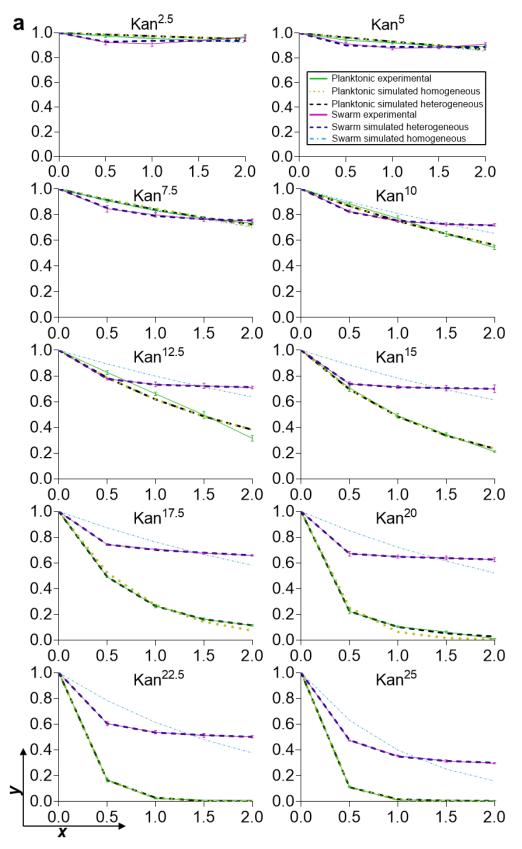
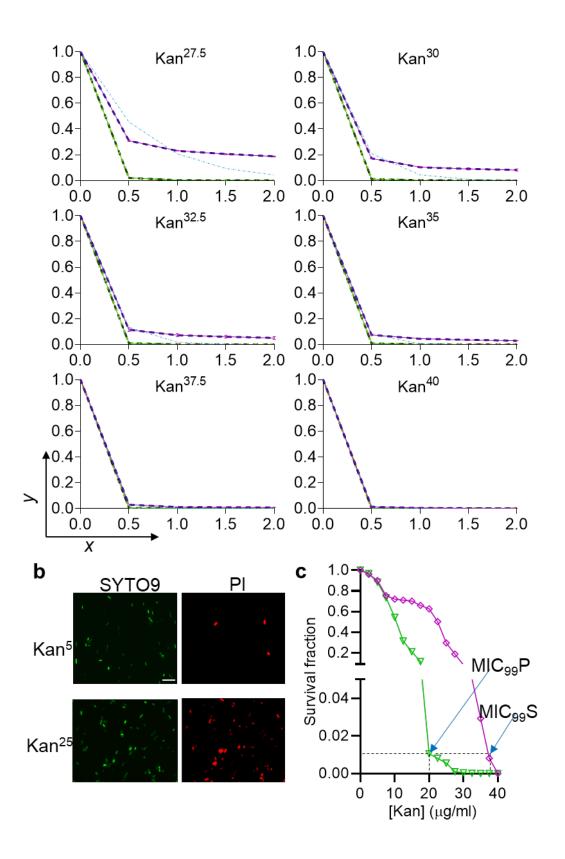
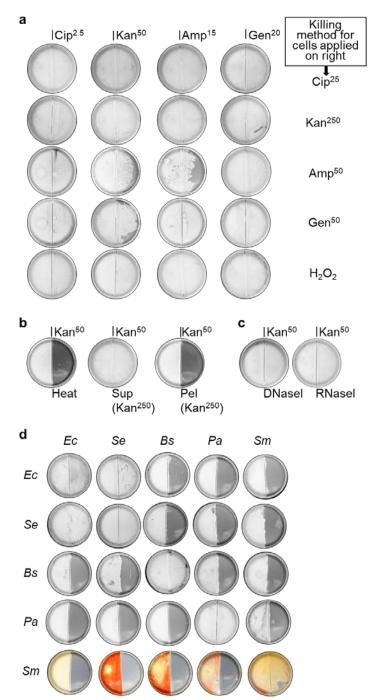
Supplementary Figures and Tables

