) = �𝐼𝐼0𝜑𝜑𝐿𝐿,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (identical initial condition as for Fig. 3(b, c)). We observe that dynamics of the 

bands is practically 𝑧𝑧-independent (thick blue lines); the bands are the same as for the underlying 
linear system. In Fig. S2(b) we see that there are two nonlinear localized states, one with the 
eigenvalue in the semi-infinite gap above the first band (solid red line), and the other with the 
eigenvalue in the gap (dotted red line). In Fig. S2(c) we again see two localized states, with 
eigenvalues above the first band. For this initial excitation, most of the beam power is present in the 
two eigenmodes induced by the nonlinearity (no feature of topology is present), which evolves along 
the propagation axis.  
 
In Fig. S2(d, f), we show results for the excitation at an angle towards the edge of the trivial lattice. 
Figure S2(d) illustrates dynamics of nonlinear eigenvalue spectrum. We see the bands which are 
𝑧𝑧-independent (thick blue lines). Dynamics is again manifested in the evolution of nonlinearly 
excited localized eigenmodes, whose propagation constants are illustrated with dotted blue lines. 
During the evolution, none of them resembles the topological linear defect state of the nontrivial 
SSH lattice, which follows from Fig. S2(f) displaying 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑧𝑧); we only see an occasional rise of 
the overlap above 70%; this occurs due to the nonlinear mode beating, but it does not persist and 
cannot reach high values to be related to the topological edge state in any way (as compared to 98-99% 
overlap observed in Fig. 3 of the topologically nontrivial lattice reported in the main text); it does not 
make sense to display smaller overlaps as they carry no meaning subject to interpretation. From Fig. 
S2(e), we see that the overlap of the beam with the topological edge state of the linear system is 
always small, indicating that this is not a topological phenomenon as those occurring in the nontrivial 
lattice, but rather it is due to the nonlinearity.    
 
 



 
Fig. S1. Dynamics of nonlinear eigenvalues and overlap between linear and nonlinear defect 
states. (a) The linear SSH lattice (dark blue lines) with one defect state in the center (solid magenta 
line) and two edge states (solid red and black lines). (b, c) Nonlinear eigenvalues 𝛽𝛽𝑁𝑁𝑁𝑁,𝑛𝑛(𝑧𝑧) for 

𝜓𝜓(𝐱𝐱, 𝑧𝑧 = 0) = �𝐼𝐼0𝜑𝜑𝐿𝐿,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 at low (b) and high (c) nonlinearity; for comparison, the linear spectrum 

𝛽𝛽𝐿𝐿,𝑛𝑛  is shown for 𝑧𝑧 < 0. Magenta line depicts the nonlinear eigenvalue 𝛽𝛽𝑁𝑁𝑁𝑁,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑧𝑧) of the 

interface defect mode 𝜑𝜑𝑁𝑁𝑁𝑁,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. Red and black lines correspond to the edge modes which are not 
populated. Thick blue lines are the bands. The insets show the linear topological mode (green dashed 
line) and nonlinear defect mode (magenta solid line). (d-f) Results for two beams launched in phase 
towards the defect. (d) Dynamics of the nonlinear eigenvalues 𝛽𝛽𝑁𝑁𝑁𝑁,𝑛𝑛(𝑧𝑧); the color notations for the 
defect mode and the two edge modes are the same as in (b) and (c). Dotted blue lines indicate the 
nonlinear eigenvalues of modes localized solely due to the nonlinearity. (e) The overlap of the whole 
beam and the linear defect mode 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎(𝑧𝑧). (f) The overlap of the nonlinear defect mode and the linear 
defect mode 𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑧𝑧). (g-i) Dynamics for the two beams initially out of phase. The layout is 
identical to that for (d-f). Three shaded regions (magenta, gray, and green) in (d, f, g, i) correspond to 
three different stages of nonlinear beam dynamics. See text for details.  
  



 
Fig. S2. Dynamics of nonlinear eigenvalues for excitations of SSH lattice in topologically trivial 
regime. (a) The linear SSH lattice (dark blue lines) in the topologically trivial regime. (b, c) 

Nonlinear eigenvalues 𝛽𝛽𝑁𝑁𝑁𝑁,𝑛𝑛(𝑧𝑧)  for 𝜓𝜓(𝐱𝐱, 𝑧𝑧 = 0) = �𝐼𝐼0𝜑𝜑𝐿𝐿,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  at low (b) and high (c) 

nonlinearity. Red solid and red dotted lines correspond to the nonlinear localized modes. These 
modes are purely nonlinear and not related to the topology of the SSH lattice. (d-f) Dynamics for a 
beam launched at an angle towards the edge. (d) Evolution of nonlinear eigenvalues 𝛽𝛽𝑁𝑁𝑁𝑁,𝑛𝑛(𝑧𝑧). Thick 
blue lines correspond to the bands, and dotted blue lines correspond to the (purely) nonlinear 
localized states. (e) The overlap of the whole beam with the linear edge mode of the topologically 
nontrivial SSH lattice 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎(𝑧𝑧); small values indicate that the nonlinearly excited modes are not 
related to linear topological states. (f) None of the nonlinear localized modes resembles the structure 
of the linear edge mode of the topologically nontrivial SSH lattice, as seen from 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑧𝑧); 
occasional and accidental overlaps above 70% arise from the nonlinear dynamics of mode beating, 
but they do not persist and cannot reach high values of 98-99% presented in Fig. 3 of the main text.  
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