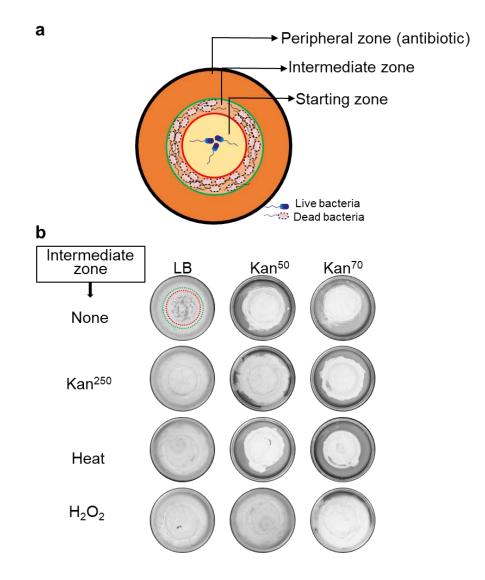

for


Dead cells release a necrosignal that activates antibiotic survival pathways in

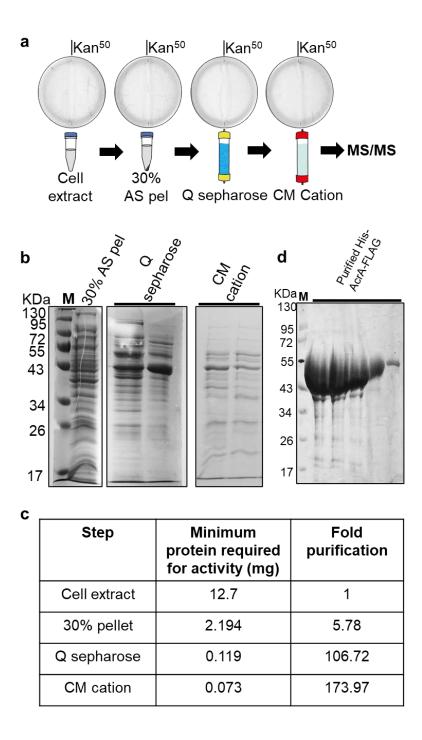
bacterial swarms

Souvik Bhattacharyya, David M. Walker, and Rasika M. Harshey Department of Molecular Biosciences University of Texas at Austin Austin, TX 78712

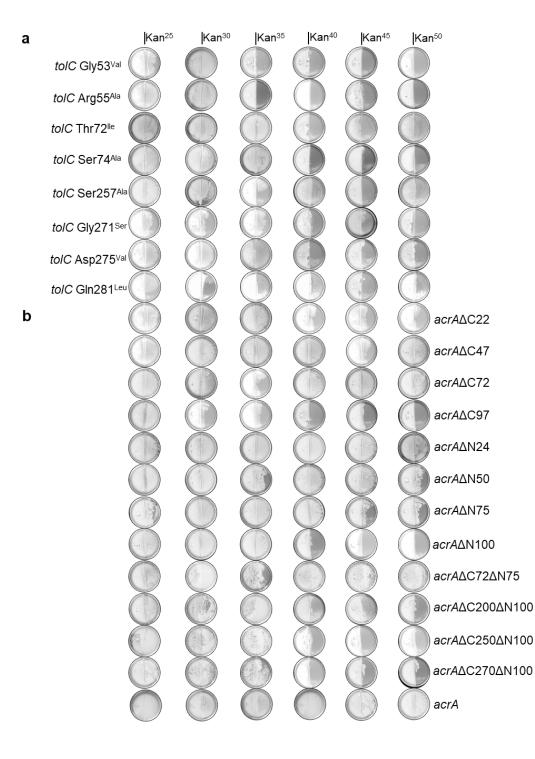

Supplementary Figures

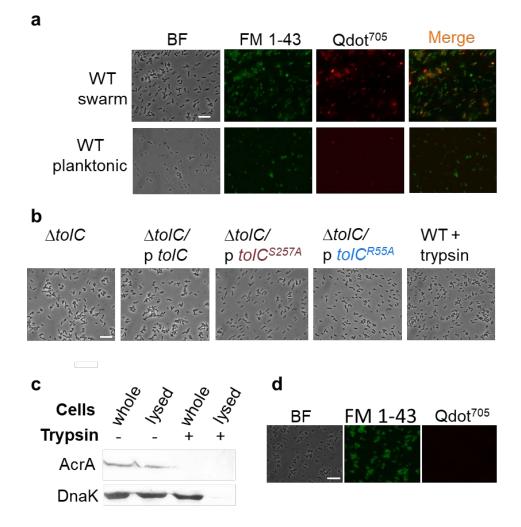


Supplementary Figure 1. Experimental and simulated kanamycin survival curves a. Survival curves of planktonic versus swarm populations (solid lines) at kanamycin (Kan) concentrations ranging from 2.5 to

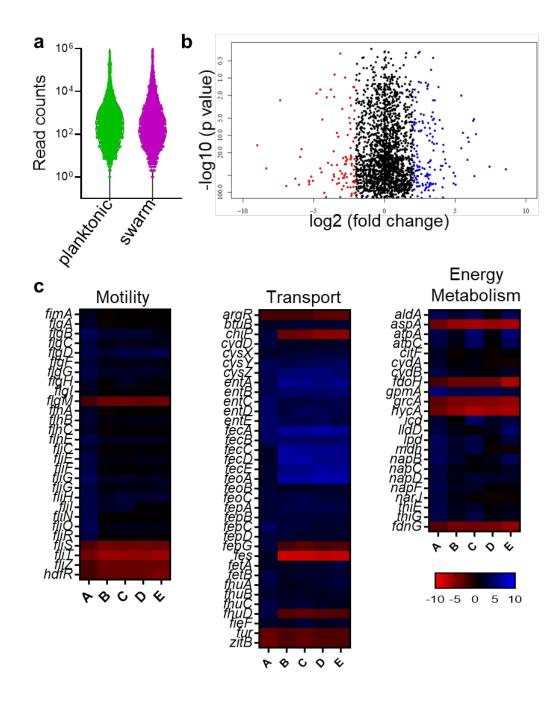

40 µg/ml. The superscript following Kan refers to µg/ml. Time in hours is plotted on the *x* axis, and fraction survived (as determined by CFU counts) on the *y* axis. Multiple unpaired t-tests, with statistical significance determined using the Holm-Sidak method (with alpha = 0.05), were performed on all experimental data points (see Supplementary Table 2 for p values); at early time points (0.5 h) in Kan^{2.5}-Kan³⁵, p values are significant and have a range of *p<0.05 to **p<0.001. The experimental data was simulated assuming either heterogeneous or a homogeneous planktonic or swarm populations, as described in Methods, and the best fit of the simulation to the experimental data is shown (dotted lines). See inset at the top right for legend keys. Graphs showing the distribution of the mean squared errors (MSE) between simulated and experimental data sets are shown in Figure 1a. **b.** Representative Live-Dead staining images of swarm cells treated with Kan⁵ and Kan²⁵ for 0.5 h, confirming the CFU count data in **a**. All cells are stained with the green dye SYTO9, but only cells with membrane damage (dead cells) stain with the red dye propidium iodide (PI). Scale bar, 10 µm **c**. Determination of MIC (minimum inhibitory concentration) for Kan from survival curves at 2 h shown in **a**. MIC₉₉P), and Kan^{37.5} for swarm cells (red, MIC₉₉S). Source data are provided as a Source Data file.

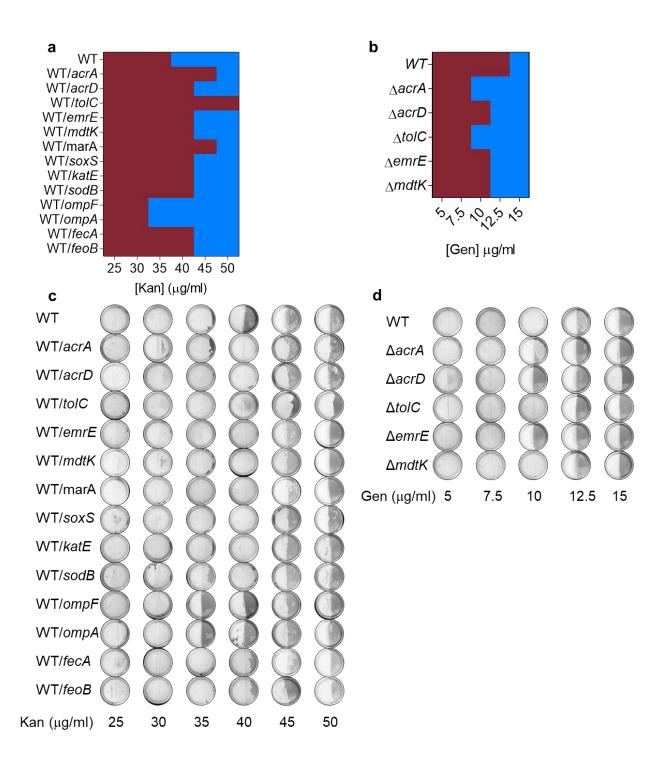
Supplementary Figure 2. Characteristics of the necrosignal. a. Dead cell-promoted SR is independent of the killing method. *E. coli* swarms are sensitive to Cip^{2.5}, Kan²⁵, Amp¹⁵ and Gen²⁰. Wild type *E. coli* cells were inoculated on the left, and cells killed by indicated methods were applied on the right. Antibiotics applied to the right are indicated. **b.** The necrosignal is heat-sensitive and found in the supernatant fraction of cell extracts from killed *E. coli*. Heat killed cells (Heat) or supernatant (Sup) and pellet (Pel) fractions from cells killed with Kan²⁵⁰, were applied to the right to assess swarming on Kan⁵⁰. **c**. The necrosignal is not DNA or RNA. Supernatant from cells killed with Kan²⁵⁰ were treated with DNasel and RNasel and applied on the right. **d.** Species-specificity of necrosignaling. This panel shows the raw data for results summarized in Figure 1e. The right chamber contained Kan⁵⁰ for *Ec*, *Se*, and *Bs*; Kan⁷⁵ for *Sm*; Kan¹²⁵ for *Pa*. Except for *Pseudomonas*, which was pre-killed by Kan⁵⁰⁰, all others were pre-killed Kan²⁵⁰*S. marcescens* makes a red pigment in stationary phase¹.

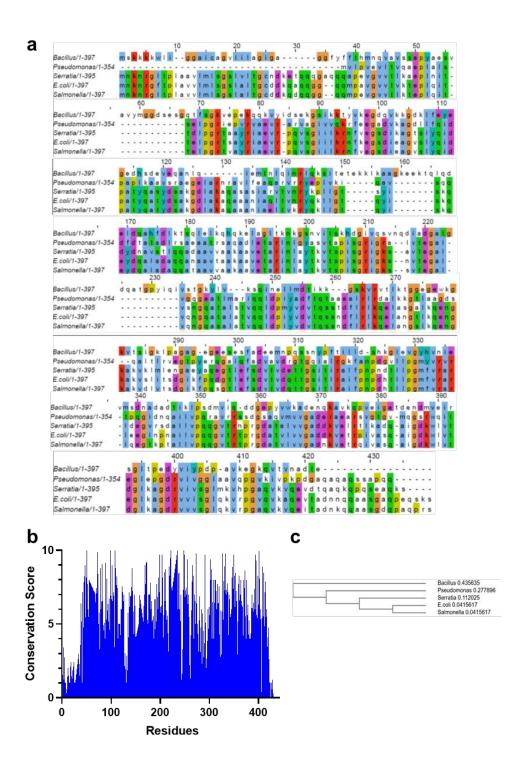

Supplementary Figure 3. Tri-plate assay showing the sustained nature of the SR response. a. Cartoon demonstrating placement of plates of different diameters inside one another to create three swarming zones as labeled, with narrow agar bridges connecting the chambers as described in Figure 2a. **b.** WT *E. coli* was inoculated in the starting zone in all plates. The composition of cells deposited on the intermediate zone is indicated on the left. The presence and concentration of antibiotics in the peripheral zone is indicated above each row of plates. The data show that cells swarming over the intermediate dead cell zone are potentiated for SR even after exiting this zone, as seen by their ability to swarm on the peripheral antibiotic zone. This response is most pronounced with 50 mM H₂O₂, promoting swarming on Kan⁷⁰ in the peripheral zone. Heat destroys the response. Dotted red and green circles on the top left triplate show outlines of smallest and medium sized plates, respectively.

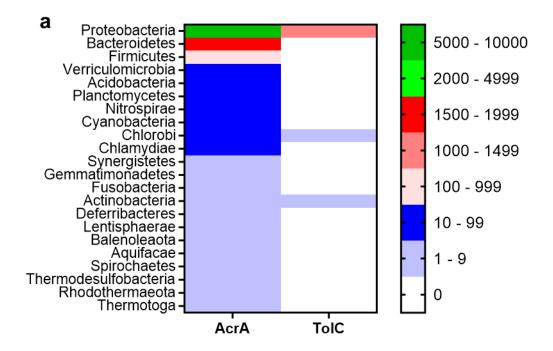

Supplementary Figure 4. Purification of the necrosignal from *E. coli* and *Salmonella*. a. Necrosignaling activity in cell extract supernatants was precipitated with ammonium sulfate (AS pel), resuspended and fractionated over Q Sepharose and CM Cation exchange columns, and analyzed by MS/MS. See Methods for purification details. Plates shown are for *E. coli*. **b.** 12% SDS-PAGE gels showing *E. coli* active fractions from 30% AS pel, Q Sepharose (fractions 5 and 6) and CM cation (fractions 1 and 2); M, protein MW markers. **c.** Table showing fold-purification achieved in *E. coli*. **d.** Gel from 12% SDS-PAGE showing purification of His- and FLAG-tagged AcrA. From left to right, fractions 1-5 from a 5-step imidazole gradient elution (see Methods). 10 μ l of each fraction was loaded on the gel. Source data are provided as a Source Data file.

	Escherichia coli		
Uniprot ID	Protein description	Name	MW (kDa)
P06959	Pyruvate dehydrogenase, E2 subunit	AceF	66
P0AE06	Multidrug efflux pump subunit AcrA	AcrA	42
P69228	DNA-binding transcriptional regulator BaeR	BaeR	21
P0ACJ8	DNA-binding transcriptional dual regulator CRP	Crp	24
P0A6P9	Enolase	Eno	46
P0A9X4	Dynamic cytoskeletal protein MreB	MreB	37
P23836	DNA-binding transcriptional dual regulator PhoP	PhoP	26
P0ADY1	Periplasmic folding chaperone	PpiD	68
P0CG19	truncated RNase PH	Rph	24
P0A7V8	30S ribosomal protein S4	RpsD	23
P0AAC0	universal stress protein	UspE	21
P0AFP4	NADP+-dependent aldehyde reductase	YbbO	29
P77316	Zinc-type alcohol dehydrogenase-like protein YbdR	YbdR	44
P0A8W8	UPF0304 protein YfbU	YfbU	20
P76550	uncharacterized protein YffS	YffS	30
P0ADT8	Uncharacterized protein	YgiM	23
P0A742	putative transporter	YhdC	43
P64429	uncharacterized protein YpfJ	YpfJ	31
	Salmonella Enterica 14028		
Uniprot ID	Protein description	Name	MW (kDa)
Q8ZRA6	Nultidrug efflux pump subunit AcrA	AcrA	42
Q8ZK33	Arginine deiminase	ArcA	46
Q8ZNP8	DNA-binding transcriptional regulator	BaeR	27
P0A2T6 [DNA-binding transcriptional dual regulator CRP	Crp	27
Q8ZQD3	Anaerobic dimethyl sulfoxide reductase, subunit A	DmsA	90
P06179 F	Flagellin protein	FliC	51
Q8ZRU0	Cell division protein	FtsZ	40
P0A1H3	Traslation elongation factor G	FusA	77
Q8ZNG5	Glycerol-3-phosphate dehydrogenase subunit A	GlpA	59
Q8ZLH4	Glycerol-3-phosphate dehydrogenase	GlpD	56
Q8ZN59	nosine-5'-monophosphate dehydrogenase	GuaB	51
Q8ZN40	Cysteine desulfurase IscS	lscS	45
Q8ZRT0	Dihydrolipoyl dehydrogenase	LpdA	50
	RNA-2-methylthio-N(6)-dimethylallyladenosine synthase	MiaB	53
	Septum site-determining protein	MinD	29
	Transpeptidase of penicillin-binding protein 1a	MrcA	94
	Phosphoenolpyruvate carboxykinase	PckA	59
	50S ribosomal protein L9	Rpll	15
	Protein translocase subunit SecA	SecA	101
	Universal stress protein	UspE	35
	nner membrane transport protein	YdhC	42


Supplementary Figure 5. MS/MS analysis of the SR-promoting active fraction from *E. coli* and *Salmonella*. The active fractions analyzed were obtained from the CM cation step of purification. See Supplementary Figure 4 and Methods. 19 proteins were identified for *E. coli* and 21 proteins for *Salmonella*; of these, 5 proteins were common.


Supplementary Figure 6. Primary data for results summarized in Fig 4c. a. Border crossing assay with *tolC* mutants. The $\Delta tolC^{\Delta K}$ strain with indicated mutants were inoculated in the left chamber and purified AcrA was applied on the right. The WT control for this panel is found in Figure 4, a2. b. Border crossing assay with *acrA* mutants. WT cells were inoculated on the left and pre-killed cells ($\Delta acrA^{\Delta K}$) expressing indicated *acrA* mutants from pTrc99a plasmids were applied on the right. Indicated Kan concentrations are for the right chamber.


Supplementary Figure 7. **Binding of extracellular AcrA to TolC on planktonic and swarm cells of** *E. coli.* **a.** Imaging of cells probed with QDot⁷⁰⁵ anti-FLAG antibody and FM-143 (see Methods). The entire field of view (for each channel under the microscope) of the images that were enlarged in Figure 4d, are observable here. Swarm cells are approximately twice as long as planktonic cells². Scale bar, 10 μ m. **b**. Bright field images of swarm cells shown in Figure 4e. *tolC* mutant font color Blue = SR+, maroon = SR-. **c**. Western blot analysis for detecting AcrA localization after trypsin digestion of cell samples used for microscopy in Figure 4d (see Methods). DnaK was used as a cytoplasmic control. Absence of bands for AcrA (FLAG-tagged) from whole cells treated with trypsin indicate extracellular localization of AcrA in the binding experiment shown in (**a**). **d**. Additional control showing that Qdot⁷⁰⁵ alone, i.e. without addition of AcrA-FLAG protein, does not localize to membrane. Source data are provided as a Source Data file.


Supplementary Figure 8. RNA-seq analysis of swarm and planktonic cells of *E. coli*. a. Distribution of mapped read counts for genes showing sequencing consistency across samples. b. A representative scatter plot showing fold change and adjusted p-value distributions of genes for swarm vs planktonic. A ± 2 log2 fold change cutoff was used to identify up or downregulated genes. The blue and red dots represent log2 fold change with a value of >= 2 and <=-2, respectively. c. Heat maps showing changes in expression of the different gene classes (motility, transport, energy metabolism) across the following comparisons: A) Swarm vs Planktonic, B) Swarm vs Swarm+Kan²⁰, C) Swarm vs Swarm+Kan²⁰+AcrA (0.1 µg/ml), D) Swarm vs Swarm+Cip^{2.5}, E) Swarm vs Swarm+ Cip^{2.5}+AcrA (0.1 µg/ml). See Supplementary Data 1 for expression values. Source data are provided as a Source Data file.

Supplementary Figure 9. Validation of RNA-seq results through genetic analysis. Summary of border crossing assays. Blue, SR+; Maroon, SR-. WT *E. coli* carrying plasmids from ASKA library or gene deletions were inoculated on the left. **a**. The overexpression of selected components from different classes of efflux pumps (*acrA, acrD, tolC, emrE, mdtk*) and their regulators (*marA* and *soxS*), ROS catabolism genes (*katE* and *sodB*), and iron transport genes (*fepA and feoB*) showed an increase in SR. Porins *ompF* and *ompA* reduced SR. **b.** Deletion strains of selected efflux pump genes (*acrA, acrD, tolC, mdtK*, and *emrE*), inoculated on the left, reduced SR. Gentamycin [Gen] was used in the right chamber as these strains harbor a Kan^R marker. **c-d.** Raw data for **a** and **b** respectively.

Supplementary Figure 10. Comparison of AcrA sequences in five organisms used in this study. a. Multiple Sequence Alignment (MSA) of AcrA sequences (see Methods). **b.** Graph showing variations in conservation scores across residues; numbering relates to *E. coli* AcrA sequence. **c.** A cladogram of AcrA sequences.

Supplementary Figure 11. Distribution of AcrA and ToIC across the Bacterial domain. The sequences of AcrA and ToIC of *E. coli* were used to perform a search using HMMER algorithm³ within bacterial taxa. The significant 'e value' cutoff was 10^{-20} . A decrease or increase in the cutoff $(10^{-10} \text{ to } 10^{-3})$ did not alter the pattern of results significantly. The values show the number of hits obtained across different taxa.

Supplementary Tables

Supplementary Table 1. Strains, Plasmids, and Primers

Strain/Plasmid	Genotype	Source and/or reference	
Strains			
Escherichia coli			
MG1655	Wild type; F ⁻ λ ⁻ rph-1	4	
∆acrA	MG1655 ∆ <i>acrA::</i> Kan ^R		
∆acrA ^{∆K}	MG1655 ∆ <i>acrA, Kan^R</i> removed		
∆uspE	MG1655 ∆ <i>uspE::</i> Kan ^R		
∆baeR	MG1655 <i>∆baeR::</i> Kan ^R		
∆yhdC	MG1655 ∆ <i>yhdC::</i> Kan ^R	This study	
ΔtolC	MG1655 ∆ <i>tolC::</i> Kan ^R		
∆tolC∆K	MG1655 ∆ <i>tolC, Kan^R</i> removed		
∆acrD	MG1655 ∆ <i>acrD::</i> Kan ^R		
∆emrE	MG1655 ∆ <i>emrE::</i> Kan ^R		
∆mdtK	MG1655 ∆ <i>mdtK::</i> Kan ^R		
Salmonella enterica			
serovar Typhimurium 14028	Wild type; LT2 (<i>fljB-off</i>) Δ(<i>hin-fljAB</i>)	ATCC	
Serratia marcescens		I	
274	Wild type	ATCC	
Bacillus subtilis			
3610	Motile wild type	5	
Pseudomonas aeruginosa	·	·	
PAO1	Wild type	Lab collection	
Plasmids			
pCA24N	From ASKA collection, Cam ^R		
p <i>acrA</i>	pCA24N carrying acrA		
p <i>uspE</i>	pCA24N carrying uspE		
pbaeR	pCA24N carrying baeR		
pyhdC	pCA24N carrying yhdC		
pacrD	pCA24N carrying acrD		
p <i>tolC</i>	pCA24N carrying tolC		
p <i>emrE</i>	pCA24N carrying emrE		
p <i>mdtK</i>	pCA24N carrying mdtK	ASKA ⁶	
p <i>marA</i>	pCA24N carrying marA	ASKA	
psoxS	pCA24N carrying soxS		
p <i>katE</i>	pCA24N carrying katE		
psodB	pCA24N carrying sodB		
p <i>ompF</i>	pCA24N carrying ompF		
pompA	pCA24N carrying ompA		

pfecA	pCA24N carrying fecA				
pfeoB	pCA24N carrying feoB				
pTrc99a	Cloning vector, P_{Trc} and Amp^{R} ,	7			
pT <i>tolC</i>	pTrc99a carrying WT tolC				
pT <i>tolC</i> Gly53 ^{Val}	pTrc99a carrying mutant <i>tolC</i> Gly53 ^{Val}				
pT <i>tolC</i> Arg55 ^{Leu}	pTrc99a carrying mutant <i>tolC</i> Arg55 ^{Leu}				
pT <i>tolC</i> Thr72 ^{lle}	pTrc99a carrying mutant <i>tolC</i> Thr72 ^{lle}				
pT <i>tolC</i> Ser74 ^{Ala}	pTrc99a carrying mutant <i>tolC</i> Ser74 ^{Ala}				
pT <i>tolC</i> Ser257 ^{Ala}	pTrc99a carrying mutant <i>tolC</i> Ser257 ^{Ala}				
pT <i>tolC</i> Gly271 ^{Ser}	pTrc99a carrying mutant <i>tolC</i> Gly271 ^{Ser}				
pT <i>tolC</i> Asp275 ^{Val}	pTrc99a carrying mutant <i>tolC</i> Asp275 ^{Val}				
pT <i>tolC</i> Gln281 ^{Leu}	pTrc99a carrying mutant <i>tolC</i> Gln281 ^{Leu}				
pT <i>acrA</i>	pTrc99a carrying WT acrA				
pT <i>acrA</i> ∆C22	pTrc99a carrying mutant $acrA\Delta C22$	This study			
pT <i>acrA</i> ∆C47	pTrc99a carrying mutant $acrA\Delta C47$				
pT <i>acrA</i> ∆C72	pTrc99a carrying mutant $acrA\Delta C72$				
pTacrA∆C97	pTrc99a carrying mutant $acrA\Delta$ C97				
pTacrA∆N24	pTrc99a carrying mutant $acrA\Delta N24$				
pTacrAΔN50	pTrc99a carrying mutant $acrA\Delta N50$				
pTacrAΔN75	pTrc99a carrying mutant $acrA\Delta N75$				
pTacrAΔN100	pTrc99a carrying mutant $acrA\Delta$ N100				
pTacrAΔC72ΔN75	pTrc99a carrying mutant $acrA\Delta C72\Delta N75$				
pTacrAΔC200ΔN100	pTrc99a carrying mutant $acrA\Delta C200\Delta N100$				
pTacrAΔC250ΔN100	pTrc99a carrying mutant $acrA\DeltaC250\DeltaN100$				
pTacrA ΔC230ΔN100	pTrc99a carrying mutant $acrA\DeltaC270\DeltaN100$				
Primers	pricesa canying mutant acradiczrodie 100				
Name	Sequence (5'→3')				
GLY53 Fp	ACCTATAGCAACGTCTACCGCGACGCGAACG	GCATCAACT			
GLY53 Rp	CGCGTCGCGGTAGACGTTGCTATAGGTGTAA				
ARG55 Fp	AGCAACGGCTACGCGGACGCGAACGGCATCA				
ARG55 Rp	GCCGTTCGCGTCCGCGTAGCCGTTGCTATAG				
THR72 Fp	TCCTTGCAGTTAATTCAATCCATTTTTGATATG				
THR72 Rp		AAAATGGATTGAATTAACTGCAAGGACGCACTGGTCGCG			
SER74 Fp					
SER74 Rp	CATATCAAAAATGGCTTGAGTTAACTGCAAGG				
SER257 Fp					
•					
SER257 Rp ATAAGAGGTGTCAGCAATCCCGGTAGAAGCCGTTAAATCCAG					
	LY271 Fp CGTGGTGCCGCTAGTACCCAGTATGACGATAGCAATATGGGC				
ASP275 Fp	GLY271 Rp GTCATACTGGGTACTAGCGGCACCACGGGTTTTCGAACCGCT				
GLN281 Fp	SP 275 RpCATATTGCTATCGACATACTGGGTACCAGCGGCACCACGGGTLN281 FpAGCAATATGGGCCTGAACAAAGTTGGCCTGAGCTTCTCGCTG				
LN281 Rp GCCAACTTTGTTCAGGCCCATATTGCTATCGTCATACTGGGT crA Fp CGAGGTGGATCCATGAACAAAAC					
acrA Fp acrA Rp	GCTCAAGCTTAAGTTAAGACTTG				
αυιπτιγ					

acrADC22 Rp	TGCTTTTACCTGGACACCAGGTAAAAGCTTAGAT
acrADC47 Rp	TGTCACCAGCCACTTATCGCCTAAAAGCTTAGAT
acrADC72 Rp	TACCAGTACGGTGGCATCGCCTAAAAGCTTAGAT
acrADC97 Rp	CCCTTCTTCCAGACGTGCGCGTAAAAGCTTAGAT
acrADC200 Rp	GTTCTGTACCAATGCGCCTTCTAAAAGCTTAGAT
acrADC250 Rp	CAGAGCCTGATCGTACTCTTGTAAAAGCTTAGAT
acrADC270 Rp	ATTCACCGTCAATTGCGCGATTAAAAGCTTAGAT
acrADN24 Fp	GTACGGATCCATGTGTGACGACAAACAGGCCCAA
acrADN50 Fp	GTACGGATCCATGCAGATCACAACCGAGCTTCCG
acrADN75 Fp	GTACGGATCCATGATCCTGAAGCGTAATTTCAAA
acrADN100 Fp	GTACGGATCCATGTATCAGGCGACATACGACAGT
arcA N ter His Fp	CATGAGCTCATGCATCATCATCATCATCACTGTGACGACAAA
acrA C-ter FLAG Rp	TTAAGCTTAGTCGTCATCGTCTTTGTAGTCAGACTTGGACTGTTC

Supplementary Table 2. Results of Statistical analysis of data in Supplementary Figure 1a

See **Supplementary Figure 1** legend for details.

	p value (swarm experimental vs planktonic experimental)				
Kan Concentration	0.5 h	1 h	1.5 h	2 h	
2.5	0.015258	0.050506	0.696204	0.728697	
5	0.0173	0.01771	0.347403	0.07399	
7.5	0.01991	0.049421	0.34826	0.079605	
10	0.04439	0.149273	0.03715	0.000069	
12.5	0.025151	0.044125	0.000353	0.000009	
15	0.015377	0.000055	0.000016	0.000011	
17.5	<0.00001	<0.000001	<0.00001	<0.00001	
20	0.000007	<0.000001	<0.00001	<0.00001	
22.5	0.000004	<0.00001	<0.00001	<0.000001	
25	<0.00001	<0.00001	<0.00001	<0.000001	
27.5	<0.00001	<0.000001	<0.00001	<0.000001	
30	0.00216	0.000005	0.000047	0.000095	
32.5	0.00229	0.00514	0.0059	0.00893	
35	0.02494	0.138682	0.24732	0.34833	
37.5	0.078213	0.18495	0.293395	0.112014	
40	0.164641	<0.13922	0.127767	0.072741	
[ns= not significant, * <i>p</i> < 0.05, ** <i>p</i> < 0.01, and *** <i>p</i> < 0.001]					

References

- 1 Williams, R. P., Gott, C. L., Qadri, S. M. & Scott, R. H. Influence of temperature of incubation and type of growth medium on pigmentation in Serratia marcescens. *Journal of bacteriology* **106**, 438-443 (1971).
- 2 Partridge, J. D. & Harshey, R. M. More than motility: Salmonella flagella contribute to overriding friction and facilitating colony hydration during swarming. *Journal of bacteriology* **195**, 919-929, doi:10.1128/JB.02064-12 (2013).
- 3 Potter, S. C. *et al.* HMMER web server: 2018 update. *Nucleic acids research* **46**, W200-W204, doi:10.1093/nar/gky448 (2018).
- 4 Guyer, M. S., Reed, R. R., Steitz, J. A. & Low, K. B. Identification of a sex-factor-affinity site in E. coli as gamma delta. *Cold Spring Harbor symposia on quantitative biology* **45** Pt **1**, 135-140, doi:10.1101/sqb.1981.045.01.022 (1981).
- 5 Kearns, D. B. & Losick, R. Swarming motility in undomesticated Bacillus subtilis. *Molecular microbiology* **49**, 581-590, doi:10.1046/j.1365-2958.2003.03584.x (2003).
- 6 Kitagawa, M. *et al.* Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research. *DNA research : an international journal for rapid publication of reports on genes and genomes* **12**, 291-299, doi:10.1093/dnares/dsi012 (2005).
- 7 Amann, E., Brosius, J. & Ptashne, M. Vectors bearing a hybrid trp-lac promoter useful for regulated expression of cloned genes in Escherichia coli. *Gene* **25**, 167-178, doi:10.1016/0378-1119(83)90222-6 (1983